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Abstract— We address the model reference adaptive control This conjecture is supported by the results of [6], which
problem for a nonlinear multilink planar arm mechanism,  shows that the noncolocated transfer functions of the lin-
where links are interconnected by torsional springs and dads o 4j764 multilink planar arm have nonminimum-phase zeros.

pots, a control torque is applied to the hub of the mechanism, Whil .. h b hall ing f
and the objective is to control the angular position of the lat lle nonminimum-phase zeros can be challenging tor

link. It is known that the linearized transfer function for t he ~ Many control methodologies, they are particularly chajten
multilink planar arm has nonminimum-phase zeros when the ing for adaptive controllers. For discrete-time systemthwi
control torque and angular position sensor are not colocat®.  nonminimum-phase zeros, retrospective cost adaptivealont
We use a retrospective cost model reference adaptive contro (RCAC) techniques are known to be effective provided that

(RC-MRAC) algorithm, which is effective for nonminimum- -
phase systems provided that the nonminimum-phase zeros are the nonminimum-phase zeros are known [15]-[17]. In [€],

known. We demonstrate that RC-MRAC effectively controls e RCAC is used to control the-link planar arm mechanism
multilink arm for a range of reference model command signal  using knowledge of only the first non-zero Markov parameter

amplitudes and frequencies. and the nonmimum-phase zeros of the discretized linearized
transfer function from hub torque to angular position.
I. INTRODUCTION In the present paper, we extend the work of [6] in two

The multilink planar arm mechanism consists/flinks, ~Ways- First, we adopt the retrospective cost model referenc

which are interconnected by torsional springs and dashpofiaptive control (RC-MRAC) algorithm, which is presented
This mechanism is an approximation of a flexible rotatind? [18]- The simulation results of this paper demonstrag th
arm or bending beam, whose dynamics and control a C-MRAC effectively controls the multilink arm for a wide
studied for applications such as space structures [1],1jd] a'@nge of reference model command signal amplitudes and
hard drives [3], [4]. The multilink planar arm presents afrequenugs. The second extenspn present.ed in this psper i
challenging control problem because the system is norlinei® adaptive control of the multilink arm with more than 2
and exhibits nonminimum-phase behavior, as shown in [§Nks. Specifically, we address the 2-link, 3-link, and Akli
Chap. 8.5] for the 2-link case and [6] for thé-link case. ~ CaS€S.

Nonmimum-phase zeros can create challenge_s for fe_ed- Il. EQUATIONS OF MOTION
back control systems by limiting bandwidth and gain margins

[7], and causing initial undershoot or direction reversals . . . .
o ) . motion for anN-link planar arm, and present the linearized
the step response [8], [9]. Thus, it is of interest to detagmi : : . L
guations of motion. For a detailed derivation, see [6].

physical properties in mechanical systems that give rise © First, letp; be the point where the first link is connected
nonminimum-phase zeros. The colocated force-to-veloci% the ’horiztljntal plane, and, far= 2. ... N, let p; be the
’ ’ - ey ’ K]

trg;?g Izgftgr]]z ftcr)]rullerﬁitr):i?njg]uctﬁgesse)a[rfo]k n_cl)_\r/]vir; torob%oint where thei*® link is connected to théi — 1) link.
P P ; PrOPNext, for i — 1,...,N, let m; be the mass of th&® link,
erty suggests that sensor-actuator noncolocation ma}ecaTs

In this section, we review the nonlinear equations of

. sth |; i H
nonminimum-phase zeros; however, [11], [12] demonstra %t ll. k.Je the length of the .Imk’ let ¢; be t_h_e damping at
. . . e joint p;, let k; be the stiffness of the joinp;, and let
that noncolocation alone is not the source of nonminimum- A R - - b ©
ﬁmili2 be the moment of inertia of th&" link about

phase zeros. In particular, [11] considers a string of maasséi =
interconnected by linear springs and dashpots, and shaws tfS center of mass. o _
the noncolocated transfer functions from the force on one Next, we define the inertial framé, with orthogonal
mass to the position of another mass are minimum phaseUnit Vectors(ia, ja, ka), wherei, andja lie in the plane
The bending-beam examples considered in [13], [14] su@f motion of the N-link planar arm, and:, is orthogonal
gest that nonminimum-phase zeros may arise from sens®- the plane of motion. For simplicity, we assume that the
actuator noncolocation combined with rotational motionOrigin of F is located ap,. Finally, fori =1,..., N, let
0; be the angle from, to the vector fromp; to p;11. The
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Fig. 1. All motion of the N-link planar arm is in the horizontal plane.
. /L_l . . .
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The total kinetic energy is defined & = Zfil T;. Next,
fori=1,..., N, the potential energy of th&" link is

1 2
5k107,

é {
ski(0im1 — 0:)2,

i=1,
i>1,

and the total potential energy is defined Uyé Zfil U;.

Thus, the Lagrangian for th&-link system isL S2r_v.

Next, fori =1,..., N, let F,, be the dissipation function
resulting from the damping at joint;, that is,

)2
0191,

Cz‘(9z‘71 - 9i)27

i=1,

(SIS

1> 1,

and defineF, £ SN F..Fori=1,...,N, letv; be an
external torque applied at;. Thus, fori = 1,..., N the
nonlinear equations of motion are given by

d 0L

dt 96;

oL
00;

OF,
— = Vj.

00;

1)

B. Linearized Equations of Mation

Now, we present the linearized equations of motion for the

N-link system. First, defin® 2 [ 61 On ]T, and
= [ v N ]T. We linearize about théd, ©) = 0
equilibrium. Letd® be the linear approximation & around
the equilibrium(©, ©) = 0.

where

[ 71,1 Y1,N
M 4 . . :
L IN,1 YN,N
[ c1+ca —c2 0 ... 0
—C2 co+c3 —cC3 ... 0
C’dé 0 —c3 c3+cqg ... 0 ’
| O 0 0 CN
[ ki + ke —ko 0 0
—kQ kQ +63 —kg O
K 210 —k3 ks + ky4 0 ’
| O 0 0 kn
where, forgy = 1,..,.N, and h = g + 1,...,N,
A

N
V9.9 (% + Zi:ngl mi) lgv and g

(%+va:h+lmi)lglh, and, for gh = 1,..,N,
Yh,g = Vg,h-

IIl. RETROSPECTIVECOST
MODEL REFERENCEADAPTIVE CONTROL

In this section, we review the RC-MRAC algorithm pre-
sented in [18]. We highlight the model information required
by the adaptive controller as well as several important
assumptions. For additional details and a stability anglys
of RC-MRAC, see [18].

First, consider the linear discrete-time system

n n

y(k) = Z —agy(k — i) + Zﬂiu(k — 1),
i—d

i=1

wherek > 0, ay,...,a, € R, B4,..., 0, € R, y(k) is the
output,u(k) is the control, and the relative degreedis- 0.

Let q and q~! denote the forward-shift and backward-
shift operators, respectively, and defifiéq) = Baq" +
Bar1q" "1+ 4+ Br_1q+ Bn. Consider the factorization
B(q) = Baba(a)B,(a), where,(q) is a monic polynomial
of degreen,,; 5s(q) is @ monic polynomial; and i\ € C,
Al > 1, and 3(A) = 0, then B,(X\) = 0 and 35(\) # 0.
We assume that the polynomidl,(q) is known, which
implies that the nonminimum-phase zeros framto y
are known. Furthermore, we assume that the first nonzero
Markov parametef, is known.
Next, consider the reference model

am(q)ym(k) = Bm(q)r(k)7 4)

wherey, (k) € R is the reference model output(k) € R is
the bounded reference model commang;(q) is a monic
polynomial with degree.,, > 0; 5, (q) is a polynomial with

®3)

Linearizing theN-link system, with nonlinear equations gegreen,, — d,, whered,, > d is the relative degree of (4);

of motion (1), abou(®, ©) = 0 yields

MO 4+ Cy60 + K60 = T, 2)

and if A € C, |A| > 1, andB,()\) = 0, then S, (A\) = 0.

Next, definez(k) 2 y(k) — ym(k). Our goal is to drive
z(k) to zero. We use a time-series controller of order>



max(2n — n, — d,ny, — ny — d), which is given by IV. I MPLEMENTATION OF RC-MRAC

ne ne In this section, we discuss implementation of RC-MRAC
= Z Li(k)y(k —i) + Z M;(k)u(k — 1) on the N-link planar arm. We implement RC-MRAC with a
zero-order hold on the inputs and a sampling tifje= 0.02

ne seconds. Although the RC-MRAC formulation, presented in
+ ) Ni(k)r(k — i), (5)  Section IlI, is based on a linear plant, we apply RC-MRAC
' to the full nonlinearN-link planar arm, given by (1).
where, for alli = 1 ne, Li :N = R and M; : N — R, We assume that the control torque at the hub of Ahe
and, for alli = 0, 17’_ . 'ne, N; : N — R are determined by link planar arm (i.e.»1) is the only available control input.
the adaptive law presented below. The controller (5) can b us,vs, ..., vy in (1) are |der_1t|cally Z€ero and is the zero
expressed as order hold ofu(k), whereu(k) is determlngq by RC-MRAC
u(k) = T (k)b (k), (6) (6)—(8). We assume that the angular position of A& link
(i.e., y) is the only measurement available for feedback.
where 6. (k) 2 [Ly(k) -+ Ly, (k) My(k) --- My, (k) Th_us,y(k). is the sampled-data signal_ c_>btained frém. Our
No(k) -+ N (K)]T, andg(k) [ [ y(k=1) - yk— objective is to force the angular position of th&" link to
ne) ulk—1) - ulk—ne) (k) --- r(k—no)T. follow the reference model output, (k).

In order to implement RC-MRAC, we require knowledge
of B.(q), which characterizes the nonminimum-phase zeros
of the linearized N-link system from the control torque
at the hub to the angular position of thé*™ link. It is
shown in [6] that the linearized transfer function of tharikl

SN A g ) ) system fromv; to §6; has exactly one nonminimum-phase
whereB.(q™') = q N Bu(a), the filtered tracking error o, Fyrthermore, [6] provides numerical evidence that th
is defined byzt(k) = q "™am(q)z(k), and the filtered linearized transfer function of th&-link system fromw; to
regressor is defined b (k) 2 BaBu(q™ V) p(k). 08y (i.e., from the hub to the tip of the multilink mechanism)

Finally, define the cumulative retrospective cost functionhasN —1 nonminimum-phase zeros. Finally, discretizing the

linearized transfer function from; to é6y (using a zero-

N e v T4 T . order hold on the inputs) results in a discrete-time transfe
J(0,k) = Z)‘ 2 (0,9) + A [9 - 9(0)} R [9_9(0)] > function, which in general also ha¥ — 1 nonminimum-

=0 phase zeros. The locations of the nonmimum-phase zeros
where) € (0,1], R € RBretD)x(3net1) is positive definite, depend on the sampling time used for the discretization. In
andd(0) € R3"<+1, For eachk > 0, J(é7 k) is minimized by this numerical study, we let,(q) be the polynomial whose

the recursive-least-squares algorithm with a forgettamdr roots are at the nonminimum-phase zero locations obtained
from the discretized linearization.

Now, let § € R3"*+! pe an optimization variable, and
define the retrospective performance

2(0,k) 2 2(k) + T (k)0 — BaBulqV)ulk),

Oc(k+1) = 0.(k) — 3 f((g( () )z ZC r)(kgk)’ ) V. SIMULATION RESULTS
In this section, we use RC-MRAC to control the nonlinear
1 P(k)® (k)2 (k)P (k)

P(k+1)=— |P(k)— (8) N-link system. In particular, for the two, three, and fouklin
cases, we numerically investigate the performance of RC-
L AL MRAC with sinusoidal reference model commangk). Our
where P(0) = R™" andzy (k) = 2;(6c(k), k). In summary, go4) s to explore the amplitude and frequency ranges of the
RC-MRAC is given by (6)—(8), and its architecture is showneference model outpu (k) for which the output of the

in Figure 2. N-link systemy(k) is able to tracky, (k). We demonstrate

) A + O (k)P (k) (k)

Plant that RC-MRAC is able to control thé&/-link system for a
! range of reference model output amplitudes and frequencies
a(ay = Alaju however, for large-amplitude or high-frequency reference
u P model outputs theN-link system’s nonlinearities become
Adapive Caffroller difficult for RC-MRAC to control. .
For all examples, the controller ordersig = 12 and the
“<k>7¢/T;"'{>90(’“> reference model is given by (4). Next, define the reference
. r model transfer functiorG,,(z) 2 ﬁ“—ﬁii and consider the
e Reference Model reference model command "
§ (@) = Bun()r A -
’f'(k) = m SanTsk,

wherew is the frequency in rad/sec amtlis the amplitude

Fig. 2. Schematic diagram of RC-MRAC given by (6), (7), any (8 | . . .
in rad. Note that the amplitude efk) is normalized by the



magnitude of the reference model transfer function at theolored region of the heat map but not near the boundary;
command frequency (i.e|m (e?“7#)[). The normalization and an(4,w) pair, which is in the colored region of the heat
is performed so that, for any frequency, the steady- map and near the boundary.

state amplitude of, (k) is A. Thus, we can independently
vary the amplituded and frequencyw of the steady-state
reference model output,, (k), which is the signal that the
adaptive controller is attempting to track. Finally, fol al
examplesf.(0) =0 and A = 1.

Example 1. Let A = 0.3 andw = 27, which is in the
colored region of the heat map but not near the boundary.
Figure 4 shows the closed-loop response oftiek system
with RC-MRAC in feedback. Th&-link system is allowed
to run open loop for 5 seconds, then RC-MRAC is turned
A. The Two-Link Case on. The top plot of Figure 4 shows thatk) asymptotically

We consider the-link System' Wherenl =92 kg'Tn2 =3 follows ym(k) The middle and bottom p|OtS of Figure 4
kg, s =2m,lp =1m ks =7 Nm kg, =5 Nom provide a time history of the anglés andd,, and the rates

01 and 0.

rad '

¢ = 10 =22 ande, = 10 X222 | this case,y; =

rad rad

—8.045x 107" andB,(q) = q—1.0784. Additionally, we let
om(q) = (q—0.8)%, Bu(q) = qBu(q), andP(0) = 10" ;.
The 2-link system is simulated for a range of referenc
model output amplitudes and frequencies; specificallys
varied from O rad to 1 rad, and is varied from O rad/sec to
20r rad/sec. For each choice df andw, the 2-link system
is simulated for 20 seconds, and we explore the values
A andw for which RC-MRAC drives the performancgk)
to zero. If the angular position of the second link exceed
27 rad, then we consider this transient behavior to excee
acceptable limits, meaning that RC-MRAC is not effective
Next, for each simulation, define the performance metric
e= max |z(k)], 9)

20
0<k<2

and 6, (rad)

T
=]

0

ad /sec)

65 (x

6, and

Fig. 4. Example 1. For the 2-link system withA = 0.3 andw = 2,
] - ) ) the angular position of the second linKk) follows the reference model
which quantifies the peak transient tracking error. output ym (k). Top plot showsy(k) (solid) andym (k) (dashed); middie

Figure 3is a heat map which shows the range of referenE@t shows the angled; (solid) andf- (dashed); bottom plot shows the
. ' angular rate9; (solid) andfd, (dashed).
model output amplitudes! and reference model command
frequenciesv, where RC-MRAC is effective. Furthermore,

the color at each point on the heat map indicates the ValueExampIe_Z. Let A =0.01 andw = 107, which is in the_
: : . colored region of the heat map and near the boundary. Figure
of €. Finally, the white regions correspond to the valuesgiof

andw where the angular position of the second link exceea?éhlavéig].e ?Iosgg-lolz)p_r;]estponsle ?f fh;mk syzterrr: Wlﬂlh t
27 rad. Figure 3 demonstrates that RC-MRAC is effective . In feegback. The top plot ot Figure 5> shows tha

over a large amplitude range when the frequency is low, a k) asymptqtically followsye (k); howgver_, the transient
over a large frequency range when the amplitude is Smallpen‘ormance is worse than that shown in Figure 5. Note that

the plots have been truncated after 10 seconds.

and (k) (rad)

y(k)

Amplitude

7
Frequency (rad/sec) Time (sec)

Fig. 3. Two-Link System Heat Map: The heat map for the two-link system Fig. 5. Example 2: For the 2-link system witd = 0.01 andw = 107, the
shows that RC-MRAC effectively controls thelink system over a range of angular position of the second link(k) follows the reference model output
reference model output amplitudes and frequencies. Wedions represent ., (k). However, the transient behavior for this example is worse tthe
a response greater tham radians. transient behavior shown in Figure 4. Top plot showd) (solid) and

Next, we explore o values of and. in more detail. - J5i0) (15 i et Sons e e ol sy ceshe)
In particular, we consider aQA,w) pair, which is in the



B. The Three-Link Case

We consider th&-link system, wheren; = 2 kg, mo = 3
kg,m3:4kg,ll =2m,le=1m,ls=1m,k; 271\;—;1,
ky = 5 Nom gy — 6 Nomoo g ke g
kgr;f, andcs = 1 kgr;§‘2. In this case3; = 2.13 x 106
and 3,(q) = (q — 1.016)(q — 18.90). Additionally, we let
am(q) = (q —0.9)%, Bm(q) = Bu(q), and P(0) = 10'7I3;.

The 3-link system is simulated for a range of referenc £°
model output amplitudes and frequencies; specificallys -
varied from 0O rad to 0.5 rad, and is varied from O rad/sec .
to 10r rad/sec. We use the performance metrgiven by (9) <™ ’ ‘ ‘ i)
and consider transient behavior to exceed acceptableslimit _ ) )
the angular position of the third link exceesls rad. Figure £ 7. BaTe & For he 3k system i) 0.1 ands © 7 the
6 is the heat map for th&-link system. Notice that the shape y,, (k). Top plot shows(k) (solid) andy., (k) (dashed); middle plot shows
of Figure 6 is similar to the shape of Figure 3 (i.e., the hedfe angles; (solid), 0> (dashed), and’; (dotted); bottom plot shows the
map for the 2-link system). However, RC-MRAC is effective?"9U1a" rate (solid), 6 (dashed), ands (dotted).
over a smaller range of values dfandw in the 3-link case. _
The smaller range ofA, w) may be a result of the additional = ‘
nonlinearities that arise when additional links are added 1
the multilink arm.

1 Fig. 8. Example 4: For the 3-link system withA = 0.01 andw = 5,

the angular position of the third linlg(k) follows the reference model
output ym (k). However, the transient behavior for this example is worse
than the transient behavior shown in Figure 7. Top plot shg@s (solid)

= Laa = % o andym (k) (dashed); middle plot shows the angts(solid), 62 (dashed),
Froency ed/oe) andés (dotted); bottom plot shows the angular rafeg(solid), - (dashed),
and 63 (dotted).

Fig. 6. Three-Link System Heat Map: The heat map for the three-link
system shows that RC-MRAC effectively controls thdink system over a
range of reference model output amplitudes and frequendibite regions N—m _ kg—m? _ kg—m? _ kg—m?
represent a response greater tRanradians. rad * (1 = 10 ad * 2 = 10 rad ' O3 = rad '
andc, = 9 X2 |n this case,3; = 2.44 x 1075 and
Example 3. Let A = 0.1 andw = =, which is in the Bu(a) = (a — 1.008)(q — 1.649)(q + 4.684). Additionally,
colored region of the heat map but not near the boundaiye 1€t am(a) = (a4 — 0.9)°, Bum(a) = Bu(q), and P(0) =
Figure 7 shows the closed-loop response ofsitiek system 10" Is7.
with RC-MRAC in feedback. Th&-link system is allowed  The 4-link system is simulated fo4 from O rad to 0.15
to run open |00p for 5 seconds, then RC-MRAC is turneﬁad, andw is varied from O rad/sec torbrad/sec. We use the
on. The top plot of Figure 7 shows thatk) asymptotically Performance metrie given by (9). Figure 9 is the heat map
follows 1y (k). for the 4-link system. The shape of Figure 9 is similar to
o the shapes of Figure 3 and Figure 6, but the rangedot)
Example 4. Let A = 0.01 andw = 5w, which is in the \,hare RC-MRAC s effective is smaller than in tBelink
colored region of the heat map and near the boundary. Figytgse (which is smaller than in thelink case). This provides
8 shows the closed-loop response of #link system with  5qqitional numerical evidence that the range of achievable
RC-MRAC in feedback. The top plot of Figure 8 shows thaption (i.e., the amplitude and frequency of the reference

y(k) asymptotically followsyy,(k); however, the transient el output) decreases as the number of links increases.
performance is worse than that shown in Figure 7.

) Example 5. Let A = 0.02 andw = 27, which is in the
C. The Four-Link Case colored region of the heat map but not near the boundary.
We consider thd-link system, wheren; = 2 kg, ms =3  Figure 10 shows the closed-loop response of #hink
kg, m3 =4kg, my =3kg,ly =2m,lo=1m,l3=1m, system with RC-MRAC in feedback. The top plot of Figure
ly=1m k=752 k=5 8w =610k, =5 10 shows thay(k) asymptotically followsy., (k).

rad
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and y(K) (rad)

y(k)

rad)

(

|
and 6; (rad)
T
|

Amplitude

01, 62, 04,

sec)

g 10
Frequency (rad/sec) Time (sec)

Fig. 9. Four-Link System Heat Map: The heat map for the four-link system Fig. 11. Example 6: For the 4-link system wittd = 0.001 andw = 5,
shows that RC-MRAC effectively controls thelink system over a range of the angular position of the fourth link(k) follows the reference model
reference model output amplitudes and frequencies. Wag®ns represent output ym (k). However, the transient behavior for this example is worse
a response greater tha&a radians. than the transient behavior shown in Figure 10. Top plot shefit) (solid)
andym (k) (dashed); middle plot shows the angls(solid), 02 (dashed),

03 (dotted), andd, (dash-dotted); bottom plot shows the angular rdtes
(solid), 62 (dashed)fs (dotted), andd4 (dash-dotted).
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