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Abstract:

Mathematical models of physical phenomena are of critical importance in virtually all applications of science and

technology. This paper addresses the problem of how to use data to improve the fidelity of a given model. We approach this
problem using retrospective cost optimization, which uses data to recursively update an unknown subsystem interconnected to
a known system. Applications of this technique are relevant to applications that depend on large-scale models based on first-
principles physics, such as the global ionosphere--thermosphere model (GITM). Using GITM as the truth model, we demonstrate
that measurements can be used to identify unknown physics. Specifically, we estimate static thermal conductivity parameters,
as well as a dynamic cooling process. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 446-458, 2011
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1. INTRODUCTION

Models serve a variety of purposes by capturing different
phenomena at varying levels of resolution. High-resolution
models are desirable when the goal is to understand sci-
entific phenomena or assimilate data, whereas a coarser
model may be preferable when the goal is to capture critical
details in an efficient manner, for example, for fast predic-
tion or control. Consequently, the fidelity of a model must
be gauged against its intended usage.

Most models are constructed from collections of inter-
connected subsystem models, which in turn are based on a
combination of physical laws and empirical observations.
For example, the core of a model might be the Navier-
Stokes or magnetohydrodynamic equations, while source
terms, such as chemistry, heating, and friction, may be
modeled using either first-principles submodels or empir-
ical relations that have different levels of accuracy, com-
plexity. Physical laws embody first-principles knowledge,
whereas empirical observations may include relations that
are based on the statistical analysis of data, for example,
regression. Physics can provide the backbone of a model,
while empirical relations can flesh out details such as
sub-grid-scale phenomena that are beyond the ability of
analytical modeling.
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When input-output data are available, an empirical
model can be constructed by means of system identifi-
cation methods. In particular, techniques for constructing
linear dynamic models that relate measured inputs to mea-
sured outputs are well developed [1-3]. A challenging
extension is to develop methods for nonlinear system iden-
tification. Because nonlinear models can have a vast range
of structures, the problem of nonlinear system identification
requires the choice of a suitable model structure as well as
an algorithm that uses data to tune the parameters of the
model. Candidate model structures range from unstructured
black-box models, such as neural networks, to gray-box and
white-box models, where some or all of the structure of
the model is specified [S—-8]. The chosen model structure
is assumed to be identifiable from the available measure-
ments, which means that its independent parameters can be
unambiguously estimated from sufficiently persistent data.

The ability to identify a component or subsystem of a sys-
tem depends on accessibility, which refers to the availability
of the inputs and outputs of the subsystem. The highest
degree of accessibility arises when both the input and out-
put of the unknown subsystem are measured. In the case
of Harmnmerstein and Wiener gray-box model structures, a
static nonlinear mapping is cascaded with a dynamic linear
subsystern, but the intermediate signal is assumed to be
unavailable for identification [8]. If a static or dynamic sub-
system is completely inaccessible in the sense that neither
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Fig. 1 The goal of this work is to use data to improve the accu-
racy of an initial model. In other words, initial model 4 data =
mmproved model.

its input nor its output is measured, then the identification
problem becomes significantly more challenging.

The uncertain physics of a subsystem may range from
the simplest case of an unknown parameter (such as a
diffusion constant), to a multivariable spatially dependent
static mapping (such as a conductivity tensor or boundary
conditions), to a fully dynamic relationship among multiple
variables (such as reaction kinetics). The difficulty of
identifying these phenomena from empirical data depends
on the accessibility of the subsystem, while the ability to
use data to update a model despite limited accessibility is
the goal of model refinement.

Model refinement begins with an initial model, which
may incorporate both physical laws and empirical obser-
vations. The components of the initial model may have
varying degrees of fidelity, reflecting knowledge, or igno-
rance of the relevant physics as well as the availability
of data. With this initial model as a starting point, the
goal is to use additional measurements to refine the model.
Components of the model that are poorly moedeled can
be updated, thereby resulting in a higher fidelity model,
as shown in Fig. 1. This problem is variously known as
model correction, empirical correction, model refinement,
model calibration, or model updating, and relevant litera-
ture inciudes [9—12] on finite-element modeling, [13-15]
on meteorology, [16] on feedback control, as well as
algorithms [17-19] with application to health monitoring
[20,21]. Model refinement is thus a specialized version of
identification, which is typically concerned with the con-
struction of a model of the entire system.

When cast in the form of a block diagram, the model
refinement problem has the form of an adaptive con-
trol system [17-20,22]. This resemblance suggests that
adaptive control methods may be effective for tackling
the model refinement problem. To do this, we require
techniques for adaptive control that are sufficiently gen-
eral and computationally tractable to address the fea-
tures of large-scale physically meaningful applications. We
thus apply the retrospective-cost adaptive control (RCAC)
technique [23-25], which differs from standard adaptive
control approaches in several ways. Specifically, RCAC
requires minimal modeling information concerning the
known portion of the system and is applicable to a wide
range of adaptive control problems, including stabiliza-
tion, command following, disturbance rejection, and model

following. RCAC utilizes a surrogate cost function that
entails a closed-form quadratic (and thus convex) optimiza-
tion step. The controller update requires information about
only the zeros of the system; no information about the poles
is needed. Furthermore, the control update requires knowl-
edge of only the nonminimum-phase zeros of the system.
For model refinement, the relevant adaptive control problem
is adaptive disturbance rejection, where the ‘disturbance’
to be rejected is the unknown external excitation signal.
Model refinement based on RCAC is called adaptive model
refinement.

In this paper, we formulate adaptive model refinement
for linear systems. We then demonstrate the method on
a linear numerical example as well as on an experimen-
tal setup. Next, we apply adaptive model refinement to a
first-principles model of the ionosphere and thermosphere.
Specifically, we use the global ionosphere thermosphere
model (GITM) [26] to provide a known initial model. We
then use data from a ‘truth model’ version of GITM in
order to refine the initial model. Although the techniques
developed in refs [23,24] apply to linear systems, this paper
shows that model refinement based on RCAC can be effec-
tive for large-scale nonlinear systems such as GITM. Addi-
tional relevant literature on refrospective cost optimization
includes refs [27-34].

GITM is a three-dimensional spherical (global earth)
code that solves the Navier-Stokes equations for the thermo-
sphere. GITM is different from other models of the atmo-
sphere [35--37] in that it solves the full vertical momentum
equation instead of assuming that the atmosphere is in
hydrostatic equilibrium, where the pressure gradient is bal-
anced by gravity. While this assumption is valid for the
majority of the atmosphere, in the auroral zone, where sig-
nificant energy is dumped into the thermosphere on short
time scales, vertical accelerations often occur. This heating
causes strong vertical winds that can significantly lift the
atrmosphere [38].

The grid structure within GITM is fully parallel and
covers the entire surface of the Earth by using a block-based
two-dimensional domain decomposition in the horizontal
coordinates [39]. The number of latitude and longitude
blocks can be specified at run time in order to modify the
horizontal resolution. GITM has been tun on up to 256
processors with a resolution as fine as 0.31° latitude by
2.5 longitude over the entire globe with 50 vertical levels,
covering a vertical domain from 100 km to roughly 600 km
[26]. This flexibility can be used to validate consistency by
running model refinement at various levels of resolution.

First principle models of the atmosphere are strongly
influenced by unknowns such as thermal conductivity
coefficients and cooling processes. These effects cannot
be directly measured at each altitude, and thus they are
inaccessible. We identify these subsystems, which are
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assumed to be unknown or uncertain, using data from simu-
lated satellites on orbit. We then correct the uncertain model
to demonstrate the feasibility of implementing the adaptive
model refinement technique. A preliminary version of some
of the results in this paper have appeared in the conference
papers [40,41].

In Section 2, we describe the model refinement prob-
lem for subsystem identification. In Section 3, a linear
problem formulation is cast using transfer functions to rep-
resent the initial model and the unknown subsystem. In
Section 4, we present retrospective cost optimization as a
method for obtaining an estimate of the unknown subsys-
tem. In Section S, the technique is demonstrated on linear
numerical exarmaples, as well as an experimental example. In
Section 6, we apply the technique to a nonlinear example,
specifically, parameter estimation and dynamic subsystem
identification in the ionosphere and thermosphere.

2. ADAPTIVE MODEL REFINEMENT
FOR SUBSYSTEM IDENTIFICATION

Figure 2 shows a block diagram of the model refine-
ment problem. Each block is labeled to denote its
uncertainty status. The blocks labeled ‘Known Subsystem’
and ‘Unknown Subsystem’ represent the physical system,
whose inputs include known and unknown inputs, known as
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Fig. 2 This block diagram illustrates the model refinement
problem, where the goal is to identify the ‘Unknown Subsystem’
of the ‘Physical System’. By depicting this problem as a block
diagram, it becomes evident that the model refinement problem is
equivalent to a problem of adaptive command following.
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drivers. These subsystems are connected through feedback,
which captures the fact that each subsystem impacts the
other. The majority of the dynamics of the system are
assumed to be included in the ‘Known Subsystem’, while
the ‘Unknown Subsystem’ includes static or dynamic maps
that are poorly known. Both the input yp and the output u of
the ‘Unknown Subsystem’ are assumed to be unavailable,
and thus this subsystem is not accessible. The objective
is to use data to better understand the ‘Unknown Sub-
systemn’. The unknown drivers v, which are unmeasured
excitations to the system, may corrupt the estimated model
of the unknown subsystem, despite the model-error signal
z tending to zero.

The lower part of the diagram in Fig. 2 constitutes
the ‘Simulated System’. The ‘Physics Model’, which is
implemented in computation, captures the dynamics of the
‘Known Subsystem’ and serves as the initial model. The
‘Physics Model’ is interconnected by feedback with the
block labeled ‘Identified Physics’, which is refined by the
‘Physics Update” procedure, which is denoted by the diag-
onal arrow. The ‘Physics Update’ is a tuning procedure that
recursively identifies the unknown physics as data become
available to provide a model of the ‘Unknown Subsystem’.
This tuning procedure is driven by the model-error signal z,
which is the difference between the data y from the ‘Phys-
ical System’ and the computed output ¥ of the ‘Simulated
System’.

3. LINEAR PROBLEM FORMULATION

From Fig. 2, we consider a transfer function represen-
tation of the known subsystem vy = f(u, w), which is
modeled by

Vo | G Gur ) g (n)
Yo GuyGuyy | L U u
where G is the known initial model, y the output data, w
the measured input signal, vy the input to the unknown sub-

system #, and u the output of 4. Furthermore, u = f(yg) is
represented by the transfer function

, 1Yo
i =Gpl"
Yo
= [GA,yQGA,w] [:U)}
= GA,,V(),VU + GA,u:w- (2)
We stress that A is not accessible, that is, measurements of

the signals # and yy are not available, and thus G 4 cannot
be identified using standard technigues. From Egs. (1)
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and (2), we obtain the closed-loop transfer function from
w to y given by

y = [Gwy + Guy(GA,yo[] - GquGA,yQ]ml
X [Gwyo + Guy()C;A,w] + GA,w)]w- (3)

The goal is to estimate the unknown subsystem G such
that the simulated system

‘: = [Gwy + Guy(CA,yg[] - Gu)tgéﬁ‘yg]ril
X [Gwyo + (-;uy()éi\,w] + éA>w)]w (4)

matches the physical system, that is, the model-error signal
z=y—3y &)

is small.

To identify the feedback term G, using the given ini-
tial model G, we use an adaptive feedback model structure
to identify G A= [é Byg G A.wl. To enforce model match-
ing, we minimize the model-error signal z in the presence
of the measured signal w. In particular, we use RCAC in
a disturbance-rejection architecture. The only signals avail-
able to RCAC are the measurement y, the simulated system
inputs and outputs u, ¥y, vg, and the model-error signal z.

4. RETROSPECTIVE COST OPTIMIZATION

To model the ‘Identified Physics’, consider a strictly
proper time-series model of order n., such that (2) is given
by

uk)y =Y MRoulk =) + ) NiGk)Jolk — i)
i=1 i=0
+ ) Liw(k - b, (©)

i=0

where, for all i = 1,...,ne, M; : N — ReXb N o N -
RExb and L; : N — Re*W are determined by the adaptive
law presented below. Equation (6) can be expressed as

u(ky = 0(k)g (k). (7
where
0(k) & [N1(K)- - Ny (k) Li(k) L )My (k) - My (k)]
and
¢ = [Tk — D FFk — ndw (k- 1) -wk —ne)

ul(k— 1 ul(k — nc)]T g R7elutly )

Next, we represent Eq. (5) as the time-series model with
inputs u and w and output z given by

n

(k) = y(k) — [Z —a;ylk — i)+ Zﬁi“(k — 1)

i=1 i==d
+ Y vk —z')], ®)
i==0

where i, ....0n €R, Bay....Bu e R 3oy, €
Ri*w and the relative degree d is the smallest nonnegative
integer / such that the ith Markov parameter of G, is
nonzero, where the Markov parameters are the components
of the system’s impulse response [1,2].

Next, we define the retrospective performance

200 k) = y(k) — [Z ~oiyk—iY+Y_ B0k — )k —1)

i=1 f==d

+Z yiw(k — 1) +Z B:[0 — 0k —]ok _1)},
=0 i=d
€

where v > d, 6 € Rlvxtely ) ig an optimization variable
used to derive the adaptive law, and B, ..., B, € Rlxh,
RCAC uses a retrospective performance measure, in which
the performance measurement is modified based on the
difference between the actual past control inputs and the
recomputed past control inputs. The parameters v and
Bys ... B, must capture the information included in the
first nonzero Markov parameter and the nonminimum-phase
zeros from u to z [42]. In this paper, we let Bd, s :EU
denote Markov parameters of the transfer function from
to z. Alternative choices of the parameters v and £, ..., 8,
are discussed in ref. 42.
Next, subtracting Eq. (8) from Eq. (9) vields

20.0 =20+ Y B [0 — Ok — i)] bk —i). (10)
i=d
s S A A - nch Uyt | - AL 1
Defining © = vec § € R« w) and ® (k) = vec 6(k)
€ Rrelelyththn) it follows that
2O =)+ Y @l k) [é Ok — i)]

i=d

= z(k) — Z IOk — i)+ ¥ (O, (1D
i=d

where, fori =d, ..., n,
@i(k) £ p(k — ) @ B € ROl et
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?

where ‘vec’ denotes the column-stacking operator, ®
represents the Kronecker product [43], and

Wk 2 > @ik,

i=d

We now consider the retrospective cost function

T6, 6 2370, HR ()20, )
+ tr[ Ry () (0 — 0k R3 (k) (@ — 0(k))]. (12)

where Ri(k) = It,. Ro(k) = (k) Loty 1,1, and Ry (k) =
I, x1,- Using Kronecker algebra, (12) can be written as the
quadratic form

J(O, k) = clk) + b ()0 + 6TAK) O,
where
A 2 @R DTh) + (k).

b(k) 2 2 (k) [Z Ok — H; (k) + zT(k)] —2a(k)O k),
i=d

(k) & [ Y ol ek - i)] R; (k) [ > etk - i)d),«(k)]

i=d [==d

+ n[R *)0T (k)R (k)0 (’k)J.

Because A(k) is positive definite, J (@, k) has the strict
global minimizer

6 = é—vec"l(A(k)"lb(k)). (13)

The gain update law is to set 6(k+ 1) to the global
minimizer (13), that is,

0k +1) = 0. (14)

The coefficients of the time series (0) given by Eq. (14)
contain information about the unknown subsystem, such as
its poles, zeros, time constants, and frequency response.

RCAC requires the selection of several parameters.
Specifically, n. is the estimated order of the unknown
subsystem, while v is the number of Markov parameters
obtained from the known model. The adaptive update law
(14) is based on the quadratic cost function (12), which
involves the time-varying weighting parameter a(k) > 0,
referred to as the learning rate because it affects the
convergence speed of convergence of the adaptive model
refinement algorithm.
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The methodology for choosing these parameters is as fol-
lows. For dynamic subsystem identification, the subsystem
order n,. is typically unknown. In this case, it is convenient
to overestimate the subsystem order. For parameter estima-
tion, choosing n, = 0 is a natural choice in Eq. (6), since
the resulting G » is static. The number v of Markov param-
eters is usually chosen to be 1; however, a larger value is
typically needed if nonminimurm-phase zeros are present in
the initial model [25].

5. LINEAR EXAMPLES

5.1. Dynamic Subsystem Estimation

Consider the mass-spring-damper structure shown in
Fig. 3 modeled by

mig +c1q +kig = w, (15)

where my, ci, ky are the known mass, damping, and
stiffness, respectively, and w is a force input. As shown
in Fig. 3, the mass is also connected to an unknown
impedance (5, which applies force to the mass in response
to the velocity of the mass. We obtain the state-space
representation of the known subsystem

[q} = A, [q:I + Bou 4 Dy cw, (16)
q q

y:c[ﬁ, (17)

where g and g are the position and velocity, respectively,
of the mass, and

A,.Z[_Ok_l “](_,] BC=D1.(:=[_(1)_]’ C=[01].

my ny my
(18)

Finally, we write the system in transfer function form
G(s) = C(sI — A,)"'B,, where s is the Laplace transform
variable and the closed-loop transfer function from w to

k.
4 w
fosmasenss:

Fig. 3 A single-degree-of-freedom mass-spring-damper system
connected to an unknown impedance.

Wi
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y with the unknown impedance u = Gay is Gqu(s) =
G()/ (1 — GEYGAG).

To demonstrate adaptive model refinement, we choose
m=1x10"% k=161 =50275x 107%, and G (5) =
((s +30)(s +60))/((s + 20y (s + 50)(s 4+ 10)). Next, the
continuous-time system (17) is converted to discrete
time using A = ATy and B = A;’l[A — I1B, where T; =
0.1 sec is the sample time. The resulting discrete-time
transfer function is G(z) = C(z/ — A)"'B, where z is
the Z-transform variable. Furthermore, _GA(z) denotes the
discretized transfer function of G A (s).

Next, we choose n, = 5, which is an overestimate of
the order of ﬁA, a =1, and v = 10, that is, we use
ten Markov parameters of G(2). Figure 4(a) compares the
frequency responses of the initial model and the closed-loop
model consisting of the initial model and the subsystem
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E
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3
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Fig. 4 (a) Comparison of the frequency response of the initial
model G{z), the closed-loop Gy(z), and the estimated closed loop

vsing the identified unknown feedback G (z). (b) Comparison of
the frequency response of the unknown feedback and the identified
feedback. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Fig. 5 A series resistor-inductor-capacitor (RLC) circuit, where
voltage is measured across the resistor. The inductance L and the
capacitance C; are assumed to be uncertain.

estimate Ga of Ga. The difference between the initial
model and the closed-loop model is reduced by including
the estimate G, of Ga: in fact, the estimated closed-
loop-model frequency response is almost identical to the
frequency response of the ‘Physical System’. Figure 4(b)
compares the frequency responses of G and Ga.

5.2. Static Parameter Estimation

To demonstrate adaptive model refinement for param-
eter estimation, we consider the series resistor-inductor-
capacitor (RLC) circuit shown in Fig. 5 modeled by

1
L¥ + R¥ + —x = u, (19)
d

where L, Cy4, and R are the inductor, capacitor, and resistor
values, respectively, and w is the input voltage. A state-
space representation of the circuit is given by

v=[0 R] m (21)

where ¢ and g are the charge and cusrent, respectively, of
the circuit. Next, we write the state-space equations for the
circuit with an uncertainty ACy in the capacitance and AL
in the inductance as

FI — ]
L= 1 R -+ 1 w,
q TUTADCa ATy T IrAL L4 LTAT

y=[0 ] [3] @3)

where u = GAqq + Gch'[ + Ga,w. Estimates Aéd of
ACy and AL of AL can be obtained from the adaptive
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model refinement estimates Ga 4, of Ga g, Ga g of Ga g,
and G o, of Gp ,, by means of

L —RL .
L=, (24)
GL\,m —R + GAA,J("

A —1 A -
ACy=~L (E‘— + GA‘X) (L+ ALY —Cq. (25
d

Next, we assemble a circuit with R =250 Q, L + AL =
55 mH, and Cq + ACy = 23.5 uF. We assume that we do
not have knowledge of either ACy or AL, but only the
initial estimates Cq = 1 Fand L = 2 pH. The model (21) is
similarly discretized. We drive the circuit using zero mean,
(Gaussian white noise, and we measure the voltage across
the resistor.

We implement RCAC to obtain estimates of the trans-
fer functions _G_A,q. _G~3,q, and _(—}-A,w. Figure 6(a) shows
the history of the model-error signal z. Figure 7(a)
compares the frequency responses of the initial model,
the actual system, and the refined model, in discrete
fume.
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Fig. 6 (a) The history of the model-error signal z = y — y and
output # of the estimated subsystem for the simulated RLC circuit.
(b) The components of the subsystem model #(k) as functions of
time. Note that z tends to zero as k becomes large, which indicates
that the output of the simulated model approaches the output of
the experimental circuit. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.}
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Fig. 7 This plot compares the frequency responses of the initial
model G (blue dotted line), the closed-loop G (black dotted
line}, and the estimated closed-loop E‘d (red dotted line) for the

simulated RLC circuit. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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Fig. 8 (a) The history of the model-error signal z =y — y and
the output # of the estimated subsystem for the experimental
RLC circuit. (by The components of the subsystem model 6(k)
as functions of time. Note that z tends to zero as k& becomes large,
which indicates that the output of the simulated model approaches
the output of the experimental circuit. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Next, we generate and record the driving signal and
system output. Figure 8 (a) shows the history of the
model-error signal z for the experimental setup. Figure 9(a)
compares the discrete-time frequency responses of the
initial model, the actual system, and the refined model, for
the experimental setup.
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Fig. 9 This plot compares the frequency responses of the initial
model G (blue dotted line), the closed-loop Gy (black dotted

line), and the estimated closed-loop G (red dotted line) for the
experimental RLC circuit. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

6. APPLICATION OF ADAPTIVE MODEL
REFINEMENT TO IONOSPHERIC PARAMETER
ESTIMATION

We now apply adaptive model refinement to a non-
linear example. We consider the problem of using
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Fig. 10 This block diagram for adaptive model refinement
specializes Figure 2 to a model of the ionosphere—thermosphere.
Simulated data are generated by using GITM, where the thermal
conductivity is assumed to be unknown. The goal is to estimate the
thermal conductivity by using measurements of the neutral mass
density. This problem is challenging due to the low accessibility
of the unknown physics relative to the available measurements w
and y.
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Fig. 11 Steady-state globally averaged temperature structure
using three published conductivity values {45].

upper atmospheric mass-density measurements, as can be
obtained from a satellite, to estimate the thermal conductiv-
ity of the thermosphere. This problem is challenging due to
the fact that we do not assume the availability of measure-
ments that can serve as inputs or outputs to the ‘Unknown
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Tr we = True Value &
""" Uncertainty Boundary
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Fig. 12 This plot shows the true and estimated thermal conduc-
tivity coefficient. The initial guess for the thermal conductivity is
zero, while the actual thermal conductivity is set to be the mean
of the range of uncertainty. The estimate Aof A converges (o a
neighborhood of the true value of A within about 0.6 x 10° data
points. The lack of final convergence is due to nonlinearities in the
dynamics of the system. However, the oscillations are well within
the uncertainty bounds, which reflect the range of published val-
ves for this coefficient. {Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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Fig. 13 These plots show the true and estimated thermal conductivity coefficient as well as the true and estimated rate coefficient.
The initial guesses for both coefficients are zero. The estimates converge to a neighborhood of the true value within about 0.6 x 10°
data points. The estimates are also within the uncertainty limits. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Subsystem’, which models thermal conductivity. In other
words, the objective of the identification in this application
is a subsystem whose physics are inaccessible relative to
the available measurements.

We use GITM to simulate the chemistry and fluid
dynamics in a one-dimensional (1D) column in the iono-
sphere—thermosphere Fig. 10. The temperature structure of
the thermosphere depends on various factors, such as the
sun’s intensity in extreme ultraviolet (EUV) wavelengths,
eddy diffusion in the lower thermosphere, radiative cool-
ing of the G and NO, frictional heating, and the thermal
conductivity.

The structure of the thermal conductivity is A = AT,
where A and s are the thermal conductivity and rate
coefficients, respectively. The thermal conductivity may
depend on chemical constituents (e.g., No, On, and O).
Uncertainty concerning the values of A and s [44] can
strongly influence the temperature structure. The need to
estimate these coefficients is motivated by Fig. 11 from
[45], where published values of these coefficients are shown
to vary depending on the reference source. For illustration,
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we assume that the true value of A is the mean of the range
of values, and we seek estimates of A that are within this
range.

To estimate the unknown thermal conductivity coefficient
A, we apply adaptive model refinement to siumulated
measurements of neutral mass density provided by 1D
GITM. We do this by running a ‘truth model’, from
which we extract mass-density data at 400-km altitude,
which is a typical altitude for satellites. The thermal
conductivity coefficient is initialized to be zero, and its
value is updated recursively. Figure 12 shows the evolution
of the estimate A of the thermal conductivity A as more
data become available. The estimate A is seen to converge
to a neighborhood of the true value within about 0.6 x 10*
data points.

To further illustrate the adaptive model refinement, we
now assume that both the thermal conductivity A and the
rate coefficient s are unknown. The parameters A and s
are initialized as zero, and are updated simultaneously and
recursively. Figure 13 shows the update of the estimates.
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Fig. 14 (a) The model-error signal z for the difference in neutral mass-density ountput between the GITM truth model and the GITM
initial model. (b) The difference in neutral mass-density output between the GITM truth model and the refined GITM model. By utilizing
empirically refined estimates of the thermal conductivity and rate coefficient, the model error is reduced. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Both estimates converge to within a neighborhood of the
true values within 0.6 x 10° data points.

The improvement in model accuracy attributed to the
refined parameters are shown in Fig. 14. Panel (a) of
Fig. 14 shows the model-error signal z for the GITM
‘truth’ model and an initial GITM model whose thermal
conductivity coefficient is set to zero. Within the simulated
model, this value prevents energy deposited in one layer
of the atmosphere from remaining in that layer. Panel (b)
of Fig. 14 illustrates the reduction in model error obtained
by including the identified coefficients, thereby accounting
for the thermal conductivity of this species. The benefits of
refining the GITM model are evident by the improvement
in model accuracy as determined by z.

7. APPLICATION OF ADAPTIVE MODEL
REFINEMENT TO IONOSPHERIC DYNAMICS
ESTIMATION

To illustrate adaptive model refinement in the case of
an unknown dynamic subsystem, the NO radiative cooling

5 " r r r . — NO Exact
M : ; — — — NO Estimated

° C/s x 1000 @ 152 km

Time (Days)

Fig. 15 This plot shows the difference between the actual NO
cooling mncluded in the GITM truth model and the cooling in the
refined GITM model as a function of time at a specific altitude
(152 kmy). The vertical dashed lines are the time instances at which
the altitude versus NO cooling plots in Fig. 16 are taken. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Fig. 16 These plots show the difference between the actual NO cooling included in the truth model and the cooling estimated by adaptive
model refinement as a function of altitude at a given time. Cooling is along the horizontal axis, while altitude is along the vertical axis.
The blue dashed line is the estimated value. The measured data are taken at an altitude of 407 km. The vertical dashed lines in Fig. 15
are the time instances at which the altitude versus NO cooling plots (a)—(d) are taken. NO cooling as function of altitude at (a) 0.5 days,
(b) 0.8 days. (c) 1.6 days, (d) 2.7 days. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

is removed from GITM to provide an initial model, but
is retained in GITM for the truth model. The goal is to
reproduce the missing process. This is nontrivial since the
functional form of the cooling is assumed to be unknown
as are the dynamics. We assume only that something is
missing from the energy equation, and that this is most
likely a function of temperature. The dynamics of the cool-
ing are estimated at three different altitudes, connecting
the other altitudes through linear interpolation, which is an
approximation, but illustrates the technique. Nothing else
about the energy sink is assumed. The thermospheric den-
sity is utilized as data at 407 km altitude from a simulated
GITM truth model, which includes NO cooling. Applying
adaptive model refinement with temperature as the input to
the ‘Unknown Physics’, Figures 15 and 16 demonstrate that
this technigue captures the actual dynamics in the system.
The height profile of the cooling matches the actual cool-
ing. Furthermore, the temporal variation of the maximum
cooling matches the cooling simulated by the model.

To reproduce the dynamics of the cooling, three linear
dynamic equations are derived, one for each of the three
chosen altitudes. This yields a profile that resembles the

Statistical Analysis and Data Mining DOI1:10.1002/sam

natural logarithm of the NO density [46,47], indicating
that this may be the source of the cooling, which it
actually is. Figure 17 compares of the model without
correction versus the model with correction, both of which
are baselined against the truth model. Without data-based
model refinement, the estimated density measurements
degrade as time increases.

8. CONCLUSIONS

In this paper, we presented an adaptive model refinement
technique for improving the fidelity of models using empir-
ical data. Model refinement presents challenges relative to
standard input—output system identification, specifically, a
lack of accessibility to the signals that are used by standard
system identification to identify the unknown subsystem.
For model refinement we use retrospective cost optimiza-
tion to identify the unknown subsysiem. We presented a
problem formulation for the linear case, and demonstrated
the method on a numerical example and an experimental
setup. We then demonstrated the feasibility of the method
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Fig. 17 This plot shows the difference between the density
measurements for the initial model, where no correction is made,
and the model with the refined subsystem versus the truth
model. With adaptive model refinement, the refined model is
able to track the truth model. whereas, if no correction is made.
the density measurements degrade as time increases. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

in refining a nonlinear model of the ionosphere and ther-
mosphere using GITM. We demonstrated how uncertain
parameters can be identified when the structure of the uncer-
tain model is known. Furthermore, we demonstrated how
unknown dynamics can be identified from data when the
internal structure of the unknown subsystem is unknown.
This technique can thus be used to refine and improve an
initial model (or models, if several are hypothesized) that is
either uncertain or erroneous. In turn, the improved model
can provide a more accurate foundation for data assimila-
tion aimed at wind and density estimates in the presence of
solar storm disturbances.
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