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Abstract— We apply adaptive control to an unconventional
aircraft, namely, a three-rotor flight vehicle, one of whose
rotors can tilt about the longitudinal axis of the fuselage. This
combination of actuators has aerodynamic advantages but also
poses challenges in terms of trimming the aircraft in order
to balance the torque about the roll, pitch, and yaw axes.
The paper uses retrospective cost adaptive control (RCAC) to
trim the aircraft in hover as well as to follow straight-line and
circular flight trajectories.

I. INTRODUCTION

Aircraft flight control is undoubtedly one of the most suc-
cessful areas of application of feedback control techniques.
In particular, adaptive control has a long history of applica-
tion to aircraft flight control [1], and recent developments
show promise for future applications [2]. The underlying
motivation for adaptive control is the need for flight safety
under off-nominal conditions. Although flight control laws
intended for normal operation are thoroughly tested before
certification, adaptive control can potentially enhance safety
in the presence of faulty sensors and actuators, as well as
aerodynamic uncertainty due to off-nominal flight conditions.

An alternative motivation for adaptive flight control is
the need to control unconventional aircraft. An unconven-
tional aircraft configuration, in terms of aerodynamics or
sensor/actuator configuration, requires detailed modeling fol-
lowed by trim analysis and finally autopilot design. In this
direction, adaptive control can facilitate the analysis of new
aircraft configurations by “flying” the aircraft in simulation
and allowing the adaptive control law to adjust itself to
the dynamics of the vehicle. The resulting performance can
suggest limitations of the design as well as the feasibility of
adaptive control on the real vehicle.

This paper considers a tilt-rotor tricopter (TRT) aircraft
[3]. Unlike a conventional quadrotor, with four propellers, the
TRT has three rotors, one of which has the ability to rotate
about the longitudinal axis of the aircraft. This configuration
saves weight and energy, but poses new control challenges.
To address these challenges, we apply retrospective cost
adaptive control (RCAC) by “flying” the aircraft in simula-
tion to determine the essential modeling information as well
as the resulting performance. RCAC is developed in [4], [5],
an overview is given in [6], and application to the NASA
GTM model is considered in [7]–[9].

II. EQUATIONS OF MOTION AND TRIM ANALYSIS

In the tilt-rotor tricopter (TRT), shown in Fig. 1, two
propellers rotate in opposite directions compensating the
torque, and the third propeller is tilted by a servo motor
in order to compensate for the adverse yaw.
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Fig. 1: Tilt-rotor tricopter configuration

A. Nonlinear Equations of Motion
The translational and rotational equations of motion of

the TRT, derived in the body frame under a rigid body
assumption, neglecting the gyroscopic moments due to the
rotors’ inertia, drag forces, and moments, and induced pitch-
ing moment by the tilted rotor, are given by [10]

u̇ = rv − qw − g sin θ +
Fx
m
, (1)

v̇ = −ru+ pw + g cos θ sinφ+
Fy
m
, (2)

ẇ = qu− pv + g cos θ cosφ+
Fz
m
, (3)

ṗ =
Iyy − Izz
Ixx

qr +
Mx

Ixx
, (4)

q̇ =
Izz − Ixx
Iyy

pr +
My

Iyy
, (5)

ṙ =
Iyy − Ixx

Izz
pq +

Mz

Izz
, (6)

where the 3-2-1 Euler angles φ, θ, ψ define the roll, pitch, and
yaw, and Fx, Fy, Fz and Mx,My,Mz are the components of
the aerodynamic force and moment generated by the rotors
in the x, y, and z-body directions. The relation between the
Euler rates φ̇, θ̇, ψ̇, and angular body rates p, q, r, which are
resolved in the body frame, is given by


φ̇

θ̇

ψ̇


 =




1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ





p
q
r


 . (7)

The position of the TRT in the inertial (navigation) frame is
defined by the coordinates X,Y, Z.

Assuming constant air density, the aerodynamic force and
moment produced by the ith rotor are given by

Fi = KFΩ2
i , Mi = KMΩ2

i , (8)

where KF and KM are the aerodynamic force and moment
constants, respectively. The components of the aerodynamic
force are given by

Fx = 0, Fy = F1 sinµ = KFΩ2
1 sinµ, (9)

Fz = −(F1 cosµ+ F2 + F3) = −KF(Ω2
1 cosµ+ Ω2

2 + Ω2
3).

2017 American Control Conference
Sheraton Seattle Hotel
May 24–26, 2017, Seattle, USA

978-1-5090-5994-2/$31.00 ©2017 AACC 1109



Assuming clockwise rotation for the right and tail rotors, and
counterclockwise for the left rotor, the aerodynamic moment
components are given by [3]

Mx = −l3(F2 − F3) = −l3KF(Ω2
2 − Ω2

3), (10)
My = −l2(F2 + F3) + l1F1 cosµ

= −l2KF(Ω2
2 + Ω2

3) + l1KFΩ2
1 cosµ, (11)

Mz = l1F1 sinµ−M1 cosµ+M2 −M3 (12)

= l1KFΩ2
1 sinµ−KMΩ2

1 cosµ+KMΩ2
2 −KMΩ2

3,

where the distances l1, l2, l3 are shown in Fig. 1. The
parameters of the tilt-rotor tricopter considered in this study
are given in Table I [3].

TABLE I: Tricopter parameters
Parameter Value Unit
m 1.1 kg
Ixx 0.0239 kg-m2

Iyy 0.01271 kg-m2

Izz 0.01273 kg-m2

l1 0.2483 m
l2 0.1241 m
l3 0.2150 m
KF 1.970 × 10−6 N/rpm2

KM 2.880 × 10−7 N-m/rpm2

B. Trim Analysis
In the trim analysis, we consider the hover condition. By

equating the total force and moment to zero, we establish
analytical expressions for the corresponding control inputs
and states. The total force Ftotal acting on the TRT is

Ftotal = [Ftotalx Ftotaly Ftotalz ]
T, (13)

where
Ftotalx = −mg sin θ, (14)

Ftotaly = mg sinφ cos θ +KFΩ2
1 sinµ, (15)

Ftotalz = mg cosφ cos θ −KF(Ω2
1 cosµ+ Ω2

2 + Ω2
3). (16)

The total moment Mtotal is given by

Mtotal = [Mx My Mz]
T, (17)

where Mx, My, Mz are defined by (10), (11), (12).
In hover, the gravitational force is compensated by the

vertical component of the combined thrust produced by all
three rotors. The reaction torques on the TRT generated by
the left and right rotors are equal and opposite, and thus
cancel each other. The reaction torque on the TRT produced
by the tail rotor is compensated by tilting the tail rotor about
the longitudinal axis by the angle µ as shown in Fig. 1.
However, the nonzero tilt angle leads to a nonzero side force.
The force is compensated by a nonzero roll angle, which,
due to the left and right rotors, produces a horizontal force,
which, in turn, requires compensation by the tilt rotor.

In hover, the translational and rotational velocities are
equal to zero, that is, [u v w]Ttrim = 0 and [p q r]Ttrim = 0.
Then, equating the left hand sides of the total force (14)–(16)
and total moment equations (10)–(12) to zero, and solving

for the unknown inputs and states, yields the pitch and roll
trim angles and trim controls

φtrim = tan−1
[
− l2KM

l1(l1 + l2)KF

]
, θtrim = 0, (18)

µtrim = tan−1
[ KM

l1KF

]
, (19)

Ω1,trim =

√
l2gm

(l1 + l2)KF

cosφtrim
cosµtrim

, (20)

Ω2,trim =

√
l1gm

2(l1 + l2)KF
cosφtrim, Ω3,trim = Ω2trim .

For the given TRT configuration, numerical trim values are
given in Table II.

TABLE II: Trim values
Parameter Value Units
φtrim −11.10 deg
θtrim 0 deg
µtrim 30.49 deg
Ω1,trim 1441 rpm
Ω2,trim 1338 rpm
Ω3,trim 1338 rpm

C. Actuator Constraints

The actuator constraints are defined by physical limitations
such as the min/max rotor speed and the min/max tilt angle.
The assumed constraints on the rotors’ rpm and tilt angle are

0 < Ωi < 2Ωitrim , −π/2 < µ < π/2. (21)

III. CONTROL SYSTEM ARCHITECTURE

We consider an inner-outer-loop control scheme for trajec-
tory following of the TRT as shown in Fig. 2. The outer-loop
consists of three PID controllers for following [X Y Z]T

reference commands. The PID controllers generate refer-
ences θref for the pitch angle, φref for the roll angle, and
wref for the z-body velocity, which are then fed into the
inner-loop retrospective cost adaptive controller (RCAC) as
reference commands. In the inner loop, RCAC generates
the conventional input ∆uδ by minimizing the inner-loop
command-following errors. The control allocation algorithm
maps the conventional input ∆uδ to the manipulated input
um, where the manipulated inputs to the TRT are the RPM’s
Ω1,Ω2,Ω3 of the rotors and the tilt angle µ. The conventional
and manipulated control inputs are discussed below.
A. Control Allocation

The control allocation algorithm relates control inputs
that are similar to conventional helicopter controls, that is,
collective δcol, longitudinal δlon, lateral δlat, and pedal δped,
to the manipulated (direct) inputs. The collective input δcol
is related to the altitude control; the longitudinal and lateral
inputs δlon and δlat are related to the pitch and roll control;
and the pedal input δped is used to control the yaw rate.

Let um
4
= [Ω2

1 Ω2
2 Ω2

3 µ]T denote the vector of manipu-
lated inputs, and define the conventional control vector

uδ
4
= [δcol δlon δlat δped]T, (22)
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Fig. 2: Controller System Architecture

where

δcol
4
= −KFΩ2

2 −KFΩ2
3 −KFΩ2

1 cosµ, (23)

δlon
4
= −l2KF(Ω2

2 + Ω2
3) + l1KFΩ2

1 cosµ, (24)

δlat
4
= −l3KF(Ω2

2 − Ω2
3), (25)

δped
4
= l1KFΩ2

1 sinµ−KMΩ2
1 cosµ+KMΩ2

2 −KMΩ2
3.

Let the intermediate control input u be given by

u = [u1 u2 u3 u4]T
4
= [Ω2

1 sinµ Ω2
1 cosµ Ω2

2 Ω2
3]T. (26)

Then, uδ and u are related by

uδ = Mu, (27)

where the invertible mixing matrix M is defined by

M
4
=




0 −KF −KF −KF

0 l1KF −l2KF −l2KF

0 0 −l3KF l3KF

l1KF −KM KM −KM


 .

In the inner-loop controller, the control input ∆uδ , gener-
ated by RCAC, represents an increment in the control input
uδ about the initial conventional control input uδ0 , that is,
∆uδ = uδ − uδ0 , where uδ0 = [δcol0 δlon0

δlat0 δped0
]T.

Note that the initial input uδ0 need not be trim control. It
follows from (27)

∆u = M−1∆uδ, (28)

where ∆u = u−u0, and the initial intermediate control input
u0 is given by

u0 = [Ω2
10 sinµ0 Ω2

10 cosµ0 Ω2
20 Ω2

30 ]T. (29)

From (26), the components of the manipulated control input
um are given by

Ω2
1 =

√
u21 + u22, Ω2

2 = u3, (30)

Ω2
3 = u4, µ = atan2

(u1
u2

)
. (31)

B. Outer-loop PID Controller

The three outer-loop PID controllers follow the desired
horizontal position and altitude defined by a reference po-
sition vector [X Y Z]Tref . In particular, two PID controllers
control the horizontal position [X Y ]Tref by controlling the
pitch and roll angles of the tricopter, while the third PID

controller controls the altitude Zref by controlling the vertical
velocity. The PID control laws for generating references for
the roll angle φref , pitch angle θref , and body-z velocity wref

are

φref = KpφeYref
+Kiφ

∫
eYref

dt+Kdφ

d

dt
eYref

, (32)

θref = KpθeXref
+Kiθ

∫
eXref

dt+Kdθ

d

dt
eXref

, (33)

wref = Kpw
eZref

+Kiw

∫
eZref

dt+Kdw

d

dt
eZref

, (34)

where eYref
= Yref − Y , eXref

= Xref − X , and eZref
=

Zref−Z. Note that, a negative pitch angle is required in order
for the tricopter to move forward, that is, Xref > 0, hence,
Kpθ , Kiθ , Kdθ are negative. On the other hand, positive
Yref and Zref require positive roll angle and z-body velocity,
respectively, and thus, Kpφ , Kiφ , Kdφ , Kpw , Kiw and Kdw

are positive. The chosen PID gains are given in Table. III.

TABLE III: PID gains
φ θ ψ

Kp 0.2 −0.01 0.1
Ki 0.2 −0.01 0.1
Kd 2 −0.01 0.1

C. Inner-loop RCAC

We use RCAC in the inner-loop to follow Euler angles,
angular rates, and body-z velocity commands, as shown in
Fig. 2. The formulation of RCAC is given in [9]. In order
to construct the RCAC filter Gf , we linearize the nonlinear
TRT dynamics f(x, uδ) given by (3)–(7) around the hover
trim condition, and define the following matrices

Ac
4
=
∂f

∂x
, Bc

4
=

∂f

∂uδ
, (35)

where the state vector is defined as

x
4
= [w φ θ ψ p q r]T.

The matrices Ac and Bc evaluated at the trim condition are

Ac =




0 −g sinφtrim 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 cosφtrim − sinφtrim

0 0 0 0 0 sinφtrim cosφtrim

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



,

(36)
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Fig. 3: Flight trajectory. The command is to hold the position at the origin.
After the transient, RCAC trims the TRT in hover flight near the origin.

Bc =




1
m 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1

Ixx
0

0 1
Iyy

0 0

0 0 0 1
Izz




. (37)

We assume φtrim is unknown to RCAC, and thus we use φ0
in place of φtrim in (36) to construct Ac. We discretize the
matrices Ac and Bc using A = eAcTs and B = A−1c (A −
I)Bc, where Ts is the sampling time.

IV. FLIGHT SIMULATION
We use the nonlinear tricopter model given in Section

II to simulate the TRT dynamics. However, we use only
the discretized matrices A and B given to construct Gf in
RCAC. We choose Ts = 0.01 sec, k0 = 1, nc = 4, nf =
1, Rθ = 10−2Ilθ , Ru = diag(10−2, 10−2, 10−4, 10−4), and
Rz = diag(1, 104, 104, 104, 10, 10, 10).

For all examples, we initialize the TRT model with the
non-trim states [φ θ ψ] = [−5 5 0] deg, X = Y = Z = 0 m,
u = v = w = 0.1 m/sec, p = q = r = 2 deg/sec
and the non-trim control inputs µ = 20 deg, [Ω1 Ω2 Ω3] =
[1400 1300 1300] rpm. Moreover, for all of the examples, we
set the reference commands [ψ p q r]ref as zero, whereas,
the reference commands [wφθ]ref are generated by the PID
controllers in the outer-loop, as shown in Fig. 2.

A. Hover Flight

We set [X Y Z]ref = 0 m to achieve hover flight. Fig. 3
shows that, after the transient, RCAC trims the TRT in hover
flight near the origin. Fig. 4 shows the response of the TRT
position. At t = 40 sec, the command-following errors in
X, Y, and Z are −0.05 m, 0.07 m and 0.19 m.

Figs. 5 and 6 show that, after the transient, the states and
control inputs of the TRT converge close to the hover trim
states and control inputs computed analytically in Section
II-B and shown in Table. II. Note that the controller gains
θ converge. At t = 40 sec, φ = −11.1 deg, θ = −0.01 deg,
µ = 30.49 deg, Ω2 = Ω3 = 1338 rpm, and Ω1 = 1441 rpm,
which are close to the hover trim values given in Table II.
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Fig. 5: Hover flight. Inner-loop RCAC command following. After the
transient, the states of the TRT converge close to the hover trim states
computed analytically in Section II-B and shown in Table. II.

B. Horizontal Straight Line Flight

We first trim the TRT in hover flight by commanding
[X Y Z]ref = 0 m up to t = 20 sec, and then set Zref = 0 m
and [X Y ]ref to be a ramp with a slope of 2 m/sec in order
to fly TRT in a horizontal straight line. Fig. 7 shows that,
after the transient, RCAC trims the TRT in horizontal straight
line flight along the commanded trajectory. Fig. 8 shows the
response of the TRT position. At t = 60 sec, the command-
following errors in X,Y, Z are −0.01 m, 0.03 m and 0.01 m.

Figs. 9 and 10 show that, after the transient, the states
and control inputs of the TRT converge to fixed values such
that the TRT achieves the commanded horizontal straight
line flight. Note that the controller gains θ also converge.
At t = 60 sec, φ = −11.1 deg, θ = 0 deg, µ = 30.49 deg,
Ω2 = Ω3 = 1339 rpm, and Ω1 = 1442 rpm.
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Fig. 7: Flight trajectory. The command is to fly TRT in a horizontal straight
line. After the transient, RCAC trims the TRT in a horizontal straight line
flight along the commanded trajectory.

C. Horizontal Circular Flight

We first trim the TRT in hover flight by commanding
[X Y Z]ref = 0 m up to t = 20 sec, and then set Zref = 0 m
and [X Y ]ref to be a circle of radius 10 m with a turn-rate
of 16 deg/sec in order to fly TRT in a horizontal circle. Fig.
11 shows that, after the transient, RCAC flies TRT along the
commanded horizontal circular trajectory. Fig. 12 shows the
response of the TRT position. At t = 90 sec, the command-
following errors in X,Y, Z are 0.3 m, 0.3 m, −0.1 m.

Figs. 13 and 14 show that, after the transient, the states
and control inputs of the TRT converge to harmonics such
that the TRT achieves the commanded horizontal circular
flight path. Note that the controller gains θ converge to fixed
values.
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Fig. 9: Horizontal straight line flight. Inner-loop RCAC command following.
After the transient, the states of the TRT converge to fixed values such that
the TRT achieves the commanded horizontal straight-line flight.

V. CONCLUSIONS

This paper presented an application of retrospective cost
adaptive control (RCAC) to an unconventional aircraft,
namely, a tilt-rotor tricopter (TRT). An inner-outer-loop con-
trol scheme was presented, where the outer-loop consisted
of PID controllers and inner-loop consisted of RCAC. We
showed that RCAC was able to trim the TRT in hover flight
from non-trim states and control inputs. The obtained hover
trim states and control inputs using RCAC were found to
be close to the analytically determined hover trim states
and control inputs. We also showed the effectiveness of
RCAC for flying TRT in horizontal straight-line and circular
trajectories. REFERENCES
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Fig. 13: Horizontal Circular Flight. Inner-loop RCAC command following.
After the transient, the states of the TRT converge to harmonics such that
the TRT achieves the commanded horizontal circular flight path.
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Fig. 14: Horizontal Circular Flight. TRT control inputs generated by RCAC.
After the transient, the control inputs of the TRT converge to harmonics such
that the TRT achieves the commanded horizontal circular flight path. The
controller gains θ converge to fixed values.
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