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Lyapunov-stable discrete-time model reference adaptive control

S. Akhtar®" and D. S. Bernstein

Department of Aerospace Engineering, The University of Michigan, Ann Arbor, M1 48109-2140, U.S.A.

SUMMARY

Discrete-time model reference adaptive control (MRAC) is considered with both least squares and
projection algorithm parameter identification. For both cases complete Lyapunov proofs are given
for stability and convergence. The results extend the approach of Johansson (Int. J. Control 1989; 50(3):
859-869) to include Lyapunov stability for MRAC when the normalized projection algorithm is used for
parameter identification. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In model reference adaptive control (MRAC), the objective is to have the plant emulate the
dynamics of a specified model in response to a family of command signals. Model reference
adaptive control has been extensively developed for continuous-time systems [1] and discrete-
time systems [2], where the boundedness of the controller parameters and the convergence of the
tracking error are demonstrated using the Gronwall-Bellman lemma and the key technical
lemma, respectively. The objective of the present paper is to unify and extend discrete-time
MRAC by constructing Lyapunov functions for error convergence and Lyapunov stability.

Discrete-time MRAC algorithms have been based on a variety of parameter identification
algorithms. In particular, the recursive least squares (RLS) algorithm and the projection
algorithm are used in Reference [3], where convergence is based on the key technical lemma.
This method of proof yields convergence but does not imply Lyapunov stability of the error
system. MRAC is considered in the presence of additive noise in References [2,4-6]. In these
results, convergence of the tracking error and parameters is guaranteed almost surely, but
stochastic Lyapunov stability is not demonstrated.

Lyapunov stability of discrete-time MRAC and convergence of the error to a finite set is
demonstrated in Reference [7], where the RLS algorithm is used for parameter identification and
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746 S. AKHTAR AND D. S. BERNSTEIN

a Lyapunov candidate is applied to the time-varying error system. Stochastic Lyapunov stability
of MRAC is addressed [8].

The novel Lyapunov construction of [7-10] is of independent interest since it involves the
logarithm of a quadratic form. A similar construction is used in Reference [11] for full-state-
feedback adaptive stabilization and in Reference [12] to a more general class of direct adaptive
stabilization algorithms with normalized adaptive laws.

In view of these developments, the present paper has the following objectives. First, we refine
the proof of Lyapunov stability and convergence for RLS parameter identification, where we
account for the time-varying dynamics of the error system and clarify the assumptions under
which the construction is valid. Next, we construct a Lyapunov proof of MRAC for the
projection algorithm. These constructs remove the need for the key technical lemma used in
Reference [3]. Finally, we simulate both MRAC algorithms to demonstrate their performance.

The contents of the paper are as follows. In Section 2 we present the solution to the model
matching control problem in the case of a known plant. In Section 3 the model matching error
dynamics in the case of an unknown plant are formulated. An adaptive control law with RLS
parameter identification is derived in Section 4. Stability of RLS adaptive control is
demonstrated in Section 5. An adaptive control law with the projection algorithm for
parameter identification is presented in Section 6, and a proof of stability is given in Section 7.
Section 8 presents simulation results. Finally, some concluding remarks on future extensions are
made in Section 9.

2. MODEL REFERENCE CONTROL FOR A KNOWN PLANT

Consider a SISO process described by the DARMA model

(k) = — Z} ay(k — i) + 2; bjulk —j), k=0 )
i= =
The model (1) can be written in terms of the forward shift operator q as
A(q)y(k) = B(q)u(k) 2
where A and B are polynomials of degree n and m, respectively, defined by
A@=q"+aq" +- +ay 3)
and
B(q) = boq" + b1q"" + - + by, “4)

where by #0. We define the delay d =#n — m and make the following assumptions about the
plant.

Assumption 2.1
The realization (2) is minimal, i.e. A and B are coprime.

Assumption 2.2
All roots of B(q) are inside the unit circle.
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Assumption 2.3
n and m are known, and m <n.

Assumption 2.4
by is known.

To modify the dynamics (2) we consider the 2-DOF model matching control law

_T@ S(9)
u(k) = R(@) ue(k) — Fq)y(k) )
where u, is the command signal. The closed-loop system (2)—(5) (see Figure 1) is then given by
_ B(q)T(q)
0= KR + Bas@ < ©

We want the response from the command signal u. to the output y to be described by the
reference model

Blﬂ (q)
An(q)

We make the following assumptions about the reference model.

Iym(k) = uc(k) (7

Assumption 2.5
A (q) is monic and stable.

Assumption 2.6
deg A,,(q) — deg B,,(q) = d, i.e. the reference model has the same delay as the plant.

The closed-loop system (6) and the reference model (7) have the same forced response if

B(@)T(q) _ Bu(@) ®)
A@R(9) +B(@)S@)  An(q)

Reference Model

| B, ?/m (k) : G(k)
" A '\D_’+

Filter Plant
uc(k) _ T 4 u(k) B y(k) > q—'n—d—O—lA yf(k),
R A > m

Controller

T

Figure 1. Model reference control.
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748 S. AKHTAR AND D. S. BERNSTEIN

which is equivalent to

T(q) __Bu(@ ©)
A(q)R(q) + B(q)S(q) An(q)B(q)

The roots of the closed-loop characteristic polynomial A, (q)B(q) consist of the roots of A, (q) as
well as the roots of B(q), all of which are stable by assumption. Let n, =deg A,,(q) and define

P(q) = An(q)B(q) = boq" ™ + pig"™ """+ 4 py (10)

To satisfy (9) it suffices to choose
T(q) = Bm(q) (11)
and require that R(q) and S(q) satisfy
A(@)R(q) + B(q)S(q) = P(q) (12)

Defining ng = deg R(q), ns = deg S(q), n. =n + ng + 1, and n, = ng + ng + 2, (12) can be written
as

% (R)
M = %(P) (13)
%(S)
where M e R"™*"™ is the Sylvester matrix
1 0 Ogi—1)x1 Ogx1 O+ 1)x1 Ogr+d—1)x1 |
al 1 1 b() b() bO
ay ay a b] b] bl
M= an . . .. bz
al‘[ an B . E bﬂl bl‘i‘[
L Op—1)x1  O—2)x1 ay Op—1yx1 Om—2)x1 bn ]
Furthermore, #R)=1[ry r - 71yl GS)=[s0 s1 -+ sil', and @(P)=
[bo p1 -+ pu+m]" are vectors containing the coefficients of R(q), S(q), and P(q),

respectively. In the remainder of the paper, we omit the explicit dependence of polynomial
operators on q.

Proposition 2.1

Assume that n, =2n—m—1 and ng =n— 1. Then, for each ng>0 there exist unique
polynomials R and S satisfying (13), or equivalently (12). Furthermore, if ng >ns then the
control law (5) is causal.

Proof

Since ng =n — 1 it follows that M e R ®R+TDx+m+D) 4o gquare. Also, since A and B are
relatively coprime, it follows that M is non-singular and the solution [€(R) %(S)]" to (13) is
unique. From (11) we have

deg T =degB, =degA, —d=2n—m—1—-—n+m=n—1 (14)
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Finally if ng >ns, then degR>degS = deg T, and thus the model matching controller (5) is
causal. O

Henceforth in accordance with Proposition 2.1 we assume that degS=nrn-—1 and
degA, =2n—m—1 so that degP =2n—1. Also, to obtain a minimum degree causal
controller we assume that deg R = n — 1 so that M e R*>*?". Hence we write

R=roq" " g 2+ 41 (15)
and
SZs0q" " +51q" P 4+ 50 (16)

where ry and sy are non-zero. In fact, it follows from (12) and (15) that ry = by.
Next to obtain a linear estimation model in terms of the controller we define the filtered
output signal (see Figure 1)

yi(k) =q " Ay (k) 17)
Then it follows from (2) that
7n7d+1AmB
itk = —="= ) (1s)

With the model matching condition (12), yr satisfies

q ""'(AR + BS)
—A u

B
= (R—I—Sz)u(k—n—kl)

yilk +d) = (k)

=Ru(k—n+1)+Sytk —n+1) (19)
Since rg = by (19) can be written as the linear identification model
ik + d) = bou(k) + ¢ (k)0 (20)
where the parameter vector 0 and the regressor ¢(k) are defined by
0=[r1 - re1 So - spio1] € R (1)
and
ey =[utk —1) -+ uk—n+1) ylk) - yk—n+1]"eR"! (22)

Using (19) and (20) the model matching control law (5) can be written as
1
u(k) = — FO[¢T(k)9 — q " Buue(k)] (23)

The filtered plant model (20) and the control law (23) are now in a form suitable for direct
adaptive control.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767



750 S. AKHTAR AND D. S. BERNSTEIN

3. MODEL MATCHING ERROR DYNAMICS

When the plant (2) is unknown we cannot solve (13) for the controller parameters R and S.
Hence, let R(k) and S(k) be polynomials in q that are estimates of R and S at time k. Then in

place of (5), the estimated model matching controller is

Stk)
u(k) = R(k) uc(k) — R(b)

With (24) the closed-loop system has the form

BB,
wk) = m uc(k)

Next let é(k) denote an estimate of 0 at time k and define the parameter error
0(k) = 0(k) —

y(k)

and the filtered output error signal (see Figure 2)
er(k) = ye(k) — q "~ Buuc(k)

To express eg(k) in terms of 0, note that

gt AnBBw o a AR+BS
kD =a R 188 P = ARwo 1 B3GR P
L BS
—gt A B k) =q " Ru(k) + Sy(k) Bunttc(k)
R BS(k) R(k)u(k) + S(k)y(k)
)+
bou(k) + @ (k)0

=— TnA Biuc(k)
q" ' [bou(k) + ¢ ()0(K)]

y
e}
|
;:
—
=
Y

N )
\ Filter Plant I
uc(k y(k
( ) > \Bm ( ) > q—n—d-l—lAm

R

Y

A

Y

Estimator

Figure 2. Model reference adaptive control block diagram.
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Combining (20) and (28) yields
bou(k) + @ ()0(k) = q "' Bruc(k) (29)
From (20), (27) and (29) it follows that
er(k +d) = ye(k + d) — q """ Bruc(k)
= bou(k) + ¢ (k)0 — bouk) — ¢" (k)0(k)
= — @ (k)0(k) (30)

To formulate the model matching error dynamics we note that the plant (2) can be written in the
nth order fraction form as [13] (see Figure 3(a))

Aé(k — n) = u(k) (31)

y(k) = B&(k —n) (32)
From (17) and (32) it follows that
vtk +d) = q " Apy(k) = 7" AnBE(k — n) = 7T PEGR) (33)

In a similar manner the reference model can be written in the 2n — 1th order non-minimal
fraction form (see Figure 3(b))

AnBCn(k — 1) = Buuc(k) (34)

Ym(k) = B (k —n) (35)
From (34) it follows that
q """ Butte(k) = " AmBEn(k — n) = q T PE (k) (36)
Using (33) and (36), the d-step ahead filtered output error can now be written as
er(k +d) = ye(k + d) — q """ Bruc(k)

=q P [E(k) — En(k)]

=q ""'PE (k) (37)
u(k) k) y(k)
—> x > B >
(a)
uc(k) B Em(k —n) Ym (k)
E— AB > B —

(b)

Figure 3. Fraction forms of the plant and the reference model.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767
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where

Eek) = &(k) — &)

Next define plant, reference model, and model-matching error states by

MR)E[Ek—1) - &k—2m+ D] e R
XmK)E[Enlk — 1) - &tk —2n+ 1] e R*!
and
xe(k) = x(k) — xm(k)
Then
welk) = [&lk=1) - &k =20+ D] e R
Since

Ce(k) =qée(k — 1)

1 1
—q|—q P — 1|k — 1) + —q T PE(K)
bo bo

1 1
= —q|—¢ "P - 1| &k — 1) + ek +d)
by bo

a state equation for x. in controllable canonical form is given by

1
Xe(k + 1) = Axc(k) + . Beg(k+d), k=0
0
where

[ —p1/bo -+ —pau_1/bo ] 1
0 0

N
[l>
oY
[le

10n-2)x2n-2)

0 0

(3%)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Note that 4 is asymptotically stable. Alternatively, using (30) the model matching dynamics (44)

can be written as

Xe(k + 1) = Axc(k) — biOBq;T(k)é(k), k=0

(46)

Next we show that the state x defined in (39) is related to ¢ through a non-singular

transformation.
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Lemma 3.1
The plant state x defined by (39) and the regressor (22) are related by
p(k) = Mox(k) (47)
where the non-singular matrix M, € R?"~D*"=1 is defined by
T 1l a a - a, 01x(n—2)
. 01x(n—2) I ai aa - a,
My= (48)
O1x@-1ybo b1 -+ by O1x(n—1)
L 01 x(mtd—2) by by - by
Proof
It follows from (31) and (32) that
[utk=1) 7 [ A@Ek—n—1)7
u(k —n+1) A(Q)E(k — 2n+ 1)
p(k) = = (49)
y(k) B(q)¢(k —n)
Ly(k—n+ 1)1 LB@&k —2n+1) ]

Equations in (49) can be written as
ulk — 1) = A(q)¢(k —n—1)

=[q"+aq"" + -+ )ik —n—1)
=lk—D+aé(k—2)+ -+ a,é(k—n—1)
=[1 @ - @][&k-1) - &k—-n-D]' (50)

ulk —n+ 1) = A(q)é(k — 2n+ 1)
=[q"+aq"" + -+ @ik —2n+1)
=&k—n+ 1)+ +a,é(k—2n+1)
=[1 a - a][é&k—n+1) - Ek-2n+D]" (51)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767



754 S. AKHTAR AND D. S. BERNSTEIN

(k) =B(q)é(k — n)
=[boq" + blqmil + o+ bw)é(k — n)
= boi(k — d) + -t bmé(k - 1’1)

=[lbo b1 - bullék—d) - &k—m]" (52)

y(k —n+1) =B(Q)é(k — 2n + 1)
=[boq” + b1q" ' + - + bylé(k — 2n+ 1)
=bol(k —n—d+ 1)+ -+ bk — 2n + 1)
—[by by - bullék—n—d+1) - Ek—2n+1D]" (53)

From (50)—(53) and (39) it follows that (k) = Myx(k), where M| is given by (48). It can be seen
that My is the (2n — 1) x (2n — 1) submatrix of M7, formed by omitting the first row and first
column of MT. Note that det M, = det M. Since A and B are relatively co-prime by assumption,
it follows that M is non-singular, and thus M| is non-singular. O

4. ADAPTIVE CONTROL USING RLS IDENTIFICATION

In this section we derive a recursive least squares update law for the parameter vector 0(k) of a
controller that drives ep(k + d) to zero asymptotically. To do this we minimize the retrospective
cost function

k
J(0k), k)= E*(0(k), i) (54)
i=d
where k>d and where the retrospective error is defined by

E0(k), i) = ye(i) — bou(i — d) — @ (i — d)0(k), k=>d (55)

The retrospective cost function (54) defines the performance of 0 by evaluating the present value
0(k) in terms of the past behaviour of the linear identification model (20) over the interval
d<i<k.

Next define

E(0k), ) =[ EO(k),d) -~ E(0(k),k)]" e R+ (56)

Y(k) = [ye(d) — bou(0) ... ye(k) — bou(k — d)]" e R4 (57)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767
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and
DK)=[p(0) -+ @k —d)]" e REHD*Cr=D (58)

so that
&0(k), k) = Y(k) — O(k)0(k) e RF4+1 (59)

With this notation the cost function (54) can be expressed as
J(O(k), k) = 8T (0(k), k)& (O(k), k)
=[Y (k) — ©(k)0(k)]"'[Y (k) — Dk)O(K)]

Next, we use a recursive least squares estimate of é(k) that minimizes J(k, é), for details see, for
example, Reference [14]. The RLS estimate for 6(k) is given by

Pk — Dotk — dyp (k — d)P(k — 1)

Py =Pk — 1) — o k=70~ Dot —d) 2(0)>0 (60)
0(k) = Ok — 1) + 2(k)p(k — d)[ye(k) — boutk — d) — " (k — d)0(k — 1)] (61)
where the model reference adaptive control law is
1 ”
u(k) = = - [ (K)0(k) — ¢~ " Buuc(K)] (62)

5. STABILITY OF MRAC WITH RLS IDENTIFICATION
Define
0(k)
Ok) = : (63)
Ok +d — 1)

Then the error state vector consisting of the model matching error states and the parameter
identification error states is defined by

I xe(k) 1
O(k)
X(k)£ vec(2(k)) (64)

L vec(2(k + d — 1)) |

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767
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Using (26), (30), (60), (61) and (46), the closed-loop error dynamics with RLS identification can
be represented as the (d + 1)2n — 1) + d(2n — 1)* dimensional system

Xe(k + 1) = Axe(k) — biBwT(k)é(k) (65)

0
Ok + 1) = 0(k) — 2(k + Dok — d + Do (k — d + 1)0(k) (66)
Ok + dy = 0k + d — 1) — 2(k + d)p(k)p  (k)0(k +d — 1) (67)

. By P(k)yptk — d + )T (k — d + )2(k)
vec[Z(k + 1)] = vec [7(@ T h ot —d E DP0et—d - 1)] (68)
P(k 4+ d — Do(k)e (k)P (k + d —

Note that the error system (65)—(69) is time varying since the regressor ¢(k) is a function of the
exogenous signal uc(k). Furthermore, every equilibrium of the error system (65)~(69) is of the
form (0, 0,,2,), where 2,>0.

Remark 5.1

Although the future parameter errors 0(k + 1) to 0(k + d — 1) and the future adaptation gain
matrices Z(k + 1) to #(k+d — 1) are not computed by the algorithm at time k, they are
included in the state vector X (k) to facilitate the stability analysis.

To demonstrate that every equilibrium of the system (65)—(69) is Lyapunov stable, the
following lemmas are required.

Lemma 5.1
Define
Vp(P) £ tr 2? (70)
AVp(k) = tr [Pk + 1) — 22(k))] (71
Vi0,2)=0"27'0 (72)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767
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and
AVi(k) =0 (k + D2~ (k + DOk + 1) — 0 ()2~ (k)0(k) (73)

Then, for all k=0,
AVyp(k)<0 (74)

—[p(k — d + DK
1+ Tk —d+ DP(k)p(k —d + 1)
and limy_,~, 2(k) and lim,_,, 0(k) exist.

AVy(k) = <0 (75)

Proof
The result follows from standard properties of RLS. See References [2, p. 60, 15,p. 202, 16,
p. 22, 17,p. 58].

Lemma 5.2
Forall k>0
[ (k)0(k)P? bl [o"(i — d + DO
1+ (pT(k)@(k)q)(k)< ; 14+ oT(—d+ D2>G)p(i —d + 1) (76)
Proof

From repeated self substitutions of (66) it follows that
d—1
Ok +d — 1) =00k) = > Pk +d — otk — iyo" (k — )0k +d —i—1)
i=1

k+d—-2
=0(k)y— Y 2>+ Doli —d + De" (i — d + 1)0() (7

i—k
Multiply both sides of (77) by ¢T(k)/\/1 + ¢T(k)2(k)p(k) to get

o' (k)0(k) 9" R0k +d — 1)
[1+ oT()2(K)p(R)]'*  [1 + ¢ (k)2(k)p(k)]'/*

§ W20+ Doli—d+ Do —d + D)

+

par [1+ @T (k)2 (k)p(k)]'/
Now using (69) yields
@ (k)0(k) _ 9"k +d 1)
[1+ T 2K)p(K)]'2 1+ ¢ (k)2 (k) (k)]
kid_2 oY ()2()o(i — d + D (i — d + 1)0(i)

; [1 + T2k /*[1 + @T(i — d + DP(i)ep(i — d + 1)]

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767



758 S. AKHTAR AND D. S. BERNSTEIN

Using the triangle inequality and the fact that 2(i) <2 (k) for all i>k it follows that
" (k)0(k) @"(k)0(k +d — 1)
[1+ T2 2|~ I[1 + ¢ TR 2(K)p (k)2

k+d—-2
>

i=k

S ‘

T ()2 — d + 1)
[1+ ¢T()2() ()] /[1 + ¢T(i — d + 1) P()e(i — d +1)]'/?

y ‘ @ (i —d + 1DOG)
[l 4 @T( — d + D2()o(i — d + 1)]'/?
Now using the Cauchy—Schwarz inequality we have
" (k)0(k) @ (k)0(k +d — 1)
[1+ TR 2R)e(] 2|~ I[1 + oT ()2 (k)p(k)]'/2

X

k+d—-2

p>

i=k

o (i — d + 1))
[14 ¢ TG —d+ D20)e(i —d + 1)]'/?

ket o (i — d + D)A(i)

(14 ¢T(i — d+ D2>()p(i — d + 1)]'/?

i=k

Lemma 5.3
Define
(k) =diag[ 2 '(k) --- 27 '(k+d—1)] (78)
Ve(©,I) =010 (79)
and
AVg(k) =0T (k + DIT ' (k + DOk + 1) — OT ()T (k)O(k) (80)
Then
—[p(k)i)T*
Ve ST T (e 6
Proof
From (63), (78) and (80) it follows that
k—+d N . k+d—1 N N
AVl = > "2 ' (HiG) — D 0" 02 (HiG) (82)
i=k+1 i=k

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:745-767
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Now using (75) and (76) we have
ktd—1 . 5 ~
AV = — +Z [¢"(i — d + DG _ [T (k)B(k)]

2. Troii—d+ DP0eli—d+ 1) 1+ 020ek) =

Lemma 5.4
Define

V() = tr [TTT1]]
and

AVi(k) = tr [T (k + DIT(k 4+ 1)] — tr [T (k)IT(k)]

Then

AVn(k)<0, k=0
Proof

From (74) and (78) it follows that
k+1 k
AV = Y w2 Y PN
i=k—d+1 i=k—d
k
=Y AVs<0 O

i=k—d

759

(83)

(84)

(85)

Lemma 5.5
Recall that 4 (45) is asymptotically stable. Let P, R € R™" be positive-definite matrices that
satisfy
P=A"PA+R+1
and define

0= \/Amax(ATPA)
Furthermore, let x> 0 and define
Vi (xe) = In(1 + px Pxe)
and
AV (k) = Vi (xe(k + 1) — Vi (xe(k))

Then

—xI(k)Rxe(k) + by (> + 1) BT PB[p(k)0(k)]?

< I
AV () <p I+ T (k) Pxe(k) ’

k=0

(86)

(87)
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Proof
Define

A 1 A A
FE=-P24, G=06P'’B, g(x.)=xIPx.
o

Then,
AJ (k)= x1(k + 1)Pxe(k + 1) — x! (k) Pxe(k)

T
P

Axo(k) — B

Ax.(k) — B

@(k)0(k)
bo

@(k)0(k)
bo

Omitting the explicit dependence on k we have

— X[ (k) Pxe(k)

AF L (k) = x;rATPAxe — xeTATPBbglq)Té — bgl » OB PAx, + bgl(pTHNBTPBba] - xeTPxe

=x1(A"PA — P)xe — xTATPBb; 0 0 — by ' 0B PAx. + by * (¢ 0)* BT PB
=x1(ATPA - P)x. — x'FTGb; 90 — by ¢ 0G" Fx. + by (¢ 0)* B"PB
=xI(A"PA — P+ F'F)x. — x F'Gb,'¢"0 — by 0" 0G" Fx. + by * (¢ 0)*B"PB

— xVFTFxe + by (9" 0)* GG — by (¢ 0)*GTG

o . _[F'F F'G Xt
=xT(ATPA — P+ F'F)xe — [xT  by'eT0] N
G'"F G'G || b;'o"0
+ (B'PB + G G)by > (9" 0)*
< xI(A"PA — P+ F'F)x. + (B"PB + GTG)by (9" 0)
Noting that
e ATPA _ ATPA _man(ATPA, L

02 dmax(ATPA) "~ dmax(ATPA)
it follows from (85) that
A"PA - P+ F'TF<A"PA—P+1=-R
Therefore,
xT(k)ATPA — P+ FTF)x.(k) < — xT(k)Rxe(k)
which implies that

A S (k)< — xL(k)Rxe(k) + (B"PB + G G)by*[p(k)O(k))*

Since GTG = ¢>BT PB, it follows from (88) that
A J . ()< — xI(k)Rxe(k) + (6* + 1)BT PBby [p(k)0(K))*

(88)
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Now, since In x<x — 1 for all x>0,

AV (k) 1n<1 tu

AJ (k) )
1 + puxT(k)Px.(k)
xT(k 4 1)Pxe(k + 1) — xT (k) Pxe(k)

1 + pxI(k)Pxc(k)
_ ~Xe(B)Rxe(k) + by*(o” + DB" PBlo(k)0(k)
SH 1+ ixT (k) Pxo(k)

X

O

We now present the main stability result for MRAC with RLS identification.

Theorem 5.1
Assume that the reference signal uc(k) is bounded. Then every equilibrium of the error system
dynamics (65)—(69) is Lyapunov stable, 6(k) and 2(k) converge, and y(k) — yn(k) — 0 as k — oo.

Proof
Consider the Lyapunov function candidate
V(X) = aV (xe) + V(©,11) + Vn(ID) (89)
Let P, R € R™" be positive definite and satisfy (85), and let @ > 0. Then using Lemmas 5.5, 5.3
and 5.4 it follows that
AV(k)=V(X(k + 1)) — V(X (k)

<~V RRxe(K) + (0 + DBTPBlp(R)0KIY /by (oK)

S ap 1+ uxT (k) Pxe(k) 1+ ¢T(k)2(k)p(k)
Now from (47) it follows that

@ (K)2()p(k)< @' (k)2(0)p(k)

=x"M; P(0)Mx
= (e + xm) " M 2(0)Mo(xe + ¥m)
< xIMJP0)YMoxe + x5 My P(0)Mox (90)
Let u; > 0 satisfy
P> Mg 2(0)M, O1)

Since, by assumption, the command signal u.(k) is bounded and A, is stable, there exists # >0
such that

X (k)xm(k) < B 92)
Using (90)—(92) it follows that
P (k)2(k) (k) < ,ulngxe + ,ulxg]me

< ,ulx;rPxe + ﬁ,ul/lmax(P) (93)
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Defining
a Hy
h= 1+ ﬁ:ul/lmax(P) (94)
and
a= i (95)
1+ (2 + 1)BTPB
it follows that
ny < B RRY(K) + (0 + DBTPBlp(R) IR (et
= (1 By Zmax(P)(1 + py(0? + DBTPB)(1 + pux] (k) Pxe(k)) 1+ @T(k)2(k)p(k)
_ — BT (k) R ()
= (1 By Amax(P)(1 + 1y (02 + DBTPB)(1 + ux (k) Pxe (k)
T
X, (k) Rx(k) (96)

IR T 3Y 2N ()

Since V(X) is positive definite and radially unbounded it follows from (96) that the origin of the
error system (65)—(69) is Lyapunov stable. Furthermore, using Theorem A.1 it follows that
xe(k) = 0 as k - oo. Then using (32) and(35) we have that y(k) — yn(k) - 0 as k — c0. The
convergence of O(k) and 2(k) follows from Lemma 5.1. O

6. PROJECTION ADAPTIVE CONTROL ALGORITHM

In Sections 4 and 5 we developed and proved the stability of MRAC in which the controller
parameters are updated using RLS. In Sections 6 and 7 we consider the case in which the
controller parameters are updated using the projection algorithm.

Consider the cost function

Ji(0k), 0k — 1), k) = 5110(k) — Ok — DIl + ADv(k) — boutk — d) — ™ (k — IR~ (97)
where A is the Lagrange multiplier. A recursive expression for é(k) that minimizes (97) is given
by [2,p. 51]

o(k — d)yr(k) — bouk — d) — ¢ (k — d)0(k — 1)]

0(k) = 0(k — 1) + ok — Dotk —d) (98)
Therefore, the adaptive control law is
A 1 A —
u(k) = — by [o" (:)0(k) — ¢~ ' Bruec(k)] 99)
with the parameter update
- .
(e 1y g k= ADi) bk — ) — "k =)k 1)
I S Tk — Dok — d) PE=DED o0y
0k — 1), otk —d) =0
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7. STABILITY OF MRAC WITH PROJECTION IDENTIFICATION

The error state vector consisting of the model matching error states and the parameter
identification error states is defined by

T

Xe(k)
O(k)
Using (26), (30), (46) and (100), the closed-loop error dynamics with projection identification
can be represented in the state space form, for k>0, by

X(k)= (101)

xe(k + 1) = Axe(k) — bqu)T(k)é(k) (102)
0
~ B otk —d+ DoT(k—d+ 1] x
Ok + 1) = {1_¢T(k—d+1)<p(k—d+l)} 0(k) (103)

0k + d) = {1 - (”(k)"’T(k)} Ok +d — 1) (104)

@ (k)op(k)
Before presenting the main stability results we state the following lemmas.

Lemma 7.1
Define
Vy0) =00 (105)
and
AV(k) =0 (k + D0k + 1) — 07 (k)0(k)
Then

) —[¢"(k — d + DK
SViOS e d Dot —d s DS k20 (106)

and, for all 1>0, {||0(k + ?) — 0(k)|[}}°, € L.

Proof
See References [2,p. 51, 16, p. 78].

Lemma 7.2
Forall k>0

[o" WO _ =" [0 —d + DIGP
oTR)ek) ~ & @7 —d+ Dpli—d+1)
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Proof
From repeated self substitutions of (103) it follows that

- <tk — e Tk — itk +d —i—1
9(k+d—1):9(k)—21:¢( Z)ZjTEk_gw((kti)l )

k+d=2 - Ty: Ao
A o(i—d+ e (i —d+ 1)@)
=0 - > [pT(i —d + (i —d + 1)]

(107)
i=k
Multiplying both sides of (107) by ¢(k)/\/@T(k)p(k) yields

" (0K) @ Rk +d—1) T TRl —d+ D" —d + 1))
[T [oTRp®]'? S (9T (9T —d + Dol — d + 1)]

The triangle inequality implies

@ (k)0(k)

' ‘PT(k)ﬁ(k +d-1) k+d—2
[oT(k)p(k)]'/?

[T (k) (k)] par
’ @ (i — d + 1)A(i)
[T —d + De(i —d + 1)]'/?

(pT(k)(p(i —d+1)
[T (k) p()] [T (i — d + V(i — d + 1)]'/?

<

Now using the Cauchy—Schwarz inequality we have

‘ o WO | _ o 00tk +d - 1| =’ o™i —d+ D)
[T (k)2 ~ | [@T(R)e(k)]/ — o™i —d + De(i —d + 1)]'/?
B "*Z‘“ @ (i — d + DO(i)
S e —d+ Do —d + 1]
Lemma 7.3
Define
Vs(©)=0T0 (108)
and
AVe(k) =0T (k + DOk + 1) — T (k)O(k) (109)
Then
[p(k)0(F))
AV (k)< = TRl k=0 (110)
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Proof
From (63) and (109) it follows that

k+d N R k+d—1 N R
AVl = > 0T - > 0(0)0G) (111)

i=k+1 i=k

Using Lemmas 7.1 and 7.2 yields

= lo"i—d+ DIOP o' WikF

AVg(k) = — ; OTi—d+Dpli—d+ 1) @T(k)p(k)

We now present the main stability result for MRAC with projection identification.

Theorem 7.1
Assume that the reference signal u (k) is bounded . Then every equilibrium of the error system
dynamics (102)—(104) is Lyapunov stable, and y(k) — ym(k) — 0 as k — oc.

Proof
The proof follows along the same lines as Theorem 5.1 except that the Lyapunov candidate is
defined by

V)= aVy(xe) + Ve(©) (112)
and y, is chosen to satisfy
P> M; M,
where P is the positive-definite matrix satisfying (85). O
8. EXAMPLE
Example 8.1
Consider the unstable minimum phase SISO plant with relative degree d = 2 given by
y@) _ q+0.5

= 113
ugq ¢+ +q+15 (113)
To track reference signals we choose an FIR filter as the reference model. We require
degA, =2n—m—1=4 and degB,, = deg A, — d = 2. Let the reference model be

ym(@ ¢

ulq) q*
and let u.(k) be a square wave with period of 100 samples. The plant (113) with the control law

(62) and the parameter updates (60)—(61) and (100) is simulated in MATLAB. The simulation
results are shown in Figures 4 and 5.

(114)
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Figure 4. Tracking performance with RLS identification.
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Output
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0 50 100 150 200 250 300 350 400 450 500
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Figure 5. Tracking performance with projection identification.

9. CONCLUDING REMARKS

In this paper we considered model reference adaptive control using both recursive least squares
and projection identification. In both cases Lyapunov stability is established. A future extension
of the present work will include the supermartingale analysis of Reference [8] with alternative
identification algorithms including projection, stochastic approximation, and least mean
squares.
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APPENDIX A
The following result is a discrete-time version of Theorem 4.4 of Reference [18].

Theorem A.1

Let N denote the set of non-negative integers, let 2 < R" be an open neighbourhood of the
origin, W : 2 — (0,00), W2 : 2 — (0,00), W : 2 - [0,00), f :Nx 2 > R'"and V:Nx 2 —
R be such that W (x)<V(k,x)<W>y(x) for all keN and xeZ and AV=V(k+1,
f(k,x))— V(k,x)< — W(x) for all ke N and x € Z. Furthermore, define B, = {xe Z : ||x||<r}
and let 7, <minyy—.Wi(x). Then all solutions of x4 = f(k, x(k)) with xg € {x € B, : W1(x)<1,}
are bounded and satisfy W(x(k)) —» 0 as k — oo.

Proof

Choose 7. > 0 such that 7, <minyy=, Wi(x). Then {x € B, : Wh(x)<1,} c{xe B, : V(k,x)<1,} =
{xe B, : Wi(x)<7,}.Letxo e {x e B, : Wa(x)<t,}. Thenx e {xe B, : V(k,x)<rt,} for all k=0.
Hence ||x(k)||<r for all k=0. Since V(k, x) is bounded from below, the limit

k k
lim Y WEO)< — lim Y A VEx(D) = V(0.x0) — lim V(k, x(k))
—00 gv:() —00 C:O K— 00
exists. This implies that W(x(k)) — 0 as k - oo. O
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