
Forward-Integration Riccati-Based Feedback Control for
Spacecraft Rendezvous Maneuvers on Elliptic Orbits

Avishai Weiss, Ilya Kolmanovsky, Morgan Baldwin, R. Scott Erwin, and Dennis S. Bernstein

Abstract— We apply the forward-integrating Riccati-based
feedback controller, which has been developed in our previous
work for stabilization of time-varying systems, to a maneu-
vering spacecraft in an elliptic orbit around the Earth. We
simulate rendezvous maneuvers on Molniya and Tundra orbits.
We demonstrate that the controller performs well under thrust
constraints, in the case where the spacecraft can thrust in
only the orbital tangential direction, in the case where the
thrusters may operate only intermittently due to faults or
power availability, with thrust direction errors, and, finally, in
an output feedback configuration where only relative position
measurements are available.

I. INTRODUCTION

Traditionally, relative motion maneuvers are performed
using open-loop planning techniques [1]. Ad hoc maneu-
ver corrections may be employed to compensate for errors
inherent in open-loop control. Examples of relative motion
maneuvers include rendezvous, docking, debris avoidance,
and formation flying. In particular, literature on spacecraft
rendezvous control problems is abundant, see e.g., [1], [2]
and references therein.

Recently, more interest has been emerging in closed-loop
maneuvering, especially for missions that involve formation
flying or automated rendezvous, docking, and proximity
operations. The XSS-11 [4] spacecraft has been developed
by the Air Force Research Laboratory as a platform for
demonstrating relative motion capabilities.

In this paper, we address a class of relative motion control
problems for spacecraft on elliptic orbits. Elliptic orbits are
used to deploy a variety of spacecraft for communications
and planet/star observation purposes. For instance, Molniya
and Tundra orbits host communication satellites launched
from predominately northern latitudes [8].

The linearized equations of motion for a spacecraft on an
elliptic orbit are time-varying, thus impeding their treatment
using feedback control techniques that assume time-invariant
plant models. As such, we employ a recently developed
forward-integrating Riccati (FIR) controller for time-varying
systems [5] in order to stabilize the spacecraft to a desired
orbital position. Unlike the backwards-in-time Riccati con-
troller arising in optimal control theory, the FIR controller
can achieve stabilization of a linear time-varying system
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without requiring future knowledge of time-varying model
parameters. Our conclusions, based on extensive simulations
on a nonlinear model that includes perturbation forces, are
that the FIR controller stabilizes spacecraft relative motion
dynamics on elliptic orbits, and is robust to many error
sources, including severe thrust magnitude and direction
deviations, and even intermittent thrust availability.

The paper is organized as follows. In section II, we present
a linear time-varying model for spacecraft relative motion
on elliptic orbits. Section III describes the FIR controller.
In section IV we give simulation results that highlight the
effectiveness of the FIR controller for spacecraft relative
motion control. Finally, concluding remarks, including future
work, are given in section V.

II. SPACECRAFT MODEL

In traditional relative motion problems, an approaching
spacecraft is maneuvered close to a target spacecraft in a
nominal orbit. The target spacecraft is assumed to be at
the origin of Hill’s frame [3]. The equations of motion
for an approaching spacecraft around a target spacecraft
depend nonlinearly on the orbital radius. For elliptic orbits
of arbitrary eccentricity, the linearization of these equations
is described by the linear time-varying equations [6],
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where �
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are (relative) coordinates of the space-
craft in Hill’s frame, F
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are components of the
external force vector (excluding gravity) acting on the space-
craft, h is the specific relative angular momentum, R

0

(t)
is the nominal time-varying orbital radius, and v

0

(t) is the
nominal time-varying orbital velocity. Equation (1) assumes
that the target spacecraft motion is in an ideal Keplerian
orbit; if its motion is affected by perturbations, F
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have to be modified to account for these perturbations [1].
In the subsequent development, we assume that F
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are thrust forces that are generated by the FIR controller;
these forces can be realized via on-board thruster on-off time
allocation and attitude control system commands [1].

III. FORWARD-INTEGRATING RICCATI CONTROLLER

In [5], we analyzed a Riccati-based controller for sta-
bilizing a class of linear time-varying systems. Unlike
standard, backwards-integrating Riccati-based controllers of
finite horizon optimal control theory, the approach of [5]
integrates a Riccati equation forward in time. As such, the
controller does not require advance knowledge of the system
dynamics, and thus is applicable to rendezvous maneuvers
on elliptic orbits, where the nominal orbital position and
velocity are updated via ground-based measurements but are
not known with high precision in advance due to unmodeled
disturbances.

The forward-integrating Riccati-based (FIR) controller as-
sumes a linear system model

ẋ(t) = A(t)x(t) +B(t)u(t), (2)

and takes the form

u(t) = �R

�1

2

B

T(t)P
f

(t)x(t), (3)

where P

f

(t) is the solution to the forward-in-time control
Riccati differential equation

Ṗ

f

(t) = A

T(t)P
f

(t) + P

f

(t)A(t)

� P

f

(t)B(t)R�1

2

B

T(t)P
f

(t) +R

1

, (4)

with the initial-time boundary condition P

f

(t
0

) � 0. Since
(4) is integrated forward in time, advance knowledge of A(t)
and B(t) is not required.

In [5] it is shown that, if the closed-loop dynamics matrix
is symmetric, then the FIR controller is asymptotically stabi-
lizing. We also showed, using averaging theory, that, in the
case of periodically time-varying systems and under suitable
assumptions, there exists a period below which the dynamics
of the closed-loop system are asymptotically stable. In other
words, closed-loop stability is guaranteed for systems with
time-varying dynamics of sufficiently high frequency. Note
that tuning the FIR controller is similar to tuning LQR,
namely, by adjusting the relative weighting matrices R

1

and
R

2

.
In this paper, we apply the FIR controller (3)-(4) to the

spacecraft rendezvous problem on elliptic orbits. We show
through extensive numerical experiments that the controller
is stabilizing and has good performance and robustness.

IV. NUMERICAL STUDIES

In the following simulations we consider spacecraft
in both Molniya and Tundra orbits, highly elliptical
geosynchronus orbits with high inclination used by
communication satellites [8]. See Fig. 1 for a plot of
a Molniya orbit. The orbital elements [7] used for
the Molniya orbit are given by (a, e, i,⌦,!, ⌫) =
(26559 km, 0.704482, 63.170�, 206.346�, 281.646�, 0�),
and for the Tundra orbit we use (a, e, i,⌦,!, ⌫) =
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Fig. 1: Molniya Orbit. The sphere represents the Earth.

(42164 km, 0.3, 63.170�, 206.346�, 281.646�, 0�). These
orbital elements give an initial position R

0

(0) and velocity
v

0

(t) for the target spacecraft with which we wish to
rendezvous. Note that, since we let ⌫ = 0, we start at orbital
perigee.

The mass of the chaser spacecraft is m
c

= 140 kg, and the
parameters of the FIR controller (3)-(4) are R

1

= 0.001I
6

,
R

2

= 100000, and P

f

(0) = I

6

. These values were tuned to
give appropriate nominal response time and reasonable thrust
usage over a set of typical maneuvers that the spacecraft is
expected to execute.

We test the controller in a high fidelity nonlinear sim-
ulation that includes both J

2

and air drag perturbations
based on the Harris-Priester model [9]. The controller has
no knowledge of these perturbations although we assume
that accurate position and velocity information are available
at the current time instant.

A. Multiple Initial Conditions
We use the FIR controller (3)-(4) for various chaser

spacecraft initial conditions on the Molniya orbit, where the
objective is to rendezvous the chaser spacecraft with the
target spacecraft. Fig. 2a shows a 3D plot for the initial
conditions

[�x(0) �y(0) �z(0)] = ±[500 500 500] km,

while Fig. 2b shows a projection onto the orbital plane
for various other initial conditions in both v-bar and r-bar
approaches.

These simulation results are based on a nonlinear model
with J

2

and air drag effects; they demonstrate that the
controller is stabilizing even for large deviations in the initial
conditions. Note that, for open-loop maneuver planning, the
applicability of (1) is generally limited to 50-km maneuvers.
Stabilizing maneuvers were also obtained when the nominal
orbital position is not at the perigee; the perigee location is
most challenging on an elliptic orbit due to faster motion
and larger influence of disturbances such as air drag. All
subsequent simulations are performed at perigee.

B. Thrust saturation
Let u

max

= 10 N be the maximum thrust magnitude. If
the controller specifies a thrust command with norm greater
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(a) 3D relative motion plot.
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(b) Orbital plane projection.

Fig. 2: (a) 3D relative motion plot for initial conditions near
perigee on a Molniya orbit; (b) Orbital plane projection for
multiple initial conditions near perigee on a Molniya orbit.

than u

max

, we let

u

sat

(t) = u

max

u(t)

||u(t)|| . (5)

We use the FIR controller (3)-(4) for the rendezvous ma-
neuver, where the objective is to bring the chaser spacecraft
from the initial position

[�x(0) �y(0) �z(0)] = [250 250 250] km,

with zero initial relative velocity, to rest at the desired final
position, [�x �y �z] = [0 0 0].

Fig. 3a shows the maneuver projected onto the orbital
plane for the Molniya orbit. Fig. 3b gives the components of
the thrust vector. Note that the thrust is saturated to 10 N.
The spacecraft is able to rendezvous with the target within
1.5 orbits. Fig. 4 shows the same plots for the Tundra orbit.

All subsequent simulations are performed with thrust
saturation.

C. Thrust aligned with the ram direction

We now consider the case where the spacecraft thrusts in
only the tangential (ram) direction (±y axis in Hill’s frame).
This case is practically relevant if the spacecraft orientation
cannot be changed in order to point its thruster.

We use the FIR controller (3)-(4) for the rendezvous ma-
neuver, where the objective is to bring the chaser spacecraft
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Fig. 3: Rendezvous maneuver performed at perigee on a
Molniya orbit with 10 N saturated thrust. (a) Orbital plane
projection; (b) Thrust vector components.
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Fig. 4: Rendezvous maneuver performed at perigee on a
Tundra orbit with 10 N saturated thrust. (a) Orbital plane
projection; (b) Thrust vector components.
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Fig. 5: Rendezvous maneuver performed at perigee on a
Molniya orbit with 10 N saturated thrust aligned with the
ram direction. (a) Orbital plane projection; (b) Thrust vector
components.

from the initial position

[�x(0) �y(0) �z(0)] = [250 250 0] km,

with zero initial relative velocity, to rest at the desired final
position, [�x �y �z] = [0 0 0]. Let u

max

= 10 N.
Fig. 5a shows the maneuver projected onto the orbital

plane for the Molniya orbit. Fig. 5b gives the components
of the thrust vector. Note that only the tangential thrust is
used and that it is saturated to 10 N. The spacecraft is able
to rendezvous with the target within 1.5 orbits. Fig. 6 shows
the same plots for the Tundra orbit.

Finally, we do not consider radial-only thrust since the
spacecraft dynamics are uncontrollable in this case, even for
circular orbits.

D. Intermittent Thrust Availability and Thrust Direction Er-
rors

We now highlight the robustness of the FIR controller
to intermittent thrust availability and thrust-direction errors.
We assume that the thrusters are able to operate for 10
minutes every 30 minutes in order to simulate the situation
where occasional burns are used to rendezvous with the
target. Additionally, we assume that the attitude controller is
not capable of correctly pointing the thruster in the desired
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Fig. 6: Rendezvous maneuver performed at perigee on a
Tundra orbit with 10 N saturated thrust aligned with the
ram direction. (a) Orbital plane projection; (b) Thrust vector
components.

direction, so that the requested thrust vector is rotated by 20�

around a random body-fixed vector.
The chaser spacecraft is initially at

[�x(0) �y(0) �z(0)] = [50 50 50] km,

with zero initial relative velocity, and the objective is to
bring it to rest at the desired final position [�x �y �z] =
[0 0 0]. Let u

max

= 10 N.
Fig. 7a shows the maneuver projected onto the orbital

plane for the Molniya orbit. Fig. 7b gives the components
of the thrust vector. Note that the thrust is saturated to 10
N and fires only every 30 minutes. The spacecraft is able to
rendezvous at the target within 1.5 orbits. Fig. 8 shows the
same plots for the Tundra orbit.

E. Output Feedback

We now consider the case where the full-state measure-
ment is not available. In particular, we assume that we do
not have measurements of the relative velocity, that is

C(t) 2 R3⇥6 =
⇥
I

3

0
⇤
.
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Fig. 7: Rendezvous maneuver performed at perigee on a
Molniya orbit with 10 N saturated thrust that is available
for only 10 minutes every 30 minutes and is rotated by
20 degrees about a random body vector. (a) Orbital plane
projection; (b) Thrust vector components.

We consider the observer-based dynamic compensator

˙̂
x(t) = A(t)x̂(t) +B(t)u(t)

+ F (t)
⇣
y(t)� C(t)x̂(t)

⌘
, (6)

u(t) = �R

�1

2

B

T(t)P
f

(t)x̂(t), (7)

where F (t) = Q(t)CT(t)V �1

2

, and Q(t) is produced using
the estimator Riccati equation

Q̇(t) = A(t)Q(t) +Q(t)AT(t)

�Q(t)CT(t)V �1

2

C(t)Q(t) + V

1

. (8)

We let V
1

= I

6

, and V

�1

2

= 10�15 in order to slow down the
convergence of the estimated states to enhance the visibility
of the simulation.

The chaser spacecraft is initially at

[�x(0) �y(0) �z(0)] = [50 50 50] km,

with zero initial relative velocity, and the objective is to
bring it to rest at the desired final position [�x �y �z] =
[0 0 0]. Let u

max

= 10 N.
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Fig. 8: Rendezvous maneuver performed at perigee on a
Tundra orbit with 10 N saturated thrust that is available
for only 10 minutes every 30 minutes and is rotated by
20 degrees about a random body vector. (a) Orbital plane
projection; (b) Thrust vector components.

Fig. 9a shows the maneuver projected onto the orbital
plane for the Molniya orbit. Fig. 9c gives the components
of the thrust vector. The thrust is saturated to 10 N. Fig.
9e shows the relative velocity states and estimates. The
estimated states converge to the true state values and the
spacecraft rendezvous with the target within 1.5 orbits. Fig.
9(b),(d),(f) show the same plots for the Tundra orbit.

V. CONCLUSION

We have shown that the FIR controller is stabilizing for
rendezvous maneuvers on elliptic orbits with large initial
conditions and in the presence of thrust limitations, includ-
ing both saturation and intermittent thrust availability. This
has been demonstrated with simulations on a high-fidelity
nonlinear model with J

2

and air drag perturbations.
The FIR controller is advantageous for general linear time-

varying systems, does not require future knowledge of model
parameters, is tuned similarly to conventional LQR, and has
some stability guarantees presented in [5].

Future work includes extending the theoretical stability
guarantees beyond the results given in [5] and including state
constraints [10].
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Fig. 9: Output feedback rendezvous maneuver performed at perigee on Molniya (left) and Tundra (right) orbits with 10-N
saturated thrust. Only relative position data is assumed to be available. (a),(b) Orbital plane projection; (c),(d) Thrust vector
components; (e),(f) Relative velocity components and estimated states.
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