
Sliding Window Recursive Quadratic Optimization with Variable

Regularization

Jesse B. Hoagg, Asad A. Ali, Magnus Mossberg, and Dennis S. Bernstein

Abstract— In this paper, we present a sliding-window
variable-regularization recursive least squares algorithm. In
contrast to standard recursive least squares, the algorithm
presented in this paper operates on a finite window of data,
where old data are discarded as new data become available.
This property can be beneficial for estimating time-varying
parameters. Furthermore, standard recursive least squares uses
time-invariant regularization. More specifically, the inverse of
the initial covariance matrix in standard recursive least squares
can be viewed as a regularization term, which weights the
difference between the next estimate and the initial estimate.
This regularization is fixed for all steps of the recursion.
The algorithm derived in this paper allows for time-varying
regularization. In particular, the present paper allows for time-
varying regularization in the weighting as well as what is being
weighted. Specifically, the regularization term can weight the
difference between the next estimate and a time-varying vector
of parameters rather than the initial estimate.

I. INTRODUCTION

Within signal processing, identification, estimation, and

control, recursive least squares (RLS) and gradient-based

optimization techniques are among the most fundamental and

widely used algorithms [1]–[8]. The standard RLS algorithm

operates on a growing window of data, that is, new data are

added to the RLS cost function as they become available and

old data are not directly discarded but rather progressively

discounted through the use of a forgetting factor. In contrast,

a sliding-window RLS algorithm operates on a finite window

of data with fixed length; new data replace old data in the

sliding-window RLS cost function. Sliding-window least-

squares techniques are available in both batch and recursive

formulations [9]–[13].

A sliding-window RLS algorithm with time-varying reg-

ularization is developed in the present paper. A growing-

window RLS algorithm with time-varying regularization is

presented in [14]. In standard RLS, the positive-definite

initialization of the covariance matrix can be interpreted as

the weighting on a regularization term within the context of

a quadratic optimization. Until at least n measurements are

available, this regularization term compensates for the lack of

persistency in order to obtain a unique solution from the RLS

algorithm. Traditionally, the regularization term is fixed for

J. B. Hoagg is with the Department of Mechanical Engineering, The
University of Kentucky, Lexington, KY. Email: jhoagg@engr.uky.edu

A. A. Ali is with the Department of Aerospace Engineering, The
University of Michigan, Ann Arbor, MI. Email: asadali@umich.edu

M. Mossberg is with the Department of Physics and Electri-
cal Engineering, Karlstad University, Karlstad, Sweden. Email: Mag-
nus.Mossberg@kau.se

D. S. Bernstein is with the Department of Aerospace Engineering, The
University of Michigan, Ann Arbor, MI. Email: dsbaero@umich.edu

all steps of the recursion. In the present work, we derive a

sliding-window variable-regularization RLS (SW-VR-RLS)

algorithm, where the weighting in the regularization term

may change at each step. As a special case, the regularization

can be decreased in magnitude or rank as the rank of the

covariance matrix increases, and can be removed entirely

when no longer needed. This ability is not available in

standard RLS where the regularization term is weighted by

the inverse of the initial covariance.

A second extension presented in this paper also involves

the regularization term. Specifically, the regularization term

in traditional RLS weights the difference between the next

estimate and the initial estimate. In the present paper, the

regularization term weights the difference between the next

estimate and an arbitrarily chosen time-varying vector. As

a special case, the time-varying vector can be the current

estimate, and thus the regularization term weights the dif-

ference between the next estimate and the current estimate.

This formulation allows us to modulate the rate at which

the current estimate changes from step to step. For these

extensions, we derive SW-VR-RLS update equations.

In the next section, we derive the update equations for

SW-VR-RLS. In the remaining sections of the paper, we

investigate the performance of SW-VR-RLS under various

conditions of noise and persistency.

II. SW-VR-RLS ALGORITHM

For all i ≥ 0, let Ai ∈ R
n×n, bi, αi ∈ R

n, and

Ri ∈ R
n×n, where Ai and Ri are positive semidefinite,

define A0
△
= 0, b0

△
= 0, let r be a nonnegative inte-

ger, and assume that, for all k ≥ r,
∑k
i=k−r Ai + Rk

and
∑k
i=k−r+1Ai + Rk+1 are positive definite. Define the

sliding-window regularized quadratic cost

Jk(x)
△
=

k
∑

i=k−r

(

xTAix+ bTi x
)

+(x−αk)
TRk(x−αk), (1)

where x ∈ R
n and x0 = α0 is the minimizer of J0(x). The

minimizer xk of (1) is given by

xk = − 1
2

(

k
∑

i=k−r

Ai +Rk

)−1(
k
∑

i=k−r

bi − 2Rkαk

)

. (2)

We now derive the update equations for the SW-VR-RLS

algorithm. To rewrite (2) recursively, define

Pk
△
=

(

k
∑

i=k−r

Ai +Rk

)−1

,

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3275

which means that

xk = − 1
2
Pk

(

k
∑

i=k−r

bi − 2Rkαk

)

.

and

P−1
k+1 =

k+1
∑

i=k+1−r

Ai +Rk+1

=

k
∑

i=k−r

Ai +Ak+1 −Ak−r +Rk+1 −Rk +Rk

= P−1
k +Ak+1 −Ak−r +Rk+1 −Rk.

Now,

xk+1 = − 1
2
Pk+1

(

k+1
∑

i=k+1−r

bi − 2Rk+1αk+1

)

= − 1
2
Pk+1

(

k
∑

i=k−r

bi + bk+1 − bk−r

− 2Rk+1αk+1

)

. (3)

and it follows from (3) that

xk+1 = − 1
2
Pk+1

(

−2P−1
k xk + 2Rkαk + bk+1 − bk−r

− 2Rk+1αk+1

)

= − 1
2
Pk+1

(

−2(P−1
k+1 −Ak+1 +Ak−r −Rk+1

+Rk)xk + 2Rkαk + bk+1 − bk−r − 2Rk+1αk+1

)

= xk − Pk+1

(

(Ak+1 −Ak−r)xk + (Rk+1 −Rk)xk

+Rkαk +
1
2
(bk+1 − bk−r)−Rk+1αk+1

)

.

To rewrite Pk+1 recursively, consider the decomposition

Ak+1 = ψk+1ψ
T
k+1, (4)

where ψk+1 ∈ R
n×nk+1 and nk+1

△
= rank(Ak+1). Conse-

quently,

Pk+1 =
(

P−1
k +Ak+1 −Ak−r +Rk+1 −Rk

)−1
, (5)

where the inverse exists since
∑k
i=k−r Ai + Rk is positive

definite. Next, define

Mk+1
△
=
(

P−1
k +Rk+1 −Rk −Ak−r

)−1
, (6)

where the inverse exists since

P−1
k +Rk+1 −Rk −Ak−r =

k
∑

i=k−r+1

Ai +Rk+1,

which is assumed to be positive definite. It follows from

(4)–(6) that

Pk+1 =
(

M−1
k+1 +Ak+1

)−1
=
(

M−1
k+1 + ψk+1ψ

T
k+1

)−1
.

Using the matrix inversion lemma

(X + UCV)−1 = X−1 −X−1U

×
(

C−1 + V X−1U
)−1

V X−1, (7)

with X
△
= M−1

k+1, U
△
= ψk+1, C

△
= I , and V

△
= ψT

k+1, it

follows that

Pk+1 =Mk+1

(

In − ψk+1

(

Ink+1
+ ψT

k+1Mk+1ψk+1

)−1

× ψT
k+1Mk+1

)

. (8)

Next, define

Qk+1
△
=
(

P−1
k +Rk+1 −Rk

)−1
, (9)

where this inverse exists since P−1
k +Rk+1 −Rk ≥M−1

k+1,

and thus Qk+1 ≤ Mk+1. It follows from (4), (6), and (9)

that

Mk+1 =
(

Q−1
k+1 −Ak−r

)−1
=
(

Q−1
k+1 − ψk−rψ

T
k−r

)−1
.

Using (7) with X
△
= Q−1

k+1, U
△
= ψk−r, C

△
= −I , and V

△
=

ψT
k−r, it follows that

Mk+1 = Qk+1

(

In − ψk−r
(

−Ink+1
+ ψT

k−rQk+1ψk−r
)−1

× ψT
k−rQk+1

)

.

Next, consider the decomposition

Rk+1 −Rk = φk+1Sk+1φ
T
k+1, (10)

where φk+1 ∈ R
n×mk+1 , mk+1

△
= rank(Rk+1 − Rk), and

Sk+1 ∈ R
mk+1×mk+1 is a matrix of the form

Sk+1
△
=













±1 0 · · ·

0 ±1
...

...
. . .

· · · ±1













.

It follows from (9) and (10) that

Qk+1
△
=
(

P−1
k + φk+1Sk+1φ

T
k+1

)−1
.

Using (7) with X
△
= P−1

k , U
△
= φk+1, C

△
= Sk+1, and

V
△
= φTk+1, it follows that

Qk+1 = Pk

(

In − φk+1

(

Sk+1 + φTk+1Pkφk+1

)−1

× φTk+1Pk

)

.

In summary, for k ≥ 0, the recursive minimizer of (1) is

3276

given by

Qk+1 = Pk

(

In − φk+1

(

Sk+1 + φTk+1Pkφk+1

)−1

× φTk+1Pk

)

, (11)

Mk+1 = Qk+1

(

In − ψk−r
(

−Ink+1
+ ψT

k−rQk+1ψk−r
)−1

× ψT
k−rQk+1

)

, (12)

Pk+1 =Mk+1

(

In − ψk+1

(

Ink+1
+ ψT

k+1Mk+1ψk+1

)−1

× ψT
k+1Mk+1

)

, (13)

xk+1 = xk − Pk+1

(

(Ak+1 −Ak−r)xk + (Rk+1 −Rk)xk

+Rkαk +
1
2
(bk+1 − bk−r)−Rk+1αk+1

)

, (14)

where x0 = α0, P0 = R−1
0 , ψk+1 is given by (4), and

φk+1 is given by (10). In the case where the regularization

weighting is constant, that is, for all k ≥ 0, Rk = R0 > 0,

(11) simplifies to Qk+1 = Pk, and thus propagation of Qk
is not required.

III. SETUP FOR NUMERICAL SIMULATIONS

For all k ≥ 0, let xk,opt ∈ R
n, ψk∈R

n, where its ith entry

ψk,i is generated from a zero mean, unit variance Gaussian

distribution. The entries of ψk are independent. Define

βk
△
= ψT

k xk,opt.

Let l be the number of data points. Define

σψ,i
△
=

√

√

√

√

1

l

l
∑

k=1

ψ2
k,i

l→∞
−−−→ 1,

σβ
△
=

√

√

√

√

1

l

l
∑

k=1

β2
k

l→∞
−−−→

√

xTk,optxk,opt.

Next, for i = 1, . . . , n, let Nk,i ∈ R, and Mk ∈ R

be generated from zero-mean Gaussian distributions with

variances σ2
N,i and σ2

M , respectively, where σN,i and σM
are determined from the signal-to-noise ratio (SNR). More

specifically, for i = 1, . . . , n,

SNRψ,i
△
=
σψ,i

σN,i
, and SNRβ

△
=
σβ

σM
,

where, for i = 1, . . . , n, σN,i =
√

1
K

∑K
k=1N

2
k,i and σM =

√

1
K

∑K
k=1M

2
k . For k ≥ 0, define Ak

△
= (ψk + Nk)(ψk +

Nk)
T and bk

△
= −2(βk +Mk)(ψk + Nk), where Nk is the

noise in ψk and Mk is the noise in βk. Define

z1
△
=
[

0.08 −1.12 1.6 1.5 −2.2 −2.1 0.32
]T
,

z2
△
=
[

−1.11 −0.2 1.1 −0.2 0.4 0.23 −2.5
]T
.

Unless otherwise specified, for all k ≥ 0, xk,opt = z1, αk =
x0, and x0 = 07×1. Define the performance

εk
△
=

‖xk,opt − xk‖

‖xk,opt‖
.

IV. NUMERICAL SIMULATIONS OF SW-VR-RLS WITH

NOISELESS DATA

In this section, we investigate the effect of window size

r, Rk, and αk on SW-VR-RLS. The data contain no noise,

specifically, for all k ≥ 0, Nk = 07×1, and Mk = 0.

A. Effect of Window Size

In the following example, we test SW-VR-RLS for three

different values of r. Specifically, r = 1, r = 10, or r = 50.

In all cases, αk = xk−1, for all k ≥ 0, Rk = I7×7, Ak and

bk are the same for all cases, and

xk,opt =

{

z1, 0 ≤ k ≤ 115,
z2, k > 115.

For this example, Figure 1 shows that, for k ≤ 115, larger

values of r yield faster convergence of εk to zero. For k >

115, xk,opt 6= x115,opt, and larger values of r yield faster

convergence of εk to zero; however, larger values of r can

yield worse transient performance because the larger window

retains the data relating to z1 for more time steps.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Time step k

ε
k

(%
)

r = 1
r = 10
r = 50

Fig. 1: Effect of r on convergence of xk to xk,opt. In this example,
for k ≤ 115, larger values of r yield faster convergence of εk to
zero. For k > 115, xk,opt 6= x115,opt, and larger values of r yield
faster convergence of εk to zero; however, larger values of r yield
worse transient performance because the larger window retains the
data relating to z1 for more time steps.

B. Effect of Rk

In this section, we examine the effect of Rk, where, for

all k ≥ 0, Rk is constant. In the following example, we

test SW-VR-RLS for three different Rk. Specifically, for all

k ≥ 0, Rk = 10I7×7, Rk = I7×7, Rk = 0.1I7×7. In all

cases, for all k ≥ 0, Ak and bk are the same, αk = xk−1,

r = 15, and

xk,opt =

{

z1, 0 ≤ k ≤ 115,
z2, k > 115.

For this example, Figure 2 shows that, for k ≤ 115,

smaller values of Rk yields faster convergence of εk to zero.

Similarly, for k > 115, xk,opt 6= x115,opt, and smaller values

of Rk yields faster convergence of εk to zero.

3277

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Time step k

ε
k

(%
)

Rk = 10I7×7

Rk = I7×7

Rk = 0.1I7×7

Fig. 2: Effect of Rk on convergence of xk to xk,opt. For this exam-
ple, for k ≤ 115, smaller values of Rk yields faster convergence of
εk to zero. Similarly, for k > 115, xk,opt 6= x115,opt, and smaller
values of Rk yields faster convergence of εk to zero.

C. Loss of Persistency

In this section, we study the effect of loss of persistency on

SW-VR-RLS. More specifically, for all k ≥ 50, Ak = A50

and bk = b50. Moreover, for all k ≥ 0, Rk = 0.1I7×7,

r = 15, and αk = xk−1. For this example, Figure 3 shows

that εk approaches zero; however, Figure 4 shows that ‖Pk‖
increases after the data lose persistency, but ‖Pk‖ remains

bounded.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time step k

ε
k

(%
)

Fig. 3: Effect of loss of persistency on convergence of xk to xk,opt.
The data lose persistency at the 50th step. In this example, εk
approaches zero.

V. NUMERICAL SIMULATIONS WITH NOISY DATA

In this section, we investigate the effect of window size r,

Rk, and αk on SW-VR-RLS when the data have noise. More

specifically, for all k ≥ 0, Mk and Nk,i are generated from

zero mean Gaussian distributions with variances depending

on SNRψ,i and SNRβ .

A. Effect of αk

In this section, we first compare SW-VR-RLS for different

choices of αk. More specifically, we let αk = Lν(k) where

Lν(k)
△
=

{

xk−1, 0 < k ≤ ν,

xk−ν , k > ν,

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Time step k

ε
k

(%
)

Fig. 4: Effect of loss of persistency on ‖Pk‖. In this example, ‖Pk‖
increases after the data lose persistency, but ‖Pk‖ remains bounded.

where ν is a positive integer. In the following example, we

test SW-VR-RLS for three different ν. Specifically, ν = 1,

ν = 5 or ν = 15. In all cases, for all k ≥ 0, Ak and bk are

the same, Rk = I7×7, SNRβ = SNRψ,i = 5 and r = 10. For

this example, Figure 5 shows that larger values of ν yield

smaller asymptotic values of εk.

0 10 20 30 40 50 60 70 80
20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

αk = Lν(k), ν = 1
αk = Lν(k), ν = 5
αk = Lν(k), ν = 10

Fig. 5: Convergence of xk to xk,opt. For this example, larger values
of ν yield smaller asymptotic values of εk.

Next, we let αk =Wρ(k) where

Wρ(k)
△
=







x0, k = 1,
1

k−1

∑k−1

i=1 xk−i, 1 < k ≤ ρ,
1
ρ

∑ρ
i=1 xk−i, k > ρ,

where ρ is a positive integer. In the following example, we

test SW-VR-RLS for three different values of ρ. Specifically,

ρ = 1, ρ = 5 or ρ = 15. In all cases, for all k ≥ 0, Ak and

bk are the same, Rk = I7×7, SNRβ = SNRψ,i = 5 and

r = 1. For this example, Figure 6 shows that larger values

of ρ yield smaller asymptotic values of εk.

B. Effect of Window Size

In the following example, we test SW-VR-RLS for three

different r. Specifically, r = 50, r = 7, or r = 1. In all

cases, αk = xk−1, SNRβ = SNRψ,i = 5, for all k ≥ 0,

3278

0 10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

αk = Wρ(k), ρ = 1
αk = Wρ(k), ρ = 5
αk = Wρ(k), ρ = 15

Fig. 6: Convergence of xk to xk,opt. For this example, larger values
of ρ yield smaller asymptotic values of εk.

Rk = I7×7, Ak and bk are the same for all cases, and

xk,opt =

{

z1, 0 ≤ k ≤ 115,
z2, k > 115.

For this example, Figure 7 shows that r = 50 yields a smaller

asymptotic value of εk than r = 1 and r = 7. However,

this trend is not monotonic since r = 7 yields a larger

asymptotic value of εk than r = 1. Numerical tests suggest

that the asymptotic value of εk increases as the window size

is increased from r = 1 until it peaks at a certain value

of r. After this the asymptotic value of εk decreases as r

increases.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Time step k

ε
k

(%
)

r = 50
r = 7
r = 1

Fig. 7: Effect of r on convergence of xk to xk,opt. This figure shows
that r = 50 yields a smaller asymptotic value of εk than r = 1 and
r = 7. However, this trend is not monotonic since r = 7 yields a
larger asymptotic value of εk than r = 1.

C. Effect of Rk

First, we examine the effect of Rk where for all k ≥ 0, Rk
is constant. In the following example, we test SW-VR-RLS

for three different Rk. Specifically, for all k ≥ 0, Rk = I7×7,

Rk = 0.1I7×7, Rk = 0.01I7×7. In all cases, αk = xk−1,

SNRβ = SNRψ,i = 5, r = 10, for all k ≥ 0, Ak and bk are

the same for all cases, and

xk,opt =

{

z1, 0 ≤ k ≤ 115,
z2, k > 115.

For this example, Figure 8 shows that a smaller value of Rk

0 50 100 150 200 250
20

40

60

80

100

120

140

160

180

Time step k

ε
k

(%
)

Rk = 10I7×7

Rk = I7×7

Rk = 0.1I7×7

Fig. 8: Effect of Rk on convergence of xk to xk,opt. For this
example, a smaller value of Rk results in faster convergence of
εk to its asymptotic value, but yields a larger asymptotic value of
εk.

results in faster convergence of εk to its asymptotic value

but yields a larger value. Once xk becomes close to xk,opt,

xk oscillates about xk,opt. The amplitude of this oscillation

depends on Rk, specifically, a larger value of Rk allows less

change in xk,opt which makes the amplitude of oscillation

smaller. Therefore, choosing a larger Rk yields a smaller

asymptotic value of εk.

Next, we let Rk start small and then grow to a specified

value as k increases. More specifically

Rk = X − ((X − I7×7)e
y)e−γk, (15)

where X
△
= R

7×7 and γ is a positive integer. In this

example, we compare SW-VR-RLS with Rk = I7×7 and

Rk given by (15) with X = 20I7×7 and γ = 0.2. For

this example, Figure 9 shows that Rk given by (15) yields

smaller asymptotic value of εk than Rk = I7×7.

0 20 40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

Rk = (20 − 23.2067e−0.2k)I7×7

Rk = I7×7

Fig. 9: Effect of Rk on convergence of xk to xk,opt. For this exam-
ple, Rk = (20 − 23.2067e−0.2k)I7×7 yields a smaller asymptotic
value of εk than Rk = I7×7.

D. Loss of Persistency

In this section, we study the effect of loss of persistency on

SW-VR-RLS. More specifically, for all k ≥ 500, Ak = A500

3279

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

Time step k

ε
k

(%
)

Fig. 10: Effect of loss of persistency on convergence of xk to xk,opt.
The data lose persistency at the 500th step. In this example, εk
increases after the data lose persistency, but εk remains bounded.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

Time step k

||
P

k
||

Fig. 11: Effect of loss of persistency on ‖Pk‖. In this example,
‖Pk‖ increases after the data lose persistency, but ‖Pk‖ remains
bounded.

and bk = b500. Moreover, for all k ≥ 0, Rk = 0.1I7×7,

r = 15, SNRβ = SNRψ,i = 5, and αk = xk−1. For this

example, Figure 10 shows that εk increases after the data

lose persistency, but εk remains bounded. Figure 11 shows

that ‖Pk‖ increases after the data lose persistency, but ‖Pk‖
remains bounded.

VI. CONCLUSIONS

In this paper, we presented a sliding-window variable-

regularization recursive least squares (SW-VR-RLS) algo-

rithm. This algorithm operates on a finite window of data,

where old data are discarded as new data become available.

Furthermore, this algorithm allows for a time-varying reg-

ularization term in the sliding-window RLS cost function.

More specifically, SW-VR-RLS allows us to vary both the

weighting in the regularization as well as what is being

weighted, that is, the regularization term can weight the

difference between the next state estimate and a time-varying

vector of parameters rather than the initial state estimate.

REFERENCES

[1] A. H. Sayed, Adaptive Filters. Hoboken, New Jersey: John Wiley
and Sons, Inc., 2008.

[2] J. N. Juang, Applied System Identification. Upper Saddle River, NJ:
Prentice-Hall, 1993.

[3] L. Ljung and T. Söderström, Theory and practice of Recursive Iden-

tification. Cambridge, MA: The MIT Press, 1983.
[4] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper

Saddle River, NJ: Prentice-Hall Information and Systems Sciences,
1999.

[5] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Addison-
Wesley, 1995.

[6] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction, and

Control. Prentice Hall, 1984.
[7] G. Tao, Adaptive Control Design and Analysis. Wiley, 2003.
[8] P. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, 1996.
[9] F. Gustafsson, Adaptive Filtering and Change Detection. Wiley, 2000.

[10] J. Jiang and Y. Zhang, “A novel variable-length sliding window
blockwise least-squares algorithm for on-line estimation of time-
varying parameters,” Int. J. Adaptive Contr. Sig. Proc., vol. 18, pp.
505–521, 2004.

[11] M. Belge and E. L. Miller, “A sliding window RLS-like adaptive
algorithm for filtering alpha-stable noise,” IEEE Sig. Proc. Let., vol. 7,
no. 4, pp. 86–89, 2000.

[12] B. Y. Choi and Z. Bien, “Sliding-windowed weighted recursive least-
squares method for parameter estimation,” Electronics Let., vol. 25,
no. 20, pp. 1381–1382, 1989.

[13] H. Liu and Z. He, “A sliding-exponential window RLS adaptive
algorithm: properties and applications,” Sig. Proc., vol. 45, no. 3, pp.
357–368, 1995.

[14] A. A. Ali, J. B. Hoagg, M. Mossberg, and D. S. Bernstein, “Growing
window recursive quadratic optimization with variable regularization,”
in Proc. Conf. Dec. Contr., Atlanta, GA, December 2010, pp. 496–501.

3280

