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Abstract— We apply retrospective cost adaptive control
(RCAC) to a command-following problem for mass-spring
systems with unknown contact friction. Dahl, LuGre, and
Maxwell-slip models are used to generate the friction force.
We consider a single-degree-of-freedom oscillator with control
force applied directly to the mass, as well as a noncolocated
two-degree-of-freedom oscillator with control force applied to
the secondary mass and performance given by the position of
the primary mass. For harmonic command following, we show
that RCAC achieves internal model control without knowledge
of either the friction force or the friction model.

I. INTRODUCTION

Virtually all mechanical systems are affected by friction
[1, 2]. In motion control applications, friction degrades per-
formance and, for multiple reasons, may present a significant
challenge. In particular, friction can vary over time due to
changes in surface properties and lubrication; it may depend
on loads and geometry; it may be difficult to model and thus
is usually uncertain; it is difficult to measure or estimate;
and it is highly nonlinear and hysteretic [3–8].

In view of these challenges, it is not surprising that a
wide variety of feedback control techniques have been used
to compensate for friction, including both fixed-gain [9,
10] and adaptive methods [11–16]. The present paper takes
the latter approach by applying retrospective cost adaptive
control (RCAC) to illustrative systems [17–19].

In the present paper, we consider a single-degree-of-
freedom oscillator with control force applied to the mass, as
well as a two-degree-of-freedom oscillator with the control
force applied to the secondary mass and the performance
given by the position of the primary mass. The challenging
aspect of these examples is the fact that all of the masses are
subjected to friction, where the friction model is unknown
and no direct measurement of the friction force available.

To generate the friction force, we consider three friction
models, namely, the Dahl [20], LuGre [8], and Maxwell-
slip models [21, 22]. The contribution of the present paper
is thus a numerical investigation of the performance of
RCAC without knowledge of either the friction force or
the underlying friction model. As a performance metric, we
use phase shift calculations to determine whether RCAC
achieves internal model control with harmonic command
following. This method was used in [23] for Hammerstein
systems. However, the applications in the present paper are
not Hammerstein systems. We stress that the phase-shift

M. Al Janaideh is with the Department of Mechanical and Industrial
Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.

D. S. Bernstein is with the Department of Aerospace Engineering, The
University of Michigan, Ann Arbor, MI 48109, USA.

calculations are for analysis only; all of the closed-loop
simulations are based on nonlinear friction models.

II. FRICTION MODELS

We consider the mass-spring system shown in Figure 1(a),
where q(t) denotes the mass position. With x1 , q and
x2 , q̇, it follows that

ẋ1(t) = x2(t), (1)

ẋ2(t) = − C
M
x2(t)− K

M
x1(t) +

F (t)

M
− Ff(t)

M
, (2)

y(t) = x1(t), (3)

where y(t) is the position measurement available to the
controller, F (t) is the control force, and Ff(t) is the friction
force. Equations (1)-(3) can be expressed as

ẋ(t) = Acx(t) +Bc[F (t)− Ff(t)], (4)
y(t) = Ccx(t), (5)

where Ac ,

[
0 1
−K
M − C

M

]
, Bc ,

[
0
1
M

]
, and Cc ,

[
1 0

]
.

We now review the Dahl, LuGre, and Maxwell-slip friction
models used to generate the friction force Ff(t).

A. Dahl friction model

The Dahl friction model is given by

Ḟf(t) = σ
∣∣∣1− Ff(t)

fC
q̇(t)

∣∣∣εsgn
(

1− Ff(t)

fC
q̇(t)

)
q̇(t), (6)

where σ > 0 represents the slope of force-deflection curve
for Ff = 0, fC is the Coulomb friction force, and ε > 0
influences the shape of the hysteresis loop. For all ε ≥ 1,
the Dahl model is a Lipschitz-continuous, rate-independent
hysteresis model [8]. We consider the Dahl model with ε =
1, σ = 0.75, and fC = 1 N.

B. LuGre friction model

The LuGre model [8], which models the asperities of two
surfaces as elastic bristles, is given by

ṁ(t) = q̇(t)− |q̇(t)|
ρ(q̇(t))

m(t), (7)

Ff(t) = σ1m(t) + σ2ṁ(t) + σ3q̇(t), (8)

where

ρ(q̇(t)) ,
fC

σ1
+
fs − fC

σ1
e−(

q̇(t)
vs

)2

, (9)

where m(t) is the average deflection of the bristles, σ1 > 0,
σ2 > 0, and σ3 > 0 represent stiffness, damping, and
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Fig. 1. (a) Force-actuated mass-spring system, where Ff is the unknown
friction force and F is the external input force. (b) Force-actuated mass-
spring system, where G(s) = 1

Ms2+Cs+K
, q(t) is the output displace-

ment, F is the external force, and Ff is the friction force.

mass, respectively, fs is the stiction force, and vs is the
Stribeck velocity, which is the velocity at which the steady-
state friction force starts decreasing. The LuGre model is
a Lipschitz-continuous, rate-dependent hysteresis model [8].
We consider the LuGre model of σ1 = 105 N/m, σ2 =

√
105

N-s/m, σ3 = 0.4 N-s/m, vs = 0.001 m/s, fs = 1.5 N, and
fc = 1 N.

C. Maxwell-slip model

The Maxwell-slip model with deadband width ∆i ∈ R for
i = 1, . . . , N [21, 22] is given by

Ff(t) =

N∑
i=1

λi
(
q(t)− qi(t)

)
, (10)

q̇i = [M(qi(t), q̇(t),∆i) 1−N (qi(t), q̇(t),∆i)]

[
q̈+(t)
q̈−(t)

]
,

(11)

where M(qi, q,∆) , U(−qi + q − ∆i), N (qi, q,∆) ,
U(−qi + q + ∆i), and

U(x) =

{
1, x ≥ 0,
0, x < 0.

The Maxwell-slip model is a discontinuous rate-independent
hysteresis model [8]. We consider the Maxwell-slip model
with N = 4, λ1 = 1, λ2 = 0.3, λ3 = 0.1, λ4 = 0.4,
∆1 = 0.5, ∆2 = 1, ∆3 = 0.5, and ∆4 = 0.5.

Gc G

Ff

d
dt

r z u y

−−−

Fig. 2. Command-following problem for the force-actuated mass-spring
system with retrospective cost adaptive control update of the controller
Gc(s).

III. ADAPTIVE CONTROL OF THE FORCE-ACTUATED
MASS-SPRING SYSTEM WITH FRICTION NONLINEARITY

A. Problem formulation

For sampled-data control, let h be the sampling time and
k = 0, 1, 2, . . . . To discretize (5) and (6), consider

x(hk + h)− x(hk) ∼= hAcx(hk) + hBc[u(hk)− Ff(hk)],
(12)

y(hk) = Ccx(hk), (13)

where u = F represents the control force. Then

x(k + 1) ∼= Ax(k) +B[u(k)− Ff(k)], (14)

where

A , I2 + hAc, B , hBc, (15)

and, for convenience x(k) denotes x(kh). We use (15) to
discretize (1)-(3) as

x(k + 1) = Ax(k) +B[u(k)− Ff(k)], (16)
y(k) = Cx(k), (17)

where A ,
[

1 h
−KhM 1− Ch

M

]
, B ,

[
0
1
M

]
, C ,

[
1 0

]
, and

z(k) , r(k)− y(k), (18)

where z(k) is the command-following error and r(k) is the
position command. The goal is to determine u that makes z
small.

B. RCAC

A block diagram for (17)-(20) with RCAC is shown in
Figure 2. We assume that the discrete-time transfer function
G that relates the control force to the displacement of the
mass is unknown except for an estimate of a single nonzero
Markov parameter as needed for RCAC. The friction model
and friction force are also unknown.

The adaptive controller has the form

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i)

+

nc∑
i=1

Qi(k)r(k − i), (19)
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where, for all i = 1, . . . , nc, Mi(k) ∈ R, Ni(k) ∈ R, and
Qi(k) ∈ R. The control (19) can be expressed as

u(k) = θ(k)φ(k − 1),

where

θ(k)
4
= [M1(k) ··· Mnc (k) N1(k) ··· Nnc (k) Q1(k) ··· Qnc (k) ]

∈ R1×3nc

and

φ(k − 1)
4
= [ u(k−1) ··· u(k−nc) z(k−1) ··· z(k−nc) r(k−1)

··· r(k−nc) ]T ∈ R3nc .

Next, define the cumulative cost function

JR(θ, k)
4
=

k∑
i=2

‖φT(i− 2)θT(k)− ÛT(i− 1)‖2

+ (θ(k)− θ0)P−1
0 (θ(k)− θ0)T, (20)

where ‖ · ‖ is the Euclidean norm. Minimizing (20) yields

θT(k) = θT(k − 1) + P (k − 1)φ(k − 2)

· [φT(k − 1)P (k − 1)φ(k − 2) + 1]−1

· [φT(k − 2)θT(k − 1)− ÛT(k − 1)], (21)

The error covariance is updated by

P (k) = P (k − 1)− P (k − 1)φ(k − 2)

· [φT(k − 2)P (k − 1)φ(k − 1) + 1]−1

· φT(k − 2)P (k − 1). (22)

We initialize the error covariance matrix as P0 = αI3nc ,
where α > 0.

IV. PERFORMANCE ANALYSIS

Consider the force-actuated mass-spring system shown in
Fig. 2 with the harmonic command r(k) = Re

{
Are

(Ωk)
}

,
where Ar is a complex number and Ω is the command
frequency. Since the input is harmonic, the friction force
is harmonic. For analysis only, we consider the main har-
monic component in the friction force for the phase-shift
calculations. Then a transfer function GF that represents the
main harmonic component in the friction force can be used
to represent the friction force Ff . Then the system shown in
Fig. 2 with the controller can be represented as in Fig. 3,
where

Gur ,
Gc

1 +GcGuy
, (23)

and

Guy ,
G

1 +GcG+GFG
. (24)

If u is also harmonic, then

u(k) = Re
{
Ar|Gur(eΩ)|e(Ωk+∠Gur(eΩ))

}
, (25)

where |Gur(eΩ)| and ∠Gur(eΩ) are, respectively, the mag-
nitude and phase of Gur, at the frequency Ω. Then the

Gur
G

1+GcG+GFG

y −r u z

Fig. 3. Linearized approximation for the force-actuated mass-spring system
with RCAC adaptive control. The friction force Ff is approximated by the
transfer function GF.

harmonic steady-state response is given by

y(k) = Re
{
Ar|Gur(eΩ)||Guy(eΩ)| (26)

e(Ωk+∠Gur(eΩ)+∠Guy(eΩ))
}
. (27)

Thus

z(k) = Re
{
Are

(Ωk)
}
− Re

{
Ar|Gur(eΩ)||Guy(eΩ)|

e(Ωk+∠Gur(eΩ)+∠Guy(eΩ))
}
.
(28)

Therefore, z(k) = 0 if and only if the magnitude and phase
of Gur(eΩ) satisfy

|Gur(eΩ)| = 1

|Guy(eΩ)|
, (29)

∠Gur(e
Ω) = −∠Guy(eΩ). (30)

In the following examples, we use the Fourier transform
to determine the most significant frequency component in
the output y. Then, we calculate ∠Guy(eΩ), which is the
phase between the control force u and output y. Then, we
compare ∠Guy(eΩ) with ∠Gur(eΩ), which represents the
phase between the command r and the control force u. In
order to verify (28) and (29), we approximate Ff by the
transfer function GF to obtain the phase of ∠Guy(eΩ).
This provides a technique for determining whether RCAC
develops an internal model of the harmonic command.

V. SDOF OSCILLATOR

We now consider (16)-(18) with h = 0.001 sec. Consider
(16)-(18) with the magnitude and phase shift of the most
significant harmonic component in the command r(k),
control signal u(k), and mass position q(k) to determine
whether RCAC achieves internal model control.

Example 5.1: Consider the command r(k) =
5 sin( π10hk) with the Dahl model, and let M = 1 kg,
C = 2 N-s/m, and K = 1 N/m. We use RCAC with
nc = 20 and α = 0.1. Figure 4 shows that RCAC drives
the command-following error z to zero. Figure 4 shows
that the phase shift between the command r(k) and the
control u(k) is −7.007 deg, and the phase shift between
the control signal u(k) and the mass position q(k) is 7.087
deg. Thus RCAC achieves the correct gain and phase shift
that stabilize the mass-spring system with unknown friction
force at the command frequency. �

Example 5.2: Consider the command r(k) =
5 sin( π10hk) with the LuGre model (8)-(10), and let
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. Example 5.1: (a) shows the command-following error z with the
Dahl model whose input and output are shown in (b) for the closed-loop
system with RCAC, (c) shows the friction force, (d) shows the control u, (e)
shows the evolution of the controller coefficients θ, (f) shows the relationship
between the command r and the control u, and (g) shows the relationship
between the control u and the mass position q.

M = 1 kg, C = 2 N-s/m, and K = 1 N/m. Then
ωn = 1 rad/sec, ζ = 1, and G(z) = 0.2642z+0.1353

z2−0.7358z+0.1353 .
We use RCAC with nc = 20 and α = 0.01. Figure 5
shows that RCAC drives the command-following error z
to zero. Figure 5 shows that the phase shift between the
command input r(k) and the control signal u(k) is −12.381
deg, and the phase shift between the control signal u(k)
and the mass position q(k) is 12.407 deg. Thus RCAC
achieves the correct gain and phase shift that stabilize the
mass-spring system with unknown friction force at the
command frequency. �

(a) (b) (c)

(d) (e) (f) (g)

Fig. 5. Example 5.2: (a) shows the command-following error z with the
LuGre model whose input and output are shown in (b) for the closed-loop
system with RCAC, (c) shows the friction force, (d) shows the control u, (e)
shows the evolution of the controller coefficients θ, (f) shows the relationship
between the command signal r and the control signal u, and (g) shows the
relationship between the control u and the mass position q.

Example 5.3: Consider the command r(k) =
5 sin( π10hk) with the Maxwell-slip model (11) and

Fig. 6. Example 5.3: (a) shows the command-following error z with the
Maxwell-slip model whose input and output are shown in (b) for the closed-
loop system with RCAC, (c) shows the relationship between the command
signal r and the control u, and (d) shows the relationship between the
control u and the mass position q.

(12), and let M = 1 kg, C = 1 N-s/m, and K = 1
N/m. We use RCAC with nc = 8 and α = 0.01. Figure
6 shows that RCAC drives the command-following error z
to zero. Figure 4 shows that the phase shift between the
command input r(k) and the control signal u(k) is −14.698
deg, and the phase shift between the control signal u(k)
and the mass position q(k) is 14.722 deg. Thus RCAC
achieves the correct gain and phase shift that stabilize the
mass-spring system with unknown friction force at the
command frequency. �

Example 5.4: Consider Examples 5.1 and 5.2 with M =
1 kg, C = 1 N-s/m, and K = 2 N/m. Then ωn = 1.414
rad/sec, ζ = 0.3536, and G(z) = 0.3145z+0.2206

z2−0.2977z+0.3679 . We
use RCAC with nc = 20 and α = 0.1. Figure 7 shows that
RCAC drives the command-following error z to zero. �

VI. TWO-DEGREE-OF-FREEDOM OSCILLATOR

As shown in Figure 8, we consider a two-degree-of-
freedom oscillator with force applied to the mass M2 with
performance given by the position of the mass M1. The
friction forces Ff1 and Ff2 applied to M1 and M2 are
unknown, and the external force F is applied to mass M1.
Let q1 denote the position of mass M1, and q2 the position
of mass M2. We consider

x(k + 1) = Ax(k) +B

[
F (k)
M1
− Ff1(k)

M1

−Ff2(k)
M2

]
, (31)

y(k) = Cx(k), (32)

where xT =
[
x1 x2 x3 x4

]
, where x1(k) = q1(k),

x3(k) = q2(k), x2(k) and x4(k) are the velocities of M1
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Fig. 7. Example 5.4: (a) shows the command-following error z with the
LuGre model whose input and output are shown in (b) for the closed-loop
system with RCAC, (b) shows the relationship between the command r and
the control u, (c) shows the relationship between the control u the mass
position q, (d) shows the command-following error z with the Dahl model
whose input and output are shown in (b) for the closed-loop system with
RCAC, (e) shows the relationship between the command signal r and the
control u, and (f) shows the relationship between the control u and the mass
position q.

Fig. 8. Force-actuated mass-spring system, where F is the external force,
Ff1 and Ff2 are unknown friction forces, F is the external force, q1 is the
position of the secondary mass M1, and q2 is the position of the primary
mass M2. The performance variable is the command-following error for
M2.

and M2, respectively. Then

A =


1 h 0 0
−hKM1

1− hC
M1

hk
M1

− hC
M1

0 0 1 h
hK
M2

hC
M2

− hk
M2

1

, B =


0 0
1 0
0 0
0 1

,

C =

[
1 0 0 0
0 0 1 0

]
,

z(k) = r(k)− q2(k). (33)

The control force u is given by

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i)

+

nc∑
i=1

Qi(k)q1(k − i). (34)

A. Numerical examples: two-degree-of-freedom oscillator

All of the examples in this section consider (30)-(33) with
h = 0.001 sec.

Example 6.1: We consider the command r(k) =
3 sin(4 π

10kh) + 2 sin(6 π
10kh) with LuGre model with σ3 =

0.4 N-s/m for the friction force Ff1. We consider Ff2 with
the LuGre model with σ3 = 1N-s/m. Let M1 = M2 = 1 kg,
C = 1 N-m/s, and K = 1 N/m. We use RCAC with nc = 5
and α = 1. Figure 9 shows the command-following error z,
the friction forces Ff1 and Ff2, and the control signal u(k).
�
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Fig. 9. Example 6.1: (a) shows the error z. The friction forces Ff1 and
Ff2 shown in (c) and (d), respectively. (b) shows the control u.

Example 6.2: We consider the command r(k) =
3 sin(4 π

10kh) + 2 sin(6 π
10kh) with the LuGre model of Ex-

ample 5.2 and Maxwell model of Example 5.3. Let M1 =
M2 = 1 kg, C = 1 N-m/s, and K = 1 N/m. We use RCAC
with nc = 5 and α = 1. Figure 10 shows the command-
following error z, the friction forces Ff1 and Ff2, and the
control signal u(k). �

These examples show that RCAC can stabilize the closed-
loop system consisting of a two-degree-of-freedom oscillator
with unknown friction forces produced by an unknown
friction model.

VII. CONCLUSIONS

Retrospective cost adaptive control (RCAC) was applied to
a command-following problem involving a single-degree-of-
freedom oscillator with control force applied to the mass, as
well as a two-degree-of-freedom oscillator with force applied
to the secondary mass, measurements of the positions of both
masses, and performance given by the position error of the
primary mass. The friction forces characterized by the Dahl,
LuGre, and Maxwell-slip hysteresis models are unknown.
RCAC drives the command-following error of the closed-
loop system to zero. The numerical results in the paper show
that RCAC achieves internal model control. Future work will
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Fig. 10. Example 6.2: (a) shows the error z. The friction forces Ff1 and
Ff2 are shown in (c) and (d), respectively. (b) shows the control u.

consider the more challenging case for the two-degree-of-
freedom oscillator where only the position of the primary
mass is measured.

REFERENCES

[1] B. Armstrong-Helouvry, Control of Machines with Friction, Boston,
MA, Kluwer, 1991.

[2] B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit, “A survey
of model, analysis tools and compensation methods for the control of
machines with friction,” Automatica, vol. 30, no. 7, pp. 1083-1138,
1994.

[3] C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A
new model for control of systems with friction,” IEEE Trans. Autom.
Contr., vol. 40, no. 3, pp. 419-425, 1995.

[4] J. Swevers, F. Al-Bender, C. Ganseman, and T. Projogo, “An integrated
friction model structure with improved presliding behavior for accurate
friction compensation,” IEEE Trans. Autom. Contr., vol. 45, no. 4, pp.
675-686, 2000.

[5] V. Lampaert, J. Swevers, and F. Al-Bender, “Modification of the
Leuven integrated friction model structure,” IEEE Trans. Autom.
Contr., vol. 47, no. 4, pp. 683-687, 2002.

[6] D. S. Bernstein, “Ivory Ghost,” IEEE Contr. Sys. Mag., Vol. 27, pp.
16-17, 2007.

[7] B. S. R. Armstrong and Q. Chen, “The Z-Properties Chart,” IEEE
Contr. Sys. Mag., vol. 28, pp. 79-89, 2008.

[8] A. K. Padthe, B. Drincic, J. Oh, D. D. Rizos, S. D. Fassois, and
D. S. Bernstein, “Duhem Modeling of Friction-Induced Hysteresis:
Experimental Determination of Gearbox Stiction,” IEEE Contr. Sys.
Mag., vol. 28, pp. 90-107, 2008.

[9] S. Southward, C. Radcliffe, and C. MacCluer, “Robust nonlinear stick-
slip friction compensation,” J. Dyn. Sys. Meas. Contr., vol. 113, no.
4, pp. 639–645, 1991.

[10] J. Amin, B. Friedland, and A. Harnoy, “Implementation of a friction
estimation and compensation technique,”IEEE Contr. Sys. Mag., vol.
17, no. 4, pp. 71–76, 1997.

[11] S. W. Lee and J.-H. Kim, “Robust adaptive stick-slip friction com-
pensation,” IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 474-479,
1995.

[12] L. Freidovich, A. Robertsson, A. Shiriaev, and R. Johansson, “LuGre-
model-based friction compensation,” IEEE Trans. Contr. Sys. Tech.,
vol. 18, no. 1, pp. 194–200, 2010.

[13] L. Marton and B. Lantos, “Control of mechanical systems with
Stribeck friction and backlash,” Sys. Contr. Lett., vol. 58, no. 2, pp.
141147, 2009.

[14] C. Canudas de Wit and P. Lischinsky, “Adaptive friction compensation
with partially known dynamic friction model,” Int. J. Adapt. Contr. Sig.
Proc., vol. 11, no. 1, pp. 65-80, 1997.

[15] Y. Tan, C. Jie, and T. Hualin, “Adaptive backstepping control and fric-
tion compensation for AC servo with inertia and load uncertainties,”
IEEE Trans. Indus. Electro., vol. 5, no. 5, pp. 994-952, 2003.

[16] C. Canudas de Wit, K. Astrom, and K. Braun, “Adaptive friction
compensation in DC-motor drives,” IEEE J. Robot. Auto., vol. 3, no.
6, pp. 681-685, 1987.

[17] R. Venugopal and D. S. Bernstein, “Adaptive disturbance rejection
using ARMARKOV system representations,” IEEE Trans. Contr. Sys.
Tech., vol. 8, no. 2, pp. 257-269, 2000.

[18] M. A. Santillo and D. S. Bernstein, “Adaptive control based on
retrospective cost optimization,” AIAA J. Guid. Contr. Dyn., vol. 33,
no. 2, pp. 289-304, 2010.

[19] J. B. Hoagg, M. A. Santillo and D. S. Bernstein, “Discrete-time
adaptive command following and disturbance rejection for minimum-
phase systems with unknown exogenous dynamics,” IEEE Trans.
Autom. Contr., vol. 53, no. 4, pp. 912-928, 2008.

[20] P. Dahl, “Solid friction damping of mechanical vibrations,” AIAA J.,
vol. 14, no. 2, pp. 1675-1682, 1976.

[21] D. D. Rizos and S. D. Fassois, “Presliding friction identification based
upon the Maxwell slip model structure,” Chaos, vol. 14, no. 2, pp.
431–445, 2004.

[22] F. Al-Bender, V. Lampaert, and J. Swevers, “Modeling of dry sliding
friction dynamics: From heuristic models to physically motivated
models and back,” Chaos, vol. 14, no. 2, pp. 446-445, 2004.

[23] M. Al Janaideh and D. S. Bernstein, “Adaptive Control of Hammer-
stein Systems with Unknown Prandtl-Ishlinskii Hysteresis,” Proc. Inst.
Mech. Eng. I J. Syst. Contr. Eng., vol. 229, no. 2, pp. 149-157, 2015.

672


