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In this paper we focus on retrospective cost adaptive control (RCAC), which is applica-
ble to stabilization, command following, disturbance rejection, and model reference control
problems for SISO and MIMO plants. RCAC uses limited modeling information, specifi-
cally, Markov parameters of the transfer function from the control input to the performance
variable. Typically, a small number of Markov parameters are needed, for example, one
Markov parameter usually suffices if the plant is minimum phase. If the plant is Lyapunov
stable and nonminimum phase, then knowledge of the locations of the nonminimum-phase
zeros is not needed as long as an error-dependent regularization term is used to weight
the control effort. For plants that are both open-loop unstable and nonminimum phase,
knowledge of the locations of the nonminimum-phase zeros may be needed. The goal of
the present paper is to further investigate the effectiveness of the error-dependent reg-
ularization terms. Furthermore, we remove the intermediate step of reconstructing the
retrospective controls and we directly update the controller. Next, we consider channel-
wise phase-matching conditions for MIMO plants. Finally, we investigate the role of zeros
in MIMO nonsquare systems.

I. Introduction

In many applications of control, a model of the plant that is sufficiently accurate for controller synthesis
is not available. A model with sufficient fidelity may be lacking due to either complex physics that are
not amenable to first principles analysis or the inability to collect a sufficient amount of quality data for
empirical modeling. Even if a sufficiently accurate model is available, the plant may undergo unexpected
changes that cannot be accounted for prior to control-system operation. In some cases, the controller can be
tuned iteratively online until desired performance is obtained. However, for safety-critical applications [1],
the control system must be relied on to maintain performance despite these changes. These cases motivate
the need for adaptive control, where the controller tunes itself to the actual plant during operation.

Although adaptive control reduces the need for plant modeling, it does not eliminate it completely.
This modeling information may be obtained through either an offline identification process, leading to direct
adaptive control, or a simultaneous identification process, leading to indirect adaptive control. In either case,
it stands to reason that the less modeling information that an adaptive controller needs, the more robust
it is to model uncertainty. This observation evokes the following question: What modeling information is
essential for an adaptive controller to control a plant to a specified level of performance? Our objective is
to minimize this modeling information without limiting the class of plants to which adaptive control can be
applied.

In this paper we focus on retrospective cost adaptive control (RCAC), which is applicable to stabilization,
command following, disturbance rejection, and model reference control problems for SISO and MIMO plants
[2–4, 6]. RCAC uses limited modeling information, specifically, Markov parameters of the transfer function
from the control input to the performance variable. Typically, a small number of Markov parameters are
needed, for example, one Markov parameter usually suffices if the plant is minimum phase. If the plant is
asymptotically stable and nonminimum phase, then knowledge of the locations of the nonminimum-phase
zeros is not needed as long as an error-dependent regularization term is used to weight the control effort [7].
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For plants that are both open-loop unstable and nonminimum phase, knowledge of the locations of the
nonminimum-phase zeros may be needed. Robustness of RCAC to knowledge of the Markov parameters is
investigated in [8], where it is shown that a phase-matching property is a sufficient condition for adaptively
controlling open-loop asymptotically stable nonminimum-phase systems with unknown nonminimum-phase
zeros. This phase matching condition can be met by system identification methods independently of Markov
parameter estimation.

The goal of the present paper is to further investigate the effectiveness of the error-dependent regular-
ization used in [7]. Unlike [7], we remove the intermediate step of reconstructing the retrospective controls
and, as in [4], we directly update the controller. We do this for an instantaneous cost function as in [4] as
well as for a cumulative cost function as in [6]. In addition, and unlike [4], we modify the cost function by
filtering the data used in the regularization term.

In Section II we describe the RCAC algorithm. We then proceed to investigate two specific issues. First
we consider phase-matching conditions within a MIMO context. We do this numerically in order to determine
whether channel-wise phase matching is sufficient to ensure stable operation of the algorithm. Finally, we
investigate the role of zeros in MISO and SIMO systems. In this case, we show that nonminimum-phase
direction zeros [9, 10] are crucial to the performance of the adaptive controller.

II. Retrospective Cost Adaptive Control

A. Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0. The system (1)–(3) can
represent a sampled-data application arising from a continuous-time system with sample and hold operations.

We represent (1), (3) as the time-series model

z(k) =
n∑

i=1

−αiz(k − i) +
n∑

i=d

βiu(k − i) +
n∑

i=0

γiw(k − i), (4)

where d is the smallest integer such that βd is not zero. The plant (1),(3) is represented by the operator
matrices

Gzu(q)
△
= E1(qI −A)−1B, (5)

Gzw(q)
△
= E1(qI −A)−1D1 + E0, (6)

where q is the forward shift operator and, unlike the z-transform, (5),(6) accounts for possibly nonzero initial
conditions. Furthermore, for each positive integer i,

Hi
△
= E1A

i−1B

is the ith Markov parameter of Gzu.
Now, consider the nth

c -order strictly proper output feedback controller

xc(k + 1) = Ac(k)xc(k) +Bc(k)y(k), (7)

u(k) = Cc(k)xc(k), (8)

where xc ∈ Rnc . The feedback control (7),(8) is represented by u = Gc(q)y, where

Gc(q, k)
△
= Cc(k)(qI −Ac(k))

−1Bc(k). (9)
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The goal is to develop an adaptive output feedback controller to minimize the performance variable z in
the presence of the exogenous signal w with limited modeling information about the dynamics and exogenous
signal. We assume that the measurements y(k) and z(k) are available for feedback.

For the adaptive controller, the matrices Ac(k), Bc(k) and Cc(k) may be time-dependent, and thus the
transfer function model (9) illustrates the structure of the time-varying controller in which Ac = Ac(k),
Bc = Bc(k), and Cc = Cc(k).

B. Control Law

We use a linear, strictly proper time-series controller of order nc such that the control u(k) is given by

u(k) = θT(k)ϕ(k − 1), (10)

where

θ(k) =
[
NT

1 (k) · · · NT
nc
(k) MT

1 (k) · · · MT
nc
(k)

]T
∈ Rnc(lu+ly)×lu , (11)

ϕ(k − 1) =
[
yT(k − 1) · · · yT(k − nc) uT(k − 1) · · · uT(k − nc)

]T
∈ Rnc(lu+ly). (12)

The control law (10) can be reformulated as

u(k) = Φ(k − 1)Θ(k), (13)

where

Φ(k − 1)
△
= Ilu ⊗ ϕT(k − 1) ∈ Rlu×lunc(lu+ly), (14)

Θ(k)
△
= vec(θ(k)) ∈ Rlunc(lu+ly), (15)

“⊗” denotes the Kronecker product, and “vec” is the column-stacking operator.

C. Retrospective Performance

For a positive integer r, we define

Gf(q
−1)

△
= K1q

−1 +K2q
−2 + · · ·+Krq

−r, (16)

where Ki ∈ Rlz×lu for 1 ≤ i ≤ r. Next, for k ≥ 1, we define the retrospective performance variable

ẑ(Θ̂(k), k)
△
= z(k) + Φf(k − 1)Θ̂(k)− uf(k) ∈ Rlz , (17)

where

Φf(k − 1)
△
= Gf(q

−1)Φ(k − 1) ∈ Rlz×lunc(lu+ly), (18)

uf(k)
△
= Gf(q

−1)u(k) ∈ Rlz , (19)

for k ≤ 0, u(k) = 0, Φ(k − 1) = 0, and, for k ≥ 1, Θ̂(k) ∈ Rlunc(lu+ly) is an optimization variable. The
retrospective performance variable (17) can be rewritten in the form

ẑ(Θ̂(k), k) = z(k) +Kzu




Φ(k − 2)
...

Φ(k − r − 1)

 Θ̂(k)−


u(k − 1)

...

u(k − r)


 , (20)

where Kzu
△
=

[
K1 · · · Kr

]
∈ Rlz×rlu . The choice of Kzu is discussed in Sections IV and V.
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D. Instantaneous Cost and Update Law

For k ≥ 0, we define the instantaneous cost function

Jins(Θ̂(k), k)
△
= ẑT(Θ̂(k), k)R1(k)ẑ(Θ̂(k), k) + η(k)Θ̂(k)TΦT

f (k − 1)R2(k)Φf(k − 1)Θ̂(k)

+ α(k)(Θ̂(k)−Θ(k − 1))TR3(k)(Θ̂(k)−Θ(k − 1)), (21)

where, for all k > 0, α(k) > 0 and η(k) ≥ 0 are scalars, R1(k) ∈ Rlz×lz is positive definite, R2(k) ∈ Rlz×lz

is positive semidefinite, and R3(k) ∈ Rlunc(lu+ly)×lunc(lu+ly) is positive definite. The control weighting η(k)
is chosen to be

η(k) = η0

pc−1∑
i=0

zT(k − i)z(k − i), (22)

where η0 ≥ 0 and pc is a positive integer. Now, substituting (17) into (21) yields

Jins(Θ̂(k), k) = Θ̂(k)TΓ1(k)Θ̂(k) + ΓT
2 (k)Θ̂(k) + Γ3(k), (23)

where

Γ1(k)
△
= ΦT

f (k − 1) [R1(k) + η(k)R2(k)] Φf(k − 1) + α(k)R3(k) ∈ Rlunc(lu+ly)×lunc(lu+ly), (24)

Γ2(k)
△
= 2ΦT

f (k − 1)R1(k) [z(k)− uf(k)]− 2α(k)R3(k)Θ(k − 1) ∈ Rlunc(lu+ly). (25)

Since Γ1(k) is positive definite, Jins(Θ̂(k), k) has the unique global minimizer Θ̂∗(k) for all k ≥ 0, which
yields the instantaneous update law

Θ(k + 1) = Θ̂∗(k) = −1

2
Γ−1
1 (k)Γ2(k). (26)

E. Cumulative Cost and Update Law

For k > 0, we define the cumulative cost function

Jcum(Θ̂(k), k)
△
=

k∑
i=1

λk−i(ẑT(Θ̂(k), i)R1(i)ẑ(Θ̂(k), i) + η(i)Θ̂(k)TΦT
f (i− 1)R2(i)Φf(i− 1)Θ̂(k))

+ λk(Θ̂(k)−Θ(0))TP−1
0 (Θ̂(k)−Θ(0)), (27)

where λ ∈ (0, 1], and P0 ∈ Rlunc(lu+ly)×lunc(lu+ly) is positive definite. Substituting (17) into (27) yields

Jcum(Θ̂(k), k) = Θ̂T(k)A(k)Θ̂(k) +BT(k)Θ̂(k) + C(k), (28)

where A(0) = P−1
0 , B(0) = −2P−1

0 Θ(0), and, for all k ≥ 1,

A(k)
△
=

k∑
i=1

λk−iΦT
f (i− 1) [R1(i) + η(i)R2(i)] Φf(i− 1) + λkP−1

0 , (29)

B(k)
△
=

k∑
i=1

2λk−iΦT
f (i− 1)R1(i) [z(i)− uf(i)]− 2λkP−1

0 Θ(0). (30)

Since A(k) is positive definite, the cumulative cost function (27) has the unique global minimizer Θ̂∗(k) for
all k ≥ 0, which yields the cumulative update law

Θ(k + 1) = Θ̂∗(k) = −1

2
A−1(k)B(k). (31)

To reduce memory usage, A(k) and B(k) can be computed recursively using

A(k) = λA(k − 1) + ΦT
f (k − 1) [R1(k) + η(k)R2(k)] Φf(k − 1), (32)

B(k) = λB(k − 1) + 2ΦT
f (k − 1)R1(k) [z(k)− uf(k)] . (33)

Furthermore, (31) involves inversion of a matrix of size lunc(lu + ly) × lunc(lu + ly). The following lemma
provides an alternative recursive computation that requires inversion of a matrix of size lz × lz.

4 of 19

American Institute of Aeronautics and Astronautics



Proposition II.1. Let R1(k) ≡ R2(k) ≡ Ilz , and, for k ≥ 1, define P (k)
△
= A−1(k), where P (0) = P0 ∈

Rlunc(lu+ly)×lunc(lu+ly) is positive definite. Then, for all k ≥ 1, P (k) satisfies

P (k) =
1

λ

[
P (k − 1)− P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)
]
, (34)

where

Λ(k)
△
=

λ

1 + η(k)
Ilz +Φf(k − 1)P (k − 1)ΦT

f (k − 1). (35)

Furthermore, the cumulative cost function (27) has the unique global minimizer

Θ(k + 1) = Θ(k)− 1

1 + η(k)
P (k − 1)ΦT

f (k − 1)Λ−1(k)ϵ(k), (36)

where

ϵ(k)
△
= z(k)− uf(k) + (1 + η(k))ûf(k), (37)

and

ûf(k)
△
= Φf(k − 1)Θ(k). (38)

Proof . From (32),

P−1(k) = λP−1(k − 1) + (1 + η(k))ΦT
f (k − 1)Φf(k − 1). (39)

Applying the matrix inversion lemma to (39) yields

P (k) =
1

λ
P (k − 1) (40)

− 1

λ
P (k − 1)ΦT

f (k − 1)

[
λ

1 + η(k)
Ilz +Φf(k − 1)P (k − 1)ΦT

f (k − 1)

]−1

Φf(k − 1)P (k − 1) (41)

=
1

λ

[
P (k − 1)− P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)
]
. (42)

Hence, (34) holds. Next, since P (k) = A−1(k), it follows from (31), (33) and (34) that

Θ(k + 1) = −1

2
P (k)BT(k)

= −1

2
P (k − 1)BT(k − 1)− 1

λ
P (k − 1)ΦT

f (k − 1)[z(k)− uf(k)]

+
1

2
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)BT(k − 1)

+
1

λ
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)ΦT
f (k − 1)[z(k)− uf(k)]

= Θ(k)− 1

λ
P (k − 1)ΦT

f (k − 1)Λ−1(k)Λ(k)[z(k)− uf(k)]− P (k − 1)ΦT
f (k − 1)Λ−1(k)ûf(k)

+
1

λ
P (k − 1)ΦT

f (k − 1)Λ−1(k)Φf(k − 1)P (k − 1)ΦT
f (k − 1)[z(k)− uf(k)]

= Θ(k)− P (k − 1)ΦT
f (k − 1)Λ−1(k)

·
(
ûf(k) +

(
1

1 + η(k)
Ilz +

1

λ
Φf(k − 1)P (k − 1)ΦT

f (k − 1)− 1

λ
Φf(k − 1)P (k − 1)ΦT

f (k − 1)

)
[z(k)− uf(k)]

)
= Θ(k)− 1

1 + η(k)
P (k − 1)ΦT

f (k − 1)Λ−1(k)ϵ(k). �
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III. Phase Matching Condition

Let Gzu,ij denote the transfer function from the jth input uj to the ith output zi. Furthermore, let Gf,ij

denote the ijth entry of Gf . Then, for θ ∈ [0, π], the phase mismatch ∆ij(θ) between Gf,ij and Gzu,ij is
defined as

∆ij(θ)
△
= cos−1

Re
[
Gzu,ij(e

ȷθ)Gf,ij(eȷθ)
]

|Gzu,ij(eȷθ)| |Gf,ij(eȷθ)|
∈ [0, 180]deg. (43)

Note that ∆ij(θ) represents the angle between Gzu,ij(e
ȷθ) and Gf,ij(e

ȷθ) in the complex plane. The role of
phase mismatch in closed-loop performance of RCAC for SISO plants is investigated in [8]. Furthermore,
frequency domain methods are presented for approximating IIR plants with FIR transfer functions in [12],
although the use of Azu provides greater flexibility for phase matching by allowing Gf to be an IIR transfer
matrix.

IV. Kzu for SISO Plants

Techniques for constructing Kzu for SISO plants are discussed in [4, 11]. In [3], it is shown that the

choice Kzu =
[
01×(d−1) Hd

]
provides asymptotic convergence of z to zero if the open-loop plant is

minimum-phase. For nonminimum-phase plants, these methods construct Kzu such that the NMP zeros of
Gf approximate the NMP zeros of Gzu.

In this section, we present a phase-matching-based technique for constructing Kzu. This technique is used
for Lyapunov-stable, nonminimum-phase plants, and does not require knowledge of the nonminimum-phase
zeros of the system. In Section V, we extend this technique to MIMO systems.

For unstable, nonminimum-phase plants, knowledge of the nonminimum-phase zero locations may be
necessary. In this case, we use the NMP-zero-based methods presented in [4, 11].

A. Phase-matching-based Construction of Kzu for Lyapunov-Stable Plants with Unknown
NMP zeros

For Lyapunov stable plants with unknown NMP zeros, we construct Kzu so that ∆(θ) ≤ 90 deg for θ ∈
[0, π] rad/sample. This requires an estimate of the frequency response of Gzu(e

ȷθ) for θ ∈ [0, π] rad/sample.
To construct Kzu, we use the linear or the nonlinear fitting method outlined in [12].

If A is asymptotically stable, and the exogenous signal w is harmonic, it suffices to construct Kzu such
that ∆(θ) ≤ 90 deg at the exogenous signal frequencies. This requires an estimate of the frequency response
of Gzu(e

ȷθ) at each exogenous signal frequency.

V. Kzu for MIMO Plants

In [4, 11], construction of Kzu for MIMO plants uses Markov parameters Hi or time-series-coefficients βi.

For square systems, [3] shows that the choice Kzu =
[
0lz×(d−1)lu Hd

]
provides asymptotic convergence

of z to zero if the transmission zeros of the open-loop plant are all minimum-phase and Hd is nonsingular.
For MIMO plants with nonminimum-phase transmission zeros, these methods require that the transmission
zeros of Gf approximate the transmission zeros of Gzu.

We now extend the phase-matching-based construction of Kzu for MIMO plants. As in the SISO case,
the method does not apply to unstable plants with nonminimum-phase transmission zeros.

A. Channel-wise Phase-matching Based Construction of Kzu for Lyapunov Stable MIMO
Plants with Unknown NMP Zeros

For Lyapunov-stable MIMO plants with unknown NMP transmission zeros, we extend the SISO method
outlined in the previous section. In particular, we construct Kzu such that, for all i ≤ lz, j ≤ lu, ∆ij(θ) < 90
deg for θ ∈ [0, π] rad/sample, and Kzu has full-row-rank. This requires an estimate of the frequency response
of each input-output channel Gzu,ij(e

ȷθ) for θ ∈ [0, π] rad/sample.
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As in the SISO case, if the plant is asymptotically stable and the exogenous signal is harmonic, it suffices
to construct Kzu such that, for all i ≤ lz, j ≤ lu, ∆ij(θ) < 90 deg at each exogenous signal frequency, and
Kzu has full-row-rank. This requires an estimate of the frequency response of each input-output channel
Gzu,ij(e

ȷθ) at each exogenous signal frequency.

VI. Numerical Examples

In this section, we present SISO and MIMO numerical examples illustrating RCAC. Except for the first
example, we use the cumulative cost with the recursive equations (34)–(36) with λ = 1. In all examples, we
assume that the performance variable z is the only measurement to be used in feedback, therefore, y = z.
Furthermore, in all cases, we initialize the controller gain vector Θ(0) and the controller states xc(0) to be
zero.

Example VI.1 (SISO, NMP, asymptotically stable plant, disturbance rejection with the instantaneous
algorithm). Consider the SISO, lightly damped nonminimum-phase plant shown in Figure 1(a) with n = 4,
d = 1, H1 = 1, poles 0.95e±ȷπ/5, 0.9e±ȷπ/3, minimum-phase zero −0.2, and nonminimum-phase zeros 1.25,
2. We consider the matched sinusoidal disturbance w(k) = sinΘ1k, where Θ1 = 2π/5 rad/sample. We let

Kzu =
[
1 0.308 −0.586 −0.165 0.768 0.726

]
, (44)

so that ∆(θ) < 90 for all θ ∈ [0, π] rad/sample. Note that the zeros of Gf do not approximate the NMP
zeros of Gzu. Taking nc = 10, η0 = 0.05, pc = 1, and α(k) ≡ 5000, the closed-loop response is shown in
Figure 1(b).
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Figure 1. Example VI.1: SISO, asymptotically stable, nonminimum-phase plant. (a) shows the poles and zeros
of Gzu, while (b) shows the closed-loop response. With the tuning parameters nc = 10, η0 = 0.05, pc = 1 and
α(k) ≡ 5000, instantaneous RCAC is turned on at k = 100. After transients, the performance variable converges
to zero, and RCAC converges to an internal model controller with high gain at the disturbance frequency
Θ1 = 2π/5 rad/sample. Phase-matching-based construction of Kzu is used to satisfy ∆(θ) < 90 for all θ ∈ [0, π].

If η0 = 0, the algorithm becomes the same as the instantaneous RCAC described in [4]. In this case, the
zeros of Gf must include the NMP zeros of Gzu. We now consider the same matched disturbance, but take
η0 = 0, and take Kzu = [H1 ··· H6 ]. Gf now has the zeros 2.09 and 1.09, which approximate the NMP zeros
of Gzu. Taking nc = 10 and α(k) ≡ 5000, the closed-loop response is shown in Figure 2. �

Example VI.2 (SISO, NMP, asymptotically stable plant, disturbance rejection with the cumulative algo-
rithm). Consider the same plant considered in Example VI.1. We now consider the two-tone unmatched

disturbance w(k) =
[
sinΘ1k 1.5 sinΘ2k

]
, where Θ1 = 2π/5 rad/sample and Θ2 = 2π/3 rad/sample.

With the plant realized in controllable canonical form, that is, B =
[
1 0 0 0

]T
, we take D1 =[

I2 02×2

]T
, so that the disturbance is not matched with the input.
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Figure 2. Example VI.1: SISO, asymptotically stable, nonminimum-phase plant, with Markov-parameter-based
Kzu construction. Six Markov parameters are used in the construction, and the zeros of Gf approximate the
nonminimum-phase zeros of Gzu. With the tuning parameters nc = 10, η0 = 0.0, and α(k) ≡ 5000, instantaneous
RCAC is turned on at k = 100. After transients, the performance variable converges to zero, and RCAC
converges to an internal model controller with high-gain at the disturbance frequency θ = 2π/5 rad/sample.

We first use the phase-matching-based approach by using error-dependent weighting η(k) and taking
Kzu as in (44) so that ∆(θ) < 90 deg for θ ∈ [0, π] rad/sample. Taking nc = 10, η0 = 0.1, pc = 1, and
P0 = 0.01I, the closed-loop response is shown in Figure 3(a). Note the significant improvement in the
transient performance compared to the response with the instantaneous update.

As discussed in Section IV, since the plant is asymptotically stable and the exogenous signal is harmonic,
an alternative is to construct Kzu such that ∆(θ) ≤ 90 deg at only the exogenous signal frequencies. This
reduces the number of coefficients needed in the construction of Kzu. For instance, with Kzu = H1, it follows
that ∆(Θ1) < 90 deg and ∆(Θ2) < 90 deg as shown in Figure 3(b). Hence, taking nc = 10, η0 = 0.1, pc = 1,
and P0 = 0.01I, the performance variable converges to zero as shown in Figure 3(b).
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Figure 3. Example VI.2: SISO, NMP, asymptotically stable plant with the cumulative update law. (a) shows
the closed-loop response when Kzu is constructed to have ∆(θ) < 90 for all θ ∈ [0, π], while (b) shows the closed-
loop response with Kzu = H1, which provides ∆(θ) < 90 for the exogenous frequencies Θ1 = 2π/5 rad/sample and
Θ2 = 2π/3 rad/sample, but not for all θ. Same tuning parameters nc = 10, η0 = 0.1, pc = 0.1 and P0 = 0.01I are
used in both cases. The performance variable converges to zero in both cases, but (a) has superior transient
performance compared to (b).

We now modify the algorithm and remove the performance-dependence property of the control weighting
η(k) by letting η(k) be constant. We choose Kzu as given in (IV), and let nc = 10, pc = 1, P0 = 0.01I.
Taking η(k) ≡ 5 leads to destabilization of the closed-loop system as shown in Figure 4(a). Increasing the
weighting to have η(k) ≡ 10 prevents destabilization, but the performance variable does not converge to
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zero as shown 4(b). Similar results are obtained if a different constant weighting η is used, that is, either
the closed-loop system is destabilized, or the performance variable does not converge to zero. These results
stress the importance of the performance-dependence property of the control weighting term η(k) when Kzu

does not capture the NMP zeros of Gzu.
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Figure 4. Example VI.2: SISO, NMP, asymptotically stable plant with the cumulative update law. The
algorithm is modified to have a constant weighting term η(k). (a) shows the closed-loop response with η(k) ≡ 5,
where z diverges to infinity, while (b) shows the closed-loop response with η(k) ≡ 10, where z is not driven to
zero.

Finally, if η(k) ≡ 0, the algorithm is similar to the cumulative RCAC algorithm described in [5]. In this
case, we choose Kzu so that the NMP zeros of Gzu are a subset of the zeros of Gf . For instance, taking

Kzu =
[
1 −3.25 2.5

]
, the zeros of Gf are 2 and 1.25, which are the NMP zeros of Gzu. Letting nc = 10

and P0 = I, the closed-loop response is shown in Figure 5. �
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Figure 5. Example VI.2: SISO, NMP, asymptotically stable plant with the cumulative update law. This
figure shows the closed-loop response with NMP-based Kzu construction, using the tuning parameters nc = 10,
η0 = 0.0, and P0 = I. The performance variable converges to zero. The transient peak is worse than the phase-
matching-based results of Figure 3, however, the convergence is faster. These results suggest that smaller
phase mismatch for θ ∈ [0, π] provides better transients.

Example VI.3 (2× 2, asymptotically stable plant with minimum-phase transmission zeros). Consider the
stable, two-input, two-output plant

Gzu(z) =

[
z−1.3

(z−0.2+ȷ0.6)(z−0.2−ȷ0.6)
2(z−0.3)

(z−0.2+ȷ0.6)(z−0.2−ȷ0.6)
z−0.2

(z−0.2+ȷ0.6)(z−0.2−ȷ0.6)
0.5(z−0.4)

(z−0.2+ȷ0.6)(z−0.2−ȷ0.6)

]
(45)
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with the transmission zeros 0.26 and 0.36. Although the channel Gzu,11 is nonminimum-phase, all of the
transmission zeros of Gzu are minimum phase, therefore Kzu = H1 suffices. With Gzu ∼ (A,B,E1, 0)
realized in the form

A =


0.4 −0.8 0 0

0.5 0 0 0

0 0 0.4 −0.8

0 0 0.5 0

 , B =


2 0

0 0

0 2

0 0

 , E1 =

[
0.5 −1.3 1.0 −0.6

0.5 −0.2 0.25 −0.2

]
, (46)

we consider the command following and unmatched disturbance rejection problem withD1 =

[
I3×3 03×2

01×3 01×2

]
,

E0 =
[
02×3 I2×2

]
, and the exogenous signal w(k) =

[
w1(k) w2(k) w3(k) w4(k) w5(k)

]T
, where

wi(k) = sin θik with θ1 = 2π/13 rad/sample, θ2 = π/4 rad/sample, θ3 = 2π/5 rad/sample, θ4 = 2π/7
rad/sample, and θ5 = 2π/3 rad/sample. We choose nc = 14, P0 = I, η0 = 0, and Kzu = H1. Figure 6
illustrates that the performance converges to zero. �
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Figure 6. Example VI.3: 2× 2 square, asymptotically stable plant with MP transmission zeros, and one NMP
channel zero. The controller is turned on at k = 100. We choose η0 = 0 and Kzu = H1. The performance
variables z1 and z2 converge to zero.

Example VI.4 (2× 2, asymptotically stable plant with nonminimum-phase transmission zeros). Consider
the stable, two-input, two-output plant

Gzu(z) =

[ −3(z−0.5+ȷ0.3)(z−0.5−ȷ0.3)
α(z)

2(z−1.2)(z−1.5)
α(z)

1.5(z−1.4+ȷ0.7)(z−1.4−ȷ0.7)
α(z)

−0.5(z+1.1)(z−0.5)
α(z)

]
(47)

with α(z) = (z− 0.4)(z− 0.5− ȷ0.5)(z− 0.5+ ȷ0.5). Note that Gzu(z) has minimum-phase transmission zero
0.923, and nonminimum-phase transmission zeros 0.907± ȷ0.648, 7.86. We realize Gzu ∼ (A,B,E1, 0) such
that

A =

 1.4 −0.45 0.2 0 0 0
2 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0 1.4 −0.45 0.2
0 0 0 2 0 0
0 0 0 0 0.5 0

 , B =

 2 0
0 0
0 0
0 2
0 0
0 0

 , E1 =
[−1.5 0.75 −0.51 1 −1.35 1.8
0.75 −1.05 1.8375 −0.25 −0.075 0.1375

]
, (48)

and consider the command following and unmatched disturbance rejection problem withD1 =

[
I3×3 03×2

03×3 03×2

]
,

E0 =
[
02×3 −I2×2

]
, and the exogenous signal w(k) =

[
w1(k) w2(k) w3(k) w4(k) 1(k)

]T
, where

wi(k) = sin θik with θ1 = 2π/11 rad/sample, θ2 = 2π/8 rad/sample, θ3 = π/2 rad/sample, and θ4 = 2π/6
rad/sample.
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We first choose nc = 16, P0 = I, η0 = 0.1, pc = 1, and construct Kzu such that, for each input-
output channel, the phase mismatch ∆ij(θ) < 90 deg for all θ ∈ [0, π]. In particular, we choose Kzu =[
κ1 κ2 κ3 κ4

]
, where κ1 = H1, κ2 =

[
0 −2.4725

−1.9927 −0.9647

]
, κ3 =

[
0 −1.0916

−0.4711 −0.4596

]
, and

κ4 =

[
0 1.7922

1.4666 0

]
. Note that the only nonminimum-phase transmission zero of Gf(z) is 6.854, and

therefore Kzu does not capture the locations of the nonminimum-phase transmission zeros of Gzu. The
closed-loop response is shown in Figure 7(a).

We now set η0 = 0, keep nc = 16, P0 = I, and construct Kzu using the time-series coefficients, that is,

Kzu =
[
β1 β2 β3

]
. Hence, Kzu captures the locations of the nonminimum-phase transmission zeros of

Gzu. The closed-loop response is shown in Figure 7(b).
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Figure 7. Example VI.4: 2 × 2 square, asymptotically stable plant with NMP transmission zeros, RCAC is
turned on at k = 100. (a) shows the closed-loop response with phase-matching-based Kzu construction using
η0 = 0.1, while (b) shows the closed-loop response where Kzu is constructed using the time-series coefficients.
In the latter case, Kzu captures the NMP transmission zeros of Gzu.

Finally, Figure 8 shows that the maximum value of the phase mismatch ∆ij obtained in the first case
where Kzu is constructed to bound ∆ij by 40 deg, which is smaller than the maximum phase mismatch
obtained in the case where Kzu is constructed using the time-series coefficients βi for each channel. As in
the SISO case, the results suggest that smaller channel-wise phase-mismatch leads to improved transient
performance. �

VII. Direction zeros in MISO and SIMO systems

Convergence of RCAC is shown in [3] for minimum-phase plants with the assumption that Hd is square
and nonsingular.

In this section, we define the notion of a direction zero for two special non-square cases: Multiple-input,
single-output (MISO) and single-input, multiple-output (MISO) plants. Examples illustrating the effect of
direction zeros in RCAC applications to MISO and SIMO plants are shown in Section VIII.

A. MISO Plants

In this section, we develop the notion of input-direction zeros in MISO plants, thus, lz = 1, and lu > 1.
Throughout the discussion, we assume that all the entries Gzu,i of the plant Gzu(z) ∈ Clz×lu are coprime
fractions, and, for all 1 ≤ i ≤ lu, there exists zi ∈ C such that Gzu,i(zi) ̸= 0. Furthermore, we assume
that the triple (A,B,E1) is a controllable and observable realization of Gzu, and let n denote the McMillan
degree of Gzu. For 1 ≤ i ≤ n, λi denote the eigenvalues of A.
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Figure 8. Example VI.4: Channel-wise phase mismatch functions ∆ij(θ) with phase-matching-based Kzu con-
struction (case 1) and βi-based construction (case 2). Note that ∆ij in case 2 is the same for each channel.
This is expected, since the numerator of Gf,ij and Gzu,ij is the same for each channel, the phase mismatch
depends only on the denominator α(z), which is common for each channel.

Definition VII.1. Let D ̸= 0 ∈ Rlu , and ζ ̸= λi ∈ C. Then, ζ ∈ C is an input-direction zero of Gzu

associated with the direction D if

Gzu(ζ)D = 0. (49)

According to Definition VII.1, ζ is assigned to a nonzero input direction D, not vice-versa. Therefore,
we use the terminology direction zero, instead of “zero direction”.

Proposition VII.2. ζ ̸= λi is an input-direction zero of Gzu associated with D if and only if there exists
x0 ∈ Cn such that

Σ(ζ)

[
x0

D

]
=

[
0n×1

0

]
, (50)

where

Σ(z)
△
=

[
zI −A B

E1 0

]
∈ C(n+1)×(n+lu). (51)

Proof . We first show that if (50) holds for some x0, then Gzu(ζ)D = 0. Indeed,[
ζI −A B

E1 0

][
x0

D

]
=

[
0n×1

0

]
⇒

[
(ζI −A)−1 0

0 1

][
ζI −A B

E1 0

][
x0

D

]
=

[
0n×1

0

]
, (52)

⇒

[
I 0

E1 −1

][
I (ζI −A)−1B

E1 0

][
x0

D

]
=

[
0n×1

0

]
, (53)

⇔

[
I (ζI −A)−1B

0 Gzu(ζ)

][
x0

D

]
=

[
0n×1

0

]
, (54)

⇒ Gzu(ζ)D = 0. (55)

Next, we show the converse, that is, if Gzu(ζ)D = 0, then ∃x0 ∈ Cn such that (50) holds. Let x0 =
−(ζI −A)−1BD. Then, (54) holds, therefore, (53) holds. Since

rank

[
I 0

E1 −1

]
= rank

[
(ζI −A)−1 0

0 1

]
= n+ 1, (56)
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(53) gives (50). �
Corollary VII.3. An input-direction zero ζ of Gzu associated with an input direction D is not necessarily
a transmission zero of Gzu.

Proof . Since lu > lz = 1, Σ(z) has a nontrivial nullspace for all z ∈ C. Therefore, Σ(ζ) may have
full normal rank n + 1 while (50) is satisfied for some nonzero D. In this case, ζ is an input-direction zero
associated with D, but not a transmission zero of Gzu.

Example VII.4. Consider the 1 × 2 SIMO plant Gzu(z) =
[

z−1.5
(z−1.1)(z−0.4)

z−0.5
(z−1.1)(z−0.4)

]
. For D =[

1 1
]T

, ζ = 1 satisfies (49), therefore, ζ is an input-direction zero associated with D. Furthermore, Gzu

has the state space realization

A =

[
0 −0.44

1 1.5

]
, B =

[
−0.75 −0.25

0.5 0.5

]
, E1 =

[
0 2

]
, E2 =

[
0 0

]
, (57)

and

Σ(ζ) =

 1 0.44 −0.75 −0.25

−1 −0.5 0.5 0.5

0 −2 0 0

 . (58)

Note that, since Σ(ζ) has full normal rank, ζ is not a transmission zero of (A,B,E1, 0). Finally, it can be

verified that x0 =
[
1 0

]
is the unique solution of (50). �

An input-direction zero associated with D influences the input-output properties of a MISO system when
the input sequence is linearly dependent with D for all k ≥ 0, that is, u(k) = Du0(k), where u0(k) is a scalar.
The following proposition demonstrates the output-zeroing [9, 10] effect of an input-direction zero.

Proposition VII.5. For D ∈ Rlu , let ζ ∈ C, x0 ∈ Cn such that (50) holds. Then, the following statements
hold.

(i) For all k ≥ 0, the state vector x(k) and the output z(k) with the initial condition x(0) = −Re(x0) and
the input sequence u(k) = Re(ζk)D satisfy

x(k) = −Re(ζk)Re(x0) + Im(ζk)Im(x0), (59)

z(k) = 0. (60)

(ii) For all k ≥ 0, the state vector x(k) and the output z(k) with the initial condition x(0) = −Im(x0) and
the input sequence u(k) = Im(ζk)D satisfy

x(k) = −Re(ζk)Im(x0) + Im(ζk)Re(x0). (61)

z(k) = 0, (62)

Proof . Since the proofs are similar, we show only (i). For k = 0, (59) is obvious. Now, suppose (59)
holds for some k > 0. We thus have

x(k + 1) = Ax(k) +Bu(k) = −Re(ζk)ARe(x0) + Im(zk)AIm(x0) +BDRe(ζk). (63)

From (50), we have that

AIm(x0) = Re(ζ)Im(x0) + Im(ζ)Re(x0), (64)

BD = ARe(x0)− Re(ζ)Re(x0) + Im(ζ)Im(x0). (65)

Substituting (64) and (65) into (63) yields

x(k + 1) = (Im(ζk)Im(ζ)− Re(ζk)Re(ζ))Re(x0) + (Im(ζk)Re(ζ) + Im(ζ)Re(ζk))Im(x0) (66)

= −Re(ζk+1)Re(x0) + Im(ζk+1)Im(x0). (67)

Thus, if (59) holds for some k, it also holds for k + 1. By the principle of mathematical induction, we
conclude that (59) holds for all k ≥ 0. Finally, (50) implies that E1Re(x0) = E1Im(x0) = 0, hence, (60)
follows. �
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Corollary VII.6. Let A be asymptotically stable, ζ be an input-direction zero of Gzu associated with D and
x0, and u(k) = Re(ζk)D or u(k) = Im(ζk)D. Then, z(k) exponentially converges to zero for all x(0) ∈ Rn.

Proof . For u(k) = Re(ζk),

z(k) = E1x(k) = E1A
kx(0) + forced response

= E1A
k(x(0) + Re(x0)) + E1A

k(−Re(x0)) + forced response,

thus, from Proposition VII.5, z(k) = E1A
k(x(0) + Re(x0)). Since A is asymptotically stable, z(k) exponen-

tially converges to zero for all x(0) ∈ Rn. The proof is similar for u(k) = Im(ζk)D.

Proposition VII.5 and Corollary VII.6 are demonstrated by the following examples respectively.

Example VII.7. Consider the 1× 2 plant Gzu(z) =
[

z−1.5
(z−1.1)(z−0.4)

z−0.5
(z−1.1)(z−0.4)

]
with the state-space

realization (57), and the input direction D =
[
1 1

]T
. Note that the plant has an unstable pole 1.1.

In Example VII.4, we have shown that ζ = 1 is an input-direction zero associated with D, and that x0 =[
1 0

]T
. We simulate Gzu with the initial condition x(0) = −x0 and the input sequence u(k) = 1(k)D.

The trajectories of x(k) and z(k) are in accordance with (59), (60) as shown in Figure 9. �
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Figure 9. Example VII.7: For D = [1 1]T, Gzu has the real input-direction zero z1 = 1 and x0 = [1 0]T. With
x(0) = −x0, exciting the plant with the input sequence u(k) = 1(k)D generates z(k) = 0, x(k) = x(0), for k ≥ 0.

Example VII.8. Consider the plant Gzu(z) =
[
0.6z2 − 0.1z + 0.21 0.2z2 − 0.5z + 0.5

]
/α(z), where

α(z) = (z − 0.9)(z − 0.4)(z − 0.3), and the input direction D =
[
1 2

]T
. Solving (49), we have the

input-direction zeros z1,2 = 1.1e±ȷπ/3 that are located outside the unit disk.
First, for k ≥ 0, we simulate Gzu with zero initial condition x(0) = 0 and the input sequence u(k) =

Re{1.1keȷπk/3}D = 1.1k cos(πk/3)D. Figure 10 shows that z(k) converges to zero and the input u(k) grows
unboundedly as k increases. Similar results are obtained with the input sequence u(k) = Im{1.1keȷπk/3}D =
1.1k sin(πk/3)D as shown in Figure 11. �
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Figure 10. Example VII.8: For D = [1 2]T, Gzu has complex input-direction zeros z1,2 = 1.1eȷπ/3. With x(0) = 0

and the unbounded input sequence u(k) = Re{1.1keȷπk/3}D = 1.1k cos(πk/3)D, z(k) converges to zero in accordance
with Corollary VII.6.
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Figure 11. Example VII.8: For D = [1 2]T, Gzu has complex input-direction zeros z1,2 = 1.1eȷπ/3. With x(0) = 0

and the unbounded input sequence u(k) = Im{1.1keȷπk/3}D = 1.1k sin(πk/3)D, z(k) converges to zero in accordance
with Corollary VII.6.

B. SIMO Plants

We now develop the notion of output-direction zeros for SIMO plants, thus, lz > 1, and lu = 1. As in the
MISO case, we assume that each entry of the plant Gzu(z) ∈ Clz×lu is a nonzero coprime fraction, the triple
(A,B,E1) is controllable and observable, and let n denote the McMillan degree of Gzu. For 1 ≤ i ≤ n, λi

denote the eigenvalues of A.

Definition VII.9. Let D ̸= 0 ∈ R1×lz , and ζ ̸= λi ∈ C. Then, ζ ∈ C is an output-direction zero of Gzu(z)
corresponding to the output direction D if

DGzu(ζ) = 0. (68)

Since D ∈ R1×lz and Gzu ∈ Clz×1, DGzu(z) is a scalar function of z. In particular, DGzu is a SISO
plant whose output is Dz(k), where z(k) is the output of Gzu. Furthermore, DGzu can be realized by the
triplet (A,B,DE1), which may not be minimal. However, we assume that the pair (A,DE1) is observable.
Thus, an output-direction zero ζ of Gzu associated with D is a zero of the SISO plant DGzu, and, therefore,
ζ satisfies [

ζI −A B

DE1 0

][
x0

u0

]
=

[
0n×1

0

]
, (69)

where x0 ∈ Cn, u0 ∈ C. Note that since (A,DE1) is observable, x0 satisfying (69) cannot be an eigenvector
of A. Consequently, u0 cannot be equal to zero, because otherwise the upper equation in (69) would not
hold. Now, since u0 ̸= 0, we can rewrite (69) as[

ζI −A B

DE1 0

][
x̄0

1

]
=

[
0n×1

0

]
, (70)

where x̄0 = x0

u0
. The following proposition demonstrates the relationship between the output-direction zeros

and the output Dz(k) of the SISO plant DGzu.

Proposition VII.10. For D ∈ R1×lz , let ζ ∈ C, x̄0 ∈ C such that (70) holds. Then, the following hold

(i) For all k ≥ 0, the state vector x(k) and the output z(k) with the initial condition x(0) = −Re(x̄0) and
the input sequence u(k) = Re(ζk) satisfy

x(k) = −Re(ζk)Re(x̄0) + Im(ζk)Im(x̄0), (71)

Dz(k) = 0. (72)

(ii) For all k ≥ 0, the state vector x(k) and the output z(k) with the initial condition x(0) = −Im(x̄0) and
the input sequence u(k) = Im(ζk) satisfy

x(k) = −Re(ζk)Im(x̄0) + Im(ζk)Re(x̄0), (73)

Dz(k) = 0. (74)
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Proof . The proof uses (70) and is similar to the proof of Proposition VII.5.

The above proposition indicates that, if Gzu has an output-direction zero ζ outside the unit disk or
repeated on the unit circle, then the matrix multiplication Dz(k) may be identically equal to zero for all k
with an unbounded input signal, where D is the associated output direction. In this case, if Gzu does not
have a transmission zero at ζ, then z(k) is unbounded. Furthermore, similar to Corollary VII.6, it can be
shown that if A is asymptotically stable, then Dz(k) exponentially converges to zero for all x(0) ∈ Rn with
the input sequence u(k) = Re(ζk) or u(k) = Im(ζk).

VIII. Direction Zeros and RCAC

We now demonstrate the significance of direction zeros for adaptive control of MISO and SIMO systems
using RCAC. The discussion is limited to MISO and SIMO systems. Furthermore, we consider only the case
where Kzu is constructed using one coefficient, that is,

Kzu =
[
0lz×(r−1)lu Kr

]
, (75)

where r is a positive integer, and Kr ̸= 0 ∈ Rlz×lu .

A. MISO Plants

In this section, we consider MISO plants, that is, lz = 1, and lu ≤ 2.

1. Effect of the Input-Direction Zeros in the Control of MISO Systems with RCAC

First, we provide the following proposition that states that, for Kzu given as in (75), the direction of the
input signal generated by RCAC is equal to KT

r .

Proposition VIII.1. For a positive integer r, let Kzu =
[
01×(r−1)lu Kr

]
, where Kr ̸= 0 ∈ R1×lu , and

let the control u(k) be generated by the control law (13) with either the instantaneous update law (26) or the
cumulative update law (36)–(35) with R1(k) ≡ I, R2(k) ≡ I, P (0) = βI, β > 0, and Θ(0) = 0. Then, u(k)
and KT

r are linearly dependent for all k ≥ 1, that is, u(k) = KT
r u0(k), where u0(k) is a scalar.

The proof of Proposition VIII.1 uses induction induction for both instantaneous and cumulative update
laws. The implication of this proposition is as follows. Let Gzu be a MISO plant with no transmission zeros,
and let us construct Kzu as shown in (75). Then, it follows from Proposition VIII.1 that the RCAC control
input will have the form u(k) = KT

r u0(k) and thus, the input-direction zeros of Gzu associated with KT
r

determines whether it is possible to have zero steady-state performance with an unbounded input sequence.
In particular, it is shown in the numerical examples of Section 2 that if Gzu has NMP input-direction zeros
associated with KT

r , RCAC drives the performance to zero, but the control signal becomes unbounded at
a rate determined by the magnitude of the NMP input-direction zeros, similar to the open-loop results
demonstrated in Figures 10 and 11.

2. Numerical RCAC Examples Involving Input-Direction Zeros in MISO Plants

We now illustrate the effect of input-direction zeros in the control of MISO plants with RCAC. We use
the cumulative cost with the recursive equations (34)–(36) with λ = 1. In all examples, we assume that the
performance variable z is the only measurement and that y = z. Furthermore, in all cases, we initialize the
controller gain vector Θ(0) and the controller states xc(0) to be zero.

Example VIII.2 (MISO, 1 × 4, unstable plant, effect of input-direction zeros). Consider the unstable, 4

input, 1 output plant Gzu =
[
N11(z) N12(z) N13(z) N14(z)

]
/α(z), where N11(z) = 2.8(z − 2)(z −

1.4)(z − 0.3), N12(z) = −2(z − 0.1)(z − 0.3 + ȷ0.3)(z − 0.3 − ȷ0.3), N13(z) = 3(z + 1.1)(z − 0.2)(z − 0.4),
N14(z) = 0.5(z+1.03)(z+0.1)(z−0.6), and α(z) = (z−1.1)(z−0.05)(z−0.5+ȷ0.5)(z−0.5−ȷ0.5). We consider
a combined disturbance rejection and command following problem with the disturbance w1(k) = sin π

7 k, and
the command w2(k) = sin 2π

3 k + sin π
14k. We choose Kzu = H1, nc = 10, η0 = 0, and P0 = I. The plant

Gzu has input-direction zeros 0.3063, 0.4911± ȷ0.818i associated with H1 that are all located inside the unit
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circle. Hence, RCAC drives the performance to zero, and the input vector remains bounded, as shown in
Figure 12(a).

Now, we make a small modification so that Gzu has left H1-direction zeros of Gzu outside the unit circle.
In particular, we let N11(z) = 3(z − 2)(z − 1.4)(z − 0.3), and keep other plant parameters the same. We
consider the same command following and disturbance rejection problem, and choose Kzu = H1, nc = 10,
η0 = 0, and P0 = I. With this choice, the modified plant has one left Kzu-direction zero 0.3055 inside
the unit circle, and two left Kzu-direction zeros 0.5544 ± ȷ0.8374 that are located outside the unit circle.
Therefore the input vector diverges as shown in Figure 12(b). The performance variable z seems to converge
to zero, but the simulation numerically crashes in about 2000 steps.
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Figure 12. Example VIII.2: Unstable, MISO plant, command following and disturbance rejection with Kzu =
H1. (a) shows the closed-loop response of the original plant, whose input-direction zeros associated with H1

are all located inside the unit circle, while (b) shows the closed-loop response response of the modified plant,
which has two input-direction zeros associated with H1 outside the unit circle (z1,2 = 0.5544 ± ȷ0.8374). In the
latter case, the input signal diverges due to the NMP input-direction zeros.

In the latter case, the plant was chosen so that the nonminimum-phase input-direction zeros are in the
proximity of the unit circle, hence, the divergence of the input vector is slow. The divergence is faster when
the nonminimum-phase input-direction zeros are located farther away from the unit circle. �

B. SIMO Plants

In this section, we consider SIMO plants, that is, lu = 1, and lz ≤ 2.

1. Effect of the Output-Direction Zeros in the Control of SIMO Systems with RCAC

We now consider the effects of the output-direction zeros in the control of SIMO systems when Kzu

is constructed using one coefficient as in (75). Similar to the MISO case, if Kzu is constructed using
one coefficient as in (75), the closed-loop performance of RCAC and the boundedness of the input signal
is determined by the output-direction zeros associated with KT

r . In particular, RCAC drives KT
r z(k) to

zero, regardless of the location of the output-direction zeros. However, if Gzu has a NMP output-direction
zero associated with KT

r , then the control signal becomes unbounded, and the performance z(k) grows
unboundedly as well.

2. Numerical RCAC Examples Involving Output-Direction Zeros in SIMO Plants

We now illustrate the effect of output-direction zeros in the control of SIMO plants with RCAC. We use
the cumulative cost with the recursive equations (34)–(36) with λ = 1. In all examples, we assume that the
performance variable z is the only measurement and that y = z. Furthermore, in all cases, we initialize the
controller gain vector Θ(0) and the controller states xc(0) to be zero.
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Example VIII.3 (SIMO, 2× 1, asymptotically stable plant, effect of output-direction zeros). Consider the

unstable, one input, two-output plant Gzu = 1
α(z)

[
N11(z) N21(z)

]T
, where N11(z) = z − 1.2, N21(z) =

z− 0.7, and α(z) = (z− 0.65+ ȷ0.55)(z− 0.65− ȷ0.55). Note that this plant does not have any transmission
zeros. We consider a matched disturbance rejection problem with the step disturbance w(k) = 1(k). The
tuning parameters nc = 5, η0 = 0, and P0 = I are fixed throughout the example.

We first choose Kzu = K1 =
[
1.3 1

]
. With this choice, Gzu has one right output-direction zero

0.9826 associated with K1 that is located inside the unit circle. RCAC is turned on at k = 500, and drives
the performance to zero as shown in Figure 13.
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Figure 13. Example VIII.3: 2× 1 SIMO plant, step disturbance rejection. We let Kzu = K1 = [1.3 0]T, so that
Gzu has the output-direction zero 0.9826 associated with K1. The performance z(k) (and thus KT

1 z(k)) converges
to zero, and the input vector remains bounded.

Now, we choose Kzu = K1 =
[
1.6 1

]
. With this choice, Gzu has the right output-direction zero

1.0077 associated with K1 that is located outside the unit circle. RCAC is turned on at k = 500. The
performance variable z(k) diverges to infinity, although KT

1 z(k) converges to zero. Furthermore, the input
u(k) diverges to infinity as shown in Figure 14 due to the NMP output-direction zero. �

IX. Conclusions

In this paper, we extended the RCAC algorithm by removing the intermediate step of reconstructing
the retrospective controls, and directly updating the controller. We extended the phase-matching condition
to MIMO plants and presented a channel-wise controller construction method for MIMO, Lyapunov-stable
plants with unknown nonminimum-phase zeros. We demonstrated the algorithm on several SISO and MIMO
examples. We demonstrated the output-zeroing effect of left and right directions zero on MISO and SIMO
plants. Numerical examples illustrated the effect of these direction zeros in MISO and SIMO RCAC applica-
tions, where the controller was constructed using one filter coefficient. Future work includes the investigation
of direction zeros when the controller is constructed using multiple filter coefficients, and the analysis of di-
rection zeros in MIMO non-square plants.
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