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We derive a continuous, inertia-free control law for spacecraft attitude tracking that is applicable to non-rigid
spacecraft with translating on-board components. This control law is simulated for slew and spin maneuvers.

I. INTRODUCTION

Attitude control of spacecraft remains a challenging
nonlinear control problem of intense practical and intel-
lectual importance. Since rotational motion evolves on
the set of proper orthogonal matrices, continuous con-
trol must account for the presence of multiple equilib-
ria, whereas discontinuous control laws based on quater-
nions and alternative parameterizations of the rotation
matrices lead to additional complications1. Challenges
also arise depending on the properties of the actua-
tion hardware, for example, thrusters, reaction wheels,
control-moment gyros, and magnetic torquers, as well
as sensing hardware, for example, gyros, magnetome-
ters, and star trackers. Finally, this problem is exacer-
bated by uncertainty involving the mass distribution of
the spacecraft2.

The present paper addresses an additional complica-
tion in spacecraft control, namely, the situation in which
the mass distribution of the spacecraft is not only uncer-
tain but also time-varying. Many spacecraft are built to
deploy on orbit, for example, by expanding solar pan-
els or a magnetometer boom. Furthermore, a spacecraft
may have moving components, such as a reflector or an-
tenna that rotates relative to the spacecraft bus in order
to track a ground station. In these cases, the mass dis-
tribution changes as a function of time, which, in turn,
gives rise to a time-varying inertia matrix.

In the present paper we address the problem of
spacecraft attitude control with time-varying inertia. The
approach that we take is an extension of the approach
of ref.2, where continuous control laws are developed
based on rotation matrices. For motion-to-rest (that is,
slew) maneuvers in the absence of disturbance torques,
no knowledge of the inertia matrix is needed, and no

estimates of the inertia matrix are constructed. For
motion-to-specified-motion (for example, spin) maneu-
vers in the presence of harmonic (possibly constant) dis-
turbances with known spectral content, the control law is
based on an estimate of the inertia matrix; however, this
estimate need not converge to the actual inertia matrix.

The contribution of the present paper is an exten-
sion of the results of ref.2 to the case in which the
mass distribution of the spacecraft is both uncertain and
time-varying. For motion-to-rest maneuvers, we show
that the corresponding control law of ref.2 is effective
under a special choice of the control-law parameters.
This requirement can be ignored when the inertia ma-
trix is increasing, for example, during deployment. For
motion-to-specified-motion maneuvers, we make the ad-
ditional assumption that the time-variation of the time-
varying component of the inertia is known, whereas its
spatial distribution is unknown. Under these assump-
tions, we extend the motion-to-specified-motion control
law of ref.2 to the case of time-varying inertia.

The contents of the paper are as follows. In Section
II we develop a model of a spacecraft with time-varying
inertia. In Section III we describe the attitude control
objectives. Section IV deals with motion-to-rest maneu-
vers, while Section V treats motion-to-specified-motion
maneuvers.

II. SPACECRAFT MODEL

Let the spacecraft be denoted by sc, and let c denote
its center of mass. We assume that the spacecraft is com-
posed of a rigid bus and additional moving components.
These components are assumed to not rotate relative to
the spacecraft; for example, they may move linearly in a
body-fixed direction. We assume a bus-fixed frame FB
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and an Earth-centered inertial frame FE. We begin with
Newton’s second law for rotation, which states that the
derivative of the angular momentum of a body relative
to its center of mass with respect to an inertial frame is
equal to the sum of the moments applied to that body
about its center of mass. We thus have

⇀

M sc/c =

E•
⇀

H sc/c/E

=

E•︷ ︸︸ ︷
→
I sc/c

⇀
ωB/E

=

B•︷ ︸︸ ︷
→
I sc/c

⇀
ωB/E +

⇀
ωB/E ×

→
I sc/c

⇀
ωB/E

=

B•
→
I sc/c

⇀
ωB/E +

→
I sc/c

B•
⇀
ω B/E

+
⇀
ωB/E ×

→
I sc/c

⇀
ωB/E, [1]

where
→
I sc/c is the positive-definite inertia tensor of the

spacecraft relative to its center of mass, and
⇀
ωB/E is the

angular velocity of FB with respect to FE. We separate

the moments on the spacecraft
⇀

M sc/c into disturbance

moments
⇀

Mdist and control moments
⇀

M control.
We now resolve [1] in FB using the notation

J
4
=
→
I b/c

∣∣∣∣
B

, J̇
4
=

B•
→
I wi/c

∣∣∣∣∣∣
B

,

ω
4
=

⇀
ωB/E

∣∣∣
B
, ω̇

4
=

B•
⇀
ω B/E

∣∣∣∣∣
B

,

τdist
4
=

⇀

Mdist

∣∣∣∣
B

, Bu
4
=

⇀

M control

∣∣∣∣
B

,

where the components of the vector u ∈ R3 represent
three independent torque inputs, while the rows of the
matrix B ∈ R3×3 determine the applied torque about
each axis of the spacecraft frame due to u as given by the
productBu.We let the vector τdist represent disturbance
torques, that is, all internal and external torques applied
to the spacecraft aside from control torques. Disturbance
torques may be due to onboard components, gravity gra-
dients, solar pressure, atmospheric drag, or the ambient
magnetic field.

Resolving [1] in FB and rearranging yields

Jω̇ = Jω × ω +Bu− J̇ω + τdist. [2]

The kinematics of the spacecraft model are given by
Poisson’s equation

Ṙ = Rω×, [3]

which complements [2]. In [3], ω× denotes the skew-
symmetric matrix of ω, and R = OE/B ∈ R3×3 is the
rotation tensor that transforms FE into FB resolved in
either FE or FB. Therefore, R is the proper orthogonal
matrix (that is, the rotation matrix) that transforms the
components of a vector resolved in the bus-fixed frame
into the components of the same vector resolved in the
inertial frame.

Compared to the rigid body case treated in ref.2, the
time-varying inertia complicates the dynamic equations
due to the term −J̇ω added to [2]. Note that this term
affects only the attitude of the spacecraft when the space-
craft has nonzero angular velocity. The kinematic rela-
tion [3] remains unchanged.

Both rate (inertial) and attitude (noninertial) mea-
surements are assumed to be available. Gyro measure-
ments yrate ∈ R3 are assumed to provide measurements
of the angular velocity resolved in the spacecraft frame,
that is,

yrate = ω + vrate, [4]

where vrate ∈ R3 represents the presence of noise in the
gyro measurements. Attitude is measured indirectly us-
ing sensors such as magnetometers or star trackers. The
attitude is determined to be

yattitude = R. [5]

When attitude measurements are given in terms of an
alternative attitude representation, such as quaternions,
Rodrigues’s formula can be used to determine the corre-
sponding rotation matrix. Attitude estimation on SO(3)
is considered in ref.3.

III. OBJECTIVES FOR CONTROL DESIGN

The objective of the attitude control problem is to
determine control inputs such that the spacecraft atti-
tude given by R follows a commanded attitude trajec-
tory given by a possibly time-varying C1 rotation matrix
Rd(t). For t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)
×, [6]

Rd(0) = Rd0, [7]

where ωd is the desired, possibly time-varying angular
velocity. The error between R(t) and Rd(t) is given in
terms of the attitude-error rotation matrix

R̃
4
= RT

dR,
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which satisfies the differential equation

˙̃R = R̃ω̃×, [8]

where the angular velocity error ω̃ is defined by

ω̃
4
= ω − R̃Tωd.

We rewrite [2] in terms of the angular-velocity error as

J ˙̃ω =

[J(ω̃ + R̃Tωd)]× (ω̃ + R̃Tωd) +Bu+ τdist

+ J(ω̃ × R̃Tωd − R̃Tω̇d)− J̇(ω̃ + R̃Tωd). [9]

A scalar measure of attitude error is given by the ro-
tation angle θ(t) about an eigenaxis needed to rotate the
spacecraft from its attitude R(t) to the desired attitude
Rd(t), which is given by4

θ(t) = cos−1( 12 [tr R̃(t)− 1]). [10]

IV. MOTION-TO-REST CONTROL

Two controllers are presented in ref.2. When no dis-
turbances are present, the inertia-free control law given
by (38) of ref.2 achieves almost global stabilization of a
constant desired configurationRd, that is, a slew maneu-
ver that brings the spacecraft to rest. As in ref.2, define
the Lyapunov candidate

V (ω, R̃)
4
= 1

2ω
TJω +Kptr(A−AR̃), [11]

where Kp is a positive number and A ∈ R3×3

is a diagonal positive-definite matrix given by A =
diag(a1, a2, a3). Let u be given by (38) of ref.2, that
is,

u = −B−1(KpS +Kvω), [12]

where Kv ∈ R3×3 is positive definite, and S is defined
as

S
4
=

3∑
i=1

ai(R̃
Tei)× ei, [13]

where, for i = 1, 2, 3, ei denotes the ith column of the
3×3 identity matrix. Taking the derivative of (11) along
the trajectories of (2) yields

V̇ (ω, R̃) = ωTJω̇ + 1
2ω

TJ̇ω +Kpω
TS

= ωT
(
Jω × ω +Bu− J̇ω + 1

2 J̇ω
)

+Kpω
TS

= ωT
(
−KpS −Kvω − 1

2 J̇ω
)
+Kpω

TS

= −ωT
(
Kv +

1
2 J̇
)
ω, [14]

where the derivative of Kptr(A − AR̃) is given by
Kpω

TS as shown in Section V.
Selecting Kv > − 1

2 J̇ + εI for some ε > 0 ensures
that (11) decays as in ref.2 but otherwise, the controller
requires no modification for the case of time-varying
inertia. This condition is automatically satisfied when
the inertia matrix is increasing, that is, J(t1) ≤ J(t2),
for all t1 ≤ t2, which implies that J̇ ≥ 0. Thus,
for every positive-definite choice of Kv, it follows that
Kv > − 1

2 J̇ + εI for some ε > 0. This is the case,
for example, during solar panel or magnetometer boom
deployment. During retraction, a bound on J̇ must be
known in order to properly select Kv.

For simulation, we assume that the inertia of the
spacecraft takes the form

J = J(t) = J0 + J1(t),

where J0 is constant and represents the rigid part of the
spacecraft, and J1(t) is time-varying and represents a
moving part of the spacecraft. We simulate a point mass
moving linearly in time outward along the spacecraft’s
y-axis, representing solar panel deployment. The inertia
matrix J1(t) is thus given by

J1(t) =

 min(t2, t2d) 0 0
0 0 0
0 0 min(t2, t2d)

 kg-m2,

where td is the time it takes to deploy.
The following parameters are used. The inertia ma-

trix J0 is given by

J0 =

 5 −0.1 −0.5
−0.1 2 1
−0.5 1 3.5

 kg-m2,

with principal moments of inertia 1.4947, 3.7997, and
5.2056 kg-m2. Let td = 10, and set Kp = 15 and
Kv = 15 I3. Since the inertia is increasing, any posi-
tive definite Kv is acceptable.

We use controller (12) for an aggressive slew maneu-
ver, where the objective is to bring the spacecraft from
the initial attitude R0 = I3 and initial angular velocity

ω(0) =
[
1 −1 0.5

]T
rad/sec

to rest (ωd = 0) at the desired final orientation Rd =
diag(1,−1,−1), which represents a rotation of 180 de-
grees about the x-axis.

Figures 1-3 show, respectively, the attitude error, an-
gular velocity components, and control torque compo-
nents. The spacecraft attitude and angular velocity com-
ponents are brought close to the desired values in about 5
sec, before the solar panel deployment is complete, and
are maintained throughout the remainder of the deploy-
ment.
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Fig. 1: Eigenaxis attitude error using the control law [12]
for a slew maneuver during translational motion of an
internal mass.
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Fig. 2: Spacecraft angular-velocity components using
the control law [12] for a slew maneuver during trans-
lational motion of an internal mass.

V. MOTION-TO-SPECIFIED-MOTION CONTROL

A more general control law that tracks a desired at-
titude trajectory for rigid spacecraft in the presence of
disturbances is given by [21] of ref.2. We apply this con-
troller to the non-rigid spacecraft presented in the previ-
ous section. Additionally, we assume a constant nonzero
disturbance torque, τdist = [0.7 − 0.3 0]

T. The pa-
rameters of the controller are chosen to be K1 = D =
I3, A = diag(1, 2, 3), Kp = 6, Kv = 6 I3, and Q = I6.

We first consider the slew maneuver. Figures 4-
6 show, respectively, the attitude error, angular veloc-
ity components, and control torque components. The
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Fig. 3: Control torque components using the control law
[12] for a slew maneuver during translational motion
of an internal mass.
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Fig. 4: Eigenaxis attitude error using the control law [21]
of ref.2 for a slew maneuver during translational mo-
tion of an internal mass.

spacecraft attitude and angular velocity components are
brought close to the desired values in under 5 sec. The
persistent nonzero control torque seen in Figure 6 is due
to the constant nonzero disturbance torque. While the
controller [21] of ref.2 assumes that the spacecraft is
rigid, it successfully completes the slew maneuver by
treating the term −J̇ω as a disturbance that gradually
disappears as the spacecraft is brought to rest (ω = 0).
This suggests that it might not succeed at spin maneu-
vers where ω 6= 0 as t→∞.

Before simulating a spin maneuver, we modify J1(t)
so that it is persistent throughout the simulation, rather
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Fig. 5: Spacecraft angular-velocity components using
the control law [21] of ref.2 for a slew maneuver dur-
ing translational motion of an internal mass.
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Fig. 6: Control torque components using the control law
[21] of ref.2 for a slew maneuver during translational
motion of an internal mass.

than coming to rest at 10 sec., as before. We let J1(t) =
1
10 sin

2(2πt)J0, which represents an accordion like mo-
tion, while still preserving the required inertia inequali-
ties

Ja ≤ Jb + Jc, Jb ≤ Ja + Jc, Jc ≤ Ja + Jb,

where Ja, Jb, Jc are the principal moments of inertia.
We now consider a spin maneuver with the space-

craft initially at rest and R(0) = I3. The specified atti-
tude is given by Rd(0) = I3 with the desired constant
angular velocity

ωd =
[
0.5 −0.5 −0.3

]T
rad/sec.
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Fig. 7: Eigenaxis attitude error using the control law [21]
of ref.2 for a spin maneuver during accordion-like
motion.
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Fig. 8: Spacecraft angular-velocity components using
the control law [21] of ref.2 for a spin maneuver dur-
ing accordion-like motion.

Figures 7-9 show, respectively, the attitude error, angu-
lar velocity components, and control torque components.
The spacecraft attitude and angular velocity components
are brought close to the desired values in about 2 sec.
but do not settle, as was expected. The non-rigidity of
the spacecraft acts as a disturbance torque that cannot be
rejected by the control.

V.I. Extended Control Law

We now extend controller [21] of ref.2 to the case of
a non-rigid spacecraft whose inertia matrix has the form

J(t) = J0 + f(t)J1,
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Fig. 9: Control torque components using the control law
[21] of ref.2 for a spin maneuver during accordion-
like motion.

where f(t) is known but J0 and J1 are unknown. The
following preliminary results are needed.

Let I denote the identity matrix, whose dimensions
are determined by context, and let Mij denote the i, j
entry of the matrix M. The following result is given in
ref.2.

Lemma 1. Let A ∈ R3×3 be a diagonal positive-
definite matrix. Then the following statements hold for
a proper orthogonal matrix R:

i) For all i, j = 1, 2, 3, Rij ∈ [−1, 1].

ii) tr (A−AR) ≥ 0.

iii) tr (A−AR) = 0 if and only if R = I.

For convenience we note that, if R is a rotation ma-
trix and x, y ∈ R3, then

(Rx)× = Rx×RT,

and, therefore,

R(x× y) = (Rx)×Ry.

Next we introduce the notation

J0ω = L(ω)γ,

where γ ∈ R6 is defined by

γ
4
=
[
J011 J022 J033 J023 J013 J012

]T
and

L(ω)
4
=

 ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

 .

Similarly, we let

J1ω = L(ω)ζ [15]

where ζ ∈ R6 is defined by

ζ
4
=
[
J111 J122 J133 J123 J113 J112

]T
.

Next, let Ĵ0 ∈ R3×3 denote an estimate of J0, Ĵ1 ∈
R3×3 denote an estimate of J1 and define the inertia-
estimation errors

J̃0
4
= J0 − Ĵ0,

and
J̃1
4
= J1 − Ĵ1.

Letting γ̂, γ̃ ∈ R6 represent Ĵ0, J̃0, respectively, and
ζ̂, ζ̃ ∈ R6 represent Ĵ1, J̃1, respectively, it follows that

γ̃ = γ − γ̂,

and
ζ̃ = ζ − ζ̂.

Likewise, let τ̂dist ∈ R3 denote an estimate of τdist, and
define the disturbance-estimation error

τ̃dist
4
= τdist − τ̂dist.

We now state the assumptions upon which the fol-
lowing development is based:

Assumption 1. J0 and J1 are constant and unknown.
Assumption 2. f(t) is time-varying and known.
Assumption 3. Each component of τdist is a linear

combination of constant and harmonic signals, whose
frequencies are known but whose amplitudes and phases
are unknown.

Assumption 3 implies that τdist can be modeled as
the output of an autonomous system of the form

ḋ = Add, [16]
τdist = Cdd, [17]

where Ad ∈ Rnd×nd and Cd ∈ R3×nd are known matri-
ces and Ad is a Lyapunov-stable matrix. In this model,
d(0) is unknown, which is equivalent to the assumption
that the amplitude and phase of each harmonic com-
ponent of the disturbance is unknown. The matrix Ad

is chosen to include eigenvalues of all frequency com-
ponents that may be present in the disturbance signal,
where the zero eigenvalue corresponds to a constant dis-
turbance. In effect, the controller provides infinite gain
at the disturbance frequency, which results in asymp-
totic rejection of harmonic disturbance components. In
particular, an integral controller provides infinite gain at
DC in order to reject constant disturbances. In the case
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of orbit-dependent disturbances, the frequencies can be
estimated from the orbital parameters. Likewise, in the
case of disturbances originating from on-board devices,
the spectral content of the disturbances may be known.
In other cases, it may be possible to estimate the spec-
trum of the disturbances through signal processing. As-
sumption 3 implies that Ad can be chosen to be skew
symmetric, which we do henceforth. Let d̂ ∈ Rnd de-
note an estimate of d, and define the disturbance-state
estimation error

d̃
4
= d− d̂.

Theorem 1. Let Kp be a positive number, let K1 ∈
R3×3, let Q,Z ∈ R6×6 and D ∈ Rnd×nd be positive
definite matrices, letA = diag(a1, a2, a3) be a diagonal
positive-definite matrix, and define

S
4
=

3∑
i=1

ai(R̃
Tei)× ei.

Then the function

V (ω̃, R̃, γ̃, d̃)
4
= 1

2 (ω̃ +K1S)
TJ(ω̃ +K1S)

+Kptr (A−AR̃) + 1
2 γ̃

TQγ̃

+ 1
2 ζ̃

TZζ̃ + 1
2 d̃

TDd̃ [18]

is positive definite, that is, V is nonnegative, and V = 0
if and only if ω̃ = 0, R̃ = I, γ̃ = 0, and d̃ = 0.

Proof. It follows from statement 2 of Lemma 1 that
tr (A − AR̃) is nonnegative. Hence V is nonnegative.
Now suppose that V = 0. Then, ω̃ +K1S = 0, γ̃ = 0,
and d̃ = 0, and it follows from statement 3 of Lemma 1
that R̃ = I, and thus S = 0. Therefore, ω̃ = 0.

Theorem 2. Let Kp be a positive number, let Kv ∈
R3×3, K1 ∈ R3×3, Q, Z ∈ R6×6, and D ∈ Rnd×nd

be positive definite matrices, assume that AT
dD +DAd

is negative semidefinite, let A = diag(a1, a2, a3) be a
diagonal positive-definite matrix, define S and V as in
Theorem 1, and let γ̂, ζ̂, and d̂ satisfy

˙̂γ = Q−1[LT(ω)ω× + LT(K1Ṡ + ω̃ × ω
− R̃Tω̇d)](ω̃ +K1S), [19]

˙̂
ζ = Z−1[f(t)LT(ω)ω× + f(t)LT(K1Ṡ

+ ω̃ × ω − R̃Tω̇d) + ḟ(t)LT( 12 (ω̃ +K1Ṡ)

− ω)](ω̃ +K1S), [20]

where

Ṡ =

3∑
i=1

ai[(R̃
Tei)× ω̃]× ei [21]

and

˙̂
d = Add̂+D−1CT

d (ω̃ +K1S), [22]

τ̂dist = Cdd̂, [23]

so that τ̂dist is the disturbance torque estimate. Further-
more, consider the control law

u = −B−1(v1 + v2 + v3), [24]

where

v1
4
= −(Ĵ0 + f(t)Ĵ1)ω × ω
− ḟ(t)Ĵ1( 12 (ω̃ +K1Ṡ)− ω)
− (Ĵ0 + f(t)Ĵ1)(K1Ṡ + ω̃ × ω − R̃Tω̇d), [25]

v2
4
= −τ̂dist, [26]

and

v3
4
= −Kv(ω̃ +K1S)−KpS. [27]

Then,

V̇ (ω̃, R̃, γ̃, d̃) = −(ω̃ +K1S)
TKv(ω̃ +K1S)

−KpS
TK1S

+ 1
2 d̃

T(AT
dD +DAd)d̃ [28]

is negative semidefinite.

Proof. Noting that

d

dt
tr (A−AR̃) = −trA ˙̃R

= −trA(R̃ω× − ω×d R̃)

= −
3∑

i=1

aie
T
i (R̃ω

× − ω×d R̃)ei

= −
3∑

i=1

aie
T
i R̃(ω

× − R̃Tω×d R̃)ei

= −
3∑

i=1

aie
T
i R̃(ω − R̃Tωd)

×ei

=

3∑
i=1

aie
T
i R̃e

×
i ω̃

= [−
3∑

i=1

aiei×R̃Tei]
Tω̃

= [

3∑
i=1

ai(R̃
Tei)×ei]Tω̃

= ω̃TS,
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we have

V̇ (ω̃, R̃, γ̃, d̃)

= (ω̃ +K1S)
T(J ˙̃ω + JK1Ṡ)−KptrA

˙̃R− γ̃TQ ˙̂γ

+ 1
2 (ω̃ +K1S)

TJ̇(ω̃ +K1S)− ζ̃TT ˙̂
ζ + d̃TD

˙̃
d

= (ω̃ +K1S)
T[Jω × ω + J(ω̃ × ω − R̃Tω̇d)−Bu

− J̇ω + τdist + JK1Ṡ + 1
2 J̇(ω̃ +K1Ṡ)]

+Kpω̃
TS − γ̃TQ ˙̂γ − ζ̃TT ˙̂

ζ + d̃TD
˙̃
d

= (ω̃ +K1S)
T[Jω × ω + J(K1Ṡ + ω̃ × ω − R̃Tω̇d)

+ v1 + v2 + v3 + τdist + J̇( 12 (ω̃ +K1Ṡ)− ω)]

+Kpω̃
TS − γ̃TQ ˙̂γ − ζ̃TT ˙̂

ζ + d̃TD
˙̃
d

= (ω̃ +K1S)
T[(J̃0 + f(t)J̃1)ω × ω

+ (J̃0 + f(t)J̃1)(K1Ṡ + ω̃ × ω − R̃Tω̇d)

+ ḟ(t)J̃1(
1
2 (ω̃ +K1Ṡ)− ω)] + (ω̃ +K1S)

Tτ̃dist

− (ω̃ +K1S)
TKv(ω̃ +K1S)−Kp(ω̃ +K1S)

TS

+Kpω̃
TS − γ̃TQ ˙̂γ − ζ̃TT ˙̂

ζ + d̃TD
˙̃
d

= (ω̃ +K1S)
T[L(ω)γ̃ × ω + L(K1Ṡ + ω̃ × ω

− R̃Tω̇d)γ̃] + (ω̃ +K1S)
T[f(t)L(ω)ζ̃ × ω

+ f(t)L(K1Ṡ + ω̃ × ω − R̃Tω̇d)ζ̃

+ ḟ(t)L( 12 (ω̃ +K1S)− ω)ζ̃]
− (ω̃ +K1S)

TKv(ω̃ +K1S)−KpS
TK1S

− γ̃TQ ˙̂γ − ζ̃TT ˙̂
ζ + d̃TCT

d (ω̃ +K1S)

+ d̃TD[Add̃−D−1CT
d (ω̃ +K1S)]

= −(ω̃ +K1S)
TKv(ω̃ +K1S)−KpS

TK1S

− γ̃TQ ˙̂γ + (ω̃ +K1S)
T[−ω×L(ω)

+ L(K1Ṡ + ω̃ × ω − R̃Tω̇d)]γ̃ − ζ̃TZ ˙̂
ζ

+ (ω̃ +K1S)
T[−f(t)ω×L(ω) + f(t)L(K1Ṡ

+ ω̃ × ω − R̃Tω̇d) + ḟ(t)L( 12 (ω̃ +K1S)]ζ̃

+ 1
2 d̃

T(AT
dD +DAd)d̃

= −(ω̃ +K1S)
TKv(ω̃ +K1S)−KpS

TK1S

+ γ̃T[−Q ˙̂γ + (LT(ω)ω× + LT(K1Ṡ + ω̃ × ω

− R̃Tω̇d))(ω̃ +K1S)] + ζ̃T[−Z ˙̂
ζ

+ (f(t)LT(ω)ω× + f(t)LT(K1Ṡ + ω̃ × ω
− R̃Tω̇d))(ω̃ +K1S) + ḟ(t)LT( 12 (ω̃ +K1S)]

+ 1
2 d̃

T(AT
dD +DAd)d̃

= −(ω̃ +K1S)
TKv(ω̃ +K1S)−KpS

TK1S

+ 1
2 d̃

T(AT
dD +DAd)d̃.

Note that a bound on J̇ need not be known as in the
case of for the motion-to-rest controller. This is due to
the J1 estimator [20] accounting for the extra term that
appears in the derivative of [18] due to the spacecraft
having a time-varying inertia matrix.

We simulate the spin maneuver using controller [24]
on the non-rigid spacecraft with J1(t) = 1

10 sin
2(2πt)J0,

as before. We assume a constant nonzero disturbance
torque, τdist = [0.7 − 0.3 0]

T. The parameters
of the controller are chosen to be K1 = I3, A =
diag(1, 2, 3), Kp = 1

5 , Kv = 10 I3, D = I3, and
Q = I6.

Figures 10-12 show, respectively, the attitude error,
angular velocity components, and control torque compo-
nents. The spacecraft attitude and angular velocity com-
ponents are brought close to the desired values in under
10 sec. The modified controller [24] is able to reject the
persistent disturbance caused by the non-rigidity of the
spacecraft.
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Fig. 10: Eigenaxis attitude error using the control law
[24] for a spin maneuver during accordion-like mo-
tion.

VI. CONCLUSIONS

We extended the control laws of ref.2 to the case
of non-rigid spacecraft, without requiring knowledge of
the spacecraft’s time-varying inertia. These results have
practical advantages relative to previous controllers that
1) require exact or approximate inertia information or 2)
are based on attitude parameterizations such as quater-
nions that require discontinuous control laws. We simu-
lated these controllers for various slew and spin maneu-
vers, demonstrating their effectiveness.

Future work will complete the proof for almost
global stabilization (that is, Lyapunov stability with al-
most global convergence) of non-rigid spacecraft atti-
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Fig. 11: Spacecraft angular-velocity components us-
ing the control law [24] for a spin maneuver during
accordion-like motion.

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

10

Time, sec

T
or

qu
e 

In
pu

ts
, N

−
m

Fig. 12: Control torque components using the control
law [24] for a spin maneuver during accordion-like
motion.

tude tracking using controller [24]. Additionally, ex-
tensions of this method may be applicable to non-rigid
spacecraft with moving components that are not neces-
sarily translating relative to the spacecraft frame.

REFERENCES
1Chaturvedi N., Sanyal A., and McClamroch, N.

H., “Rigid Body Attitude Control: Using rotation matri-
ces for continuous, singularity-free control laws,” IEEE
Control Systems Magazine, Vol. 31(3), pp. 30-51, 2011.

2Sanyal A., Fosbury A., Chaturvedi N., and Bern-
stein D. S. , “Inertia-Free Spacecraft Attitude Tracking

with Disturbance Rejection and Almost Global Stabi-
lization,” AIAA J. Guid. Contr. Dyn., Vol. 32, pp. 1167-
1178, 2009.

3Sanyal, A. K., Lee, T., Leok, M., and McClam-
roch, N. H., “Global Optimal Attitude Estimation Us-
ing Uncertainty Ellipsoids,” Systems and Control Let-
ters, Vol. 57, pp. 236–245, 2008.

4Hughes, P. C., Spacecraft Attitude Dynamics, Wi-
ley, 1986; reprinted by Dover, 2008, page 17.

IAC-11-C1.5.9 Page 9 of 9


	Introduction
	Spacecraft Model
	Objectives for Control Design
	Motion-to-Rest Control
	Motion to Specified Motion Control
	Extended Control Law

	Conclusions

