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Abstract— We present a numerical investigation of output-
feedback discrete-time adaptive control for a class of nonlinear
systems. Systems with unknown nonlinearities that may be
unmatched with the control are considered. The unknown
nonlinearity is assumed to be inaccessible in the sense that it is
a function of states that are not measured. For these systems,
retrospective cost adaptive control is used for output-feedback
stabilization, command following, and disturbance rejection.

I. INTRODUCTION

Although feedback control of nonlinear systems has seen
major advances over the past decades, most methods assume
either full-state feedback or fully known dynamics. The
present paper approaches output-feedback control of nonlin-
ear systems from the perspective of adaptive control, which
focuses on the case where the dynamics are poorly modeled,
including the possibility of unmodeled nonlinearities. This
setting precludes the use of model-dependent techniques.

In the present paper we consider output-feedback control
of discrete-time nonlinear systems using retrospective cost
adaptive control (RCAC), which was developed for linear
systems in [1]–[3]. In [4], RCAC was applied to harmonic
command following for the van der Pol and Duffing oscilla-
tors. This investigation was naive in the sense that no effort
was made to account for the presence of the nonlinearity.

Close examination of the control signals for the van der
Pol and Duffing oscillators in [4] reveals that the RCAC
controller, which, after convergence, is linear time-invariant
(LTI), approximately cancels the effect of the unmodeled
nonlinearity. For these systems, cancellation is achievable in
principle due to the fact that the nonlinearities are matched.
Nevertheless, for harmonic command following, an attempt
to cancel an unknown nonlinearity may lead to the generation
of higher, spurious harmonics, which also must be rejected.
RCAC must therefore adapt the control so as to follow the
harmonic command while suppressing the spurious harmon-
ics generated by the unmodeled nonlinearity.

As a further step toward understanding how RCAC ac-
counts for unmodeled nonlinearities, this paper presents a nu-
merical investigation of RCAC for a class of nonlinear con-
trol problems. In particular, we consider step and harmonic
command following, and step, harmonic, and stochastic
disturbance rejection with various nonlinearities, including
nonlinear functions that are either smooth, continuous but
not differentiable, or discontinuous. In addition, the examples
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in the present paper are characterized by three notable fea-
tures. First, the nonlinearity is assumed to be unknown and
unmodeled. This assumption precludes the use of nonlinear
control methods that use knowledge of the nonlinearity. Next,
we consider the case where the control and nonlinearity
drive the system differently; in other words, the control
and nonlinearity are unmatched. This assumption precludes
the possibility that the RCAC controller can directly cancel
the effect of the nonlinearity. Finally, we consider the case
where the nonlinearity is a function of states that are not
measured. In this case, the nonlinearity is inaccessible. This
assumption implies that, even if the nonlinearity were known
and matched, it would be impossible for the control to cancel
it without the use of state estimates. In fact, for all of the
examples in this paper, the full state is not measured, and
thus the RCAC controller is an output-feedback control law.

II. THE ADAPTIVE SERVO PROBLEM FOR A CLASS OF
NONLINEAR PLANTS

We consider the discrete-time, nonlinear plant

x(k + 1) = Ax(k) +Bu(k) +Bnlf(x(k)) +Ddd(k), (1)
y0(k) = Cx(k), (2)
yn(k) = y0(k) + v(k), e0(k) = r(k)− y0(k), (3)

z(k)
4
= r(k)− yn(k) = e0(k)− v(k), (4)

where x(k) ∈ Rn is the state, u(k) ∈ Rlu is the control
input, f : Rn → R is a nonlinear function, d(k) ∈ Rld is the
disturbance, y0(k) ∈ Rly is plant output, yn(k) ∈ Rly is the
measurement, e0(k) ∈ Rly is the true error, r(k) ∈ Rly is the
command, v(k) ∈ Rly is the sensor noise, and z(k) ∈ Rly is
the measured error, which is also the performance variable.

The nonlinear plant (1), (2) can be written as

y0(k) = G(q)
[
uT(k) dT(k) fT(x(k))

]T
, (5)

where q is the forward shift operator, G 4=
[
G Gnl

]
,

G
4
=

[
Gy0u Gy0d

]
, Gnl(q)

4
= C(qI − A)−1Bnl,

Gy0u(q)
4
= C(qI−A)−1B, and Gy0d(q)

4
= C(qI−A)−1Dd.

If f is absent, the G = G. The control input is given by

u(k) = Gc,k(q)z(k), (6)

where the discrete-time, linear-time-varying (LTV) transfer
function Gc,k is the adaptive controller at step k. For pole-
zero analysis, q can be replaced by the Z-transform variable
z. Figure 1 represents the nonlinear function f as a feedback
loop around the linear system G. For convenience, we refer
to G as the nonlinear plant, that is, (1), (2) with f present.
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The error signal z is the difference between the command
r and the measurement yn, which may be corrupted by noise.
Since this is the only error signal available for feedback, it
serves as the performance variable for the adaptive controller.
However, the error signal e0, which is the difference between
the command r and the plant output y0, provides a true
measure of the command-following performance. Since this
signal is not available for feedback, it is used only as a
diagnostic. If sensor noise is absent, then z ≡ e0.
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f(x)
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v
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−

Fig. 1: Block diagram representation of the adaptive servo problem with the
adaptive controller Gc,k and the nonlinear plant G given by (1), (2).

III. ADAPTIVE CONTROL ALGORITHM

RCAC requires limited modeling data for SISO linear
plants, namely, the sign of the leading numerator coefficient,
the relative degree, and the locations of nonminimum-phase
(NMP) zeros, if any. This modeling information is used to
construct the filter Gf , which serves as a target model for
the intercalated transfer function, as explained in [4]. The
controller order nc as well the adaptation weight Rθ and
control weight Ru must also be specified. As in [4], the
controller coefficient matrix θ is initialized to be zero at
the start of all numerical examples; this assumption reflects
the absence of additional modeling information. Details of
RCAC and its implementation using recursive least squares
to update θ are given in [4].

IV. NUMERICAL EXAMPLES

We consider 3rd-order asymptotically stable linear dy-
namics, where (A,B,C) is minimal and Gy0u is minimum
phase with relative degree 1. The vector Bnl is chosen for
each example in order to consider nonlinearities f that are
either matched or unmatched with the control input, that
is, Bnl = B or Bnl 6= B, respectively. Note that, in the
case where f is unmatched, it is impossible for u to directly
cancel the effect of f. The nonlinearity f is represented as
f(x) = αf0(x), where α ∈ R is varied to assess the impact
of f on stability and performance.

We are primarily interested in the case where f depends
on components of x that are not measured; in this case, f is
inaccessible. Consequently, if f is matched but inaccessible,
then u cannot use the measurements yn to cancel f without
estimating unmeasured states. For all of the examples in this
paper, f is inaccessible. This assumption precludes the use
of feedback linearization whether or not f is known.

For each example, f is unmodeled, and the goal is to
determine the ability of RCAC to account for the presence
of f. We consider command following with step and har-
monic commands as well as disturbance rejection with step,
harmonic, and stochastic disturbances.

Since f is unmodeled, we choose Gf based on the mod-
eling information needed by RCAC in the case f = 0. We
thus set [4]

Gf(q) = −q−1, (7)

where Gf captures the relative degree, NMP zeros (none in
the minimum phase case), and sign of the leading numerator
coefficient of Gy0u. The minus sign in (7) arises due to (4).

V. COMPARISON OF RCAC AND LQG FOR CUBIC f

In this section we apply RCAC to G in the case where
f is a matched cubic nonlinearity. The goal is to determine
how the final RCAC controller accounts for the effect of f.
To do this, we first design an LQG controller based only on
the linear plant G, where the LQG controller is constructed
to include an internal model of the command. Since the
LQG controller is designed without regard to f, there is no
stability or performance guarantee when it is applied to G.
Nevertheless, applying the LQG controller to G for various
values of α provides a measure of the inherent robustness
of LQG to f. This provides a baseline comparison of the
performance of RCAC relative to LQG with f present.

Next, RCAC is applied to the nonlinear plant G, and
the final RCAC controller is saved as an LTI controller.
We then apply the final RCAC controller (and thus without
further adaptation) to the nonlinear plant G and compare
its performance to the performance of the LQG controller
as applied to the same nonlinear plant G. In particular, we
analyze the spectral content of e0 and u in order to determine
how the final RCAC controller accounts for the effect of f .

We consider command following with the harmonic com-
mand r(k) = cosωrk, where ωr = 0.2 rad/sample. No
disturbance is present. The nonlinearity f is given by f(x) =
αx31, where α is chosen below. We set

x
4
=

 x1
x2
x3

 , A =

 0 0 0.784
1 0 −2.287
0 1 2.434

 , (8)

B =

 0.12
−0.7
1

 , C =
[
0 0 1

]
. (9)

Note that Gy0u has the real pole 0.801 rad/sample and the
lightly damped poles 0.817±0.559 rad/sample, which have
a frequency of 0.6 rad/sample. The zeros of (8), (9) are 0.3
rad/sample and 0.4 rad/sample. Finally, Bnl = B, and thus f
is matched. For simplicity, we assume x(0) = 0. Assuming
that x1 is harmonic with frequency ωr, note that

f(sinωrk) = α sin3 ωrk =
3α

4
sinωrk +

α

4
sin 3ωrk.

Therefore, f generates a harmonic signal at the frequency
3ωr. Since these signals occur in the closed-loop system, the
signal f( 34 sinωrk+

1
4 sin 3ωrk) produces additional spectral

content at the frequencies 5ωr and 7ωr, which, in turn,
produces further spectral content. These signals appear as
unmodeled disturbances, which may need to be suppressed
by the controller. Note that the plant (8), (9) is chosen to have
a pair of lightly damped poles at the frequency 3ωr = 0.6
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rad/sample. Consequently, (8), (9) is highly sensitive to the
effect of f for the given command frequency.

To construct the LQG controller we augment the linear
plant Gy0u with an internal model of the harmonic com-
mand, which yields an augmented plant of order 5. We
design an LQG controller for this 5th-order plant using
the MATLAB function lqg(sys,Qxu, Qwv) with Qxu =
diag[0 0 1000 0 0 1], Qwv = I6, where sys is a MATLAB
representation of the augmented plant with the first two
states representing the internal model. The resulting LQG
controller is then cascaded with the internal model to yield
a final controller of order 7. This controller is then applied
to the nonlinear plant G. Note that the LQG controller with
the internal model requires knowledge of the frequency of
the command; this information is not needed for the RCAC
controller. Furthermore, as discussed above, RCAC requires
limited information about (A,B,C), whereas the LQG con-
troller requires complete knowledge of these matrices.

For RCAC we set nc = 14, Rθ = 0.0002, and Ru = 0.01.
The error e0 approaches zero (not shown) for the parameters
α ∈ [−0.034, 0.062] and α ∈ [−0.550, 0.309], for the LQG
controller and RCAC, respectively. In particular, Figure 2
shows the error e0 for both controllers with α = 0.05.

0 100 200 300 400 500 600 700 800 900 1000
10-5
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105

0 0.2 0.6 1 1.4 1.8 2.2 2.6 3
10-20

10-10

100

(b)
Fig. 2: For α = 0.05, |e0(k)| is plotted for both LQG and RCAC.

Next, for α = 0.062, which represents the largest value
of α for which e0 is bounded using the LQG controller,
we simulate the closed-loop system using both controllers.
We record the final RCAC controller Gc,10,000 and rerun the
simulation with this LTI controller.

To compare the LQG controller to the LTI RCAC
controller Gc,10,000, we compute the power spectral den-
sity (PSD) of e0 and u using the MATLAB function
periodogram for the last 9,000 steps of the simulations, as
shown in Figure 3. The frequency response of Gy0u, the LQG
controller, and Gc,10,000 are shown in Figure 4(a), and the
frequency response of the sensitivity functions corresponding
to both controllers are shown in Figure 4(b).

Figure 3(a) shows that, relative to the LQG controller,
the LTI RCAC controller Gc,10,000 reduces the error z
at all frequencies except at the command frequency 0.2
rad/sample, where its performance is slightly worse. In par-
ticular, Gc,10,000 suppresses e0 at 0.6 rad/sample significantly
more than the LQG controller. Of course, the LQG controller
is not aware of the presence of the “disturbance” at 3ωr.
It is possible to redesign the LQG controller to include an
internal model at both ωr and 3ωr, resulting in a controller
of order 11. However, this would require knowledge of both
ωr and f. It can be seen in Figure 4(a) that Gc,10,000 has
higher magnitude at 0.6 rad/sample than the LQG controller.
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Fig. 3: For each controller, (a) shows the PSD estimate (in sample/rad) for
e0; (b) shows the PSD estimate (in sample/rad) for u.
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200Fig. 4: (a) shows the frequency response of Gy0u, the LQG controller, and
the final RCAC controller Gc,10,000. (b) shows the frequency response of
Gy0u and the sensitivity functions corresponding to both controllers.

Consequently, in Figure 4(b) there is a deeper notch at
0.6 rad/sample in the sensitivity SRCAC corresponding to
Gc,10,000 compared to the sensitivity SLQG corresponding
to the LQG controller. As a consequence of the discrete-
time Bode sensitivity integral, the notch in SRCAC is less
deep than the notch in SLQG at 0.2 rad/sample. This is the
reason that Gc,10,000 has slightly worse performance than
the LQG controller at 0.2 rad/sample, but significantly better
performance at all other frequencies.

VI. COMMAND FOLLOWING EXAMPLES

For all examples in Sections VI and VII, we use the same
RCAC tuning parameters; no attempt is made to refine the
RCAC weightings for each example. In particular, we set
nc = 3, Rθ = 0.002, and Ru = 0.01, and use the target
model (7). In addition, we set

x
4
=

 x1
x2
x3

 , A =

 0 0 0.40
1 0 −1.62
0 1 2.20

 , (10)

B =

 0.12
−0.7
1

 , C =
[
0 0 1

]
. (11)

Note that Gy0u has poles {0.8, 0.7 ± 0.1} rad/sample, and
zeros {0.3, 0.4} rad/sample.

The examples in this section are for step and harmonic
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command following with d(k) = 0. For each example, the
command is either a step r(k) = β or a harmonic r(k) =
β cosωrk, where ωr > 0, and the initial condition is x(0) =
γ[1 1 1]T. The nominal parameters are α = 0.1, β = 1,
γ = 0, and ωr = 0.2 rad/sample. In examples 2 and 4
we test robustness by individually varying α, β, and γ with
the remaining parameters fixed at their nominal values. The
goal is to determine the range of values of α, β, and γ for
which the command is followed asymptotically. Sensor noise
is assumed to be absent for the examples in this section, but
is included in Section VII. Table I summarizes the examples
in this section. Except for Example 1, all examples in the
paper involve unmatched nonlinearities.

TABLE I: Summary of command-following examples.

Example f0 f Matched? Command
1 x21 + 1 Yes harmonic
2 |x1x2| No step
3 sgn(x2) No harmonic
4 ex1 No harmonic

5
[ 1

|x1|+1

log(1 + 5x22)

]
No Harmonic

Example 1. Harmonic command following with a
quadratic-plus-bias matched nonlinearity. Let f0(x) = x21+1
and Bnl = B. To evaluate the effect of the control input u for
the nonlinear plant, we first apply RCAC to the linear plant,
that is, with f = 0, and obtain the control input ulin produced
by the RCAC controller for the linear plant. By comparing
u to ulin, we can determine how RCAC, as applied to the
nonlinear plant, modifies the control input in order to account
for the presence of f. For the nominal parameters α, β, γ, ωr,
Figure 5 shows that RCAC follows the harmonic command.
Figure 6 shows that RCAC generates a control signal u for
the nonlinear plant such that u+f is close to ulin. This shows
that, in the matched case, the control generated by RCAC
for the nonlinear plant works together with the inaccessible
nonlinearity to produce a control signal that approximates the
control signal for the linear plant. In effect, RCAC cancels
f despite the fact that f is unknown and f(0) 6= 0. �
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Fig. 5: Example 1: Harmonic command following for f0(x) = x21+1 with
the nominal parameters. After a transient of about 20 steps, RCAC follows
the harmonic command.

100 120 140 160 180 200 220 240 260 280 300
-0.2

-0.1

0

0.1

0.2

100 120 140 160 180 200 220 240 260 280 300
-0.1

-0.05

0

0.05

0.1

Fig. 6: Example 1: Control input corresponding to Figure 5. The control
signal u(k) for the nonlinear system satisfies u(k) + f(x(k)) ≈ ulin(k).

Example 2. Step command following with a continuous-
but-nondifferentiable unmatched nonlinearity. Let f0(x) =
|x1x2| and Bnl = [−1 0 0]T. For the nominal values of α, β,
γ, ωr, Figure 7 shows that RCAC follows the step command.
Next, we vary α, β, γ one at a time with the remaining
parameters set to their nominal values. The resulting behavior
of e0 (not shown) for α ∈ [−0.35, 0.58], β ∈ [−3.73, 5.54],
and γ ∈ [−0.22, 0.55] is similar to Figure 7. This provides
an estimate of the region of convergence of RCAC in terms
of the parameters α, β, γ.
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Fig. 7: Example 2: Step command following for f0(x) = |x1x2| with the
nominal parameters. After the transient, RCAC follows the step command.

Next, we examine the performance of the final controller
Gc,300 corresponding to Figure 7 by applying it as an LTI
controller to the nonlinear plant. Using Gc = Gc,300 from
k = 0, the behavior of e0 (not shown) is similar to Figure
7 for the values α ∈ [−0.31, 0.28], β ∈ [−3.12, 2.92], γ ∈
[−1.70, 2.34] varied as described above. This provides an
estimate of the region of convergence of the final controller
Gc = Gc,300 in terms of the parameters α, β, γ. �

Example 3. Harmonic command following with a dis-
continous unmatched nonlinearity. Let f0(x) = sgn(x2),
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Bnl = [−1 0 0]T, and

ωr =

{
0.2 rad/sample, k ≤ 150,

0.4 rad/sample, k > 150.
(12)

For the nominal parameters α, β, γ, Figure 8 shows that
RCAC follows the harmonic command. In particular, RCAC
readapts at k = 150 to account for the change in the
command frequency. �
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Fig. 8: Example 3: Harmonic command following with the discontinuous
nonlinearity f0(x) = sgn(x2) using the nominal parameter values. RCAC
adapts to the abrupt change in command frequency at step k = 150.

Example 4. Harmonic command following with a time-
varying, exponential, unmatched nonlinearity. Let f0(x) =
ex1 and Bnl = [−1 0 0]T, and vary α as

α(k) =

{
−0.27 k

300 , k ≤ 300,

−0.27, k > 300,
(13)

with the remaining parameters set to their nominal values.
We thus write f(k, x) = α(k)f0(x) in place of f(x). Figure
9 shows that RCAC follows the harmonic command in the
presence of the time-varying nonlinearity.

Note that the final value −0.27 of α in (13) is less than
the most negative fixed value −0.15 of α for which RCAC
is able to stabilize the plant. �

Example 5. Harmonic command following with an
unmatched vector nonlinearity. Define

Bnl =

 1 0
0 1
0 0

 , f0(x) =

[ 1
|x1|+1

log(1 + 5x22)

]
. (14)

Note that f0 has two components, and both components
are unknown, unmatched, and inaccessible. For the nominal
parameters α, β, γ, ωr, Figure 10 shows that RCAC follows
the harmonic command. �
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Fig. 9: Example 4: Harmonic command following for f(k, x) =
−α(k)ex1 , where α varies according to (13). The remaining parameters
are set to their nominal values.
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Fig. 10: Example 5: Harmonic command following with the vector nonlin-
earity (14) both of whose components are unmatched and inaccessible using
the nominal parameter values.

VII. DISTURBANCE REJECTION EXAMPLES

We now consider disturbance rejection with step, har-
monic, and stochastic disturbances and with r(k) = 0. In
contrast to the command-following examples in Section VI,
we now set v ∼ N(0, 0.012) to simulate sensor noise. For
all examples in this section, let Bnl = [−1 0 0]T so that f
is unmatched. In addition, for each example, the disturbance
may or may not be matched with the control, that is, Dd = B
or Dd 6= B, respectively. Let d = δd0, and, as in the
case of command following, f = αf0. For each example,
the nominal parameters are α = 2.00, δ = 0.10, and, for
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examples 6 and 7, we individually vary α and δ with the
remaining parameter fixed at its nominal value to determine
the range of values for which RCAC rejects the disturbance.
For simplicity, we set x(0) = 0 for all examples. Therefore,
the domain of attraction is not investigated for the examples
in this section. Table II summarizes the examples in this
section, where τ > 0 is the saturation level.

TABLE II: Summary of disturbance-rejection examples.

Example f0 Disturbance
6 sgn(x1)|x1|

1
2 step

7 sin(x2) harmonic
8 satτ (x1) broadband

Example 6. Step disturbance rejection with a nonlip-
schitzian nonlinearity. Let f0(x) = sgn(x1)|x1|

1
2 , for all

k ≥ 0, d0(k) = 1, and Dd = B so that u and d are matched.
For the nominal values of α and δ, Figure 11 shows that
RCAC rejects the step disturbance in the presence of sensor
noise. Next, we vary α and δ one at a time with the remaining
parameter set to its nominal value. The resulting behavior of
e0 (not shown) for α ∈ [−1.79, 4.58] and δ ∈ [−1.49, 1.23]
is similar to Figure 11. �
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Fig. 11: Example 6: Step disturbance rejection for f0(x) = sgn(x1)|x1|
1
2

with the nominal parameter values. The absolute open-loop true error
|e0,OL(k)| and the absolute closed-loop true error |e0(k)| are shown
together for contrast. The signal-to-noise ratio (SNR) for y0 and v is 17.99.

Example 7. Harmonic disturbance rejection with a
harmonic nonlinearity. Let f0(x) = sinx2, Dd = [0 0 1]T,
v ∼ N(0, 0.082), and d0(k) = sin 0.32k. For the nominal
α and δ, Figure 12 shows that RCAC rejects the harmonic
disturbance in the presence of sensor noise. Using RCAC,
the error e0 is similar to Figure 12 (not shown) for all values
of α and δ, where each parameter is varied individually with
the remaining parameter fixed at its nominal value.

Next, we vary α and δ one at a time with the remaining
parameter set to its nominal value. The resulting behavior of
e0 (not shown) for all values of α, δ is similar to Figure 12.

Next, we examine the performance of the final controller
Gc,600 corresponding to Figure 12 by applying it as an LTI
controller to the nonlinear plant. Using Gc,600 from k = 0,
the behavior of e0 (not shown) is similar to Figure 12 for all
values of α and δ, varied as described above. �

Example 8. Broadband disturbance rejection with a
saturation nonlinearity. Let f0(x) = sat0.02(x1), Dd =

0 200 400 600
-20

-10

0

10

0 200 400 600

100

105

0 100 200 300 400 500 600
-50

0

50

100

0 100 200 300 400 500 600
-40

-20

0

20

40

Fig. 12: Example 7: Harmonic disturbance rejection for f0(x) = sinx2
with the nominal parameter values. The absolute open-loop true error
|e0,OL(k)| and the absolute closed-loop true error |e0(k)| are shown
together for contrast. The SNR is 53.56.
[0 0 1]T, and d0 ∼ N(0, 12). For the nominal values of
α and δ, Figure 13 shows that RCAC rejects the broadband
disturbance in the presence of sensor noise. �
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Fig. 13: Example 8: Broadband disturbance rejection for f0(x) =
sat0.02(x1) with the nominal values of parameters. The absolute open-
loop true error |e0,OL(k)| and the absolute closed-loop true error |e0(k)|
are shown together for contrast. The SNR is 25.84.

VIII. CONCLUSIONS

This paper provided a numerical investigation of output-
feedback adaptive control of nonlinear plants with un-
matched, inaccessible nonlinearities. Under extremely lim-
ited modeling information, which assumed no knowledge
of the nonlinearity, RCAC was able to stabilize, follow
step and harmonic commands, and reject step, harmonic,
and stochastic disturbances for various nonlinearities. Future
research will consider plants that are open-loop unstable and
nonminimum phase.
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