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SUMMARY

This paper introduces an estimator for errors-in-variables models in which all measurements are corrupted
by noise. The necessary and sufficient condition minimizing a criterion, defined by squaring the empirical
correlation of residuals, yields a new identification procedure that we call least-correlation estimator. The
method of least correlation is a generalization of least-squares since the least-correlation specializes to
least-squares when the correlation lag is zero. The least-correlation estimator has the ability to estimate
true parameters consistently from noisy input–output measurements as the number of samples increases.
Monte Carlo simulations also support the consistency numerically. We discuss the geometric property of
the least-correlation estimate and, moreover, show that the estimate is not an orthogonal projection but an
oblique projection. Finally, recursive realizations of the procedure in continuous-time as well as in discrete-
time are mentioned with a numerical demonstration. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although method of least-squares developed in the 18th century is still the most popular
approach for determining the best fit to a given structure [1], this technique exhibits high
sensitivity to errors in regressors [2, 3]. A generalized approach to modelling noise is to view all
variables as contaminated by noise, called errors-in-variables (EIV) models [4–10]. These models
have broad application in time series modelling, image processing, signal processing, neural
networks and system identification in the fields of engineering, econometrics, and statistics. A
recent trend in systems is the use of powerful computers with low-grade instruments, which
implies that the needs for EIV models are increasing.

We introduce a criterion defined by squaring the empirical autocorrelation of residuals and
derive an estimate minimizing the criterion with sufficiency and necessity. Optimality in the
sense of least correlation has several attractive features. The approach works not only on static
systems but also on dynamic systems since it does not depend on the specific structure of the
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regressors. Only simple matrix algebra is needed to derive the estimate. There is a direct
relationship between the criterion and the stochastic correlation. It works on EIV models with
coloured noises as well as with white noises. The literature reveals that the ‘error whitening
Wiener filter’ [11, 12] can be considered as a stochastic counterpart of the least-correlation
estimate introduced in this work. Under the setting in References [11, 12], the estimation
residuals are whitened by the ‘error whitening Wiener filter’. In the generalized formulation of
the present paper, however, the whitening filter is not able to whiten the residuals any more. In
this sense, the term ‘error whitening’ cannot be used for this work.

In Section 2, we set the system model, define the problem and introduce assumptions. Section
3 begins with the definition of the least-correlation criterion and proceeds to the derivation of
the least-correlation estimate. The estimate satisfies sufficiency and necessity in order to min-
imize the criterion. Consistency of the estimate is also mentioned. We discuss in Section 4 the
geometrical aspect of the new estimate. Its geometrical property is partly similar to and partly
different from that of the least-squares. An example shows that the least-correlation estimate is
not an orthogonal projection but a kind of oblique projection. Section 5 shows a numerical
example. Monte Carlo simulations support the consistency numerically. Section 6 states the
recursive least-correlation (RLC) realization of the least-correlation estimator and shows a
numerical demonstration of the RLC algorithm. Concluding remarks are given in Section 7.

2. PROBLEM FORMULATION

Consider the linear regression model

zðtÞ ¼ fTðtÞyþ Z1ðtÞ ð1Þ

where zðtÞ 2 R is the system response at the tth sample time, fðtÞ 2 Rn is the regression vector,
y 2 Rn is the parameter vector and Z1ðtÞ 2 R denotes possible residuals in modelling. The com-
ponents of fðtÞ depend on the type of system models. For example, fðtÞ is composed of current
inputs in linear static systems, delayed inputs in finite impulse response (FIR) systems, delayed
outputs in all-pole systems or in autoregression (AR) models, and both delayed inputs and
delayed outputs in autoregression with exogenous variables (ARX) models.

Let yðtÞ and cðtÞ denote noisy measurements of zðtÞ and fðtÞ as

yðtÞ ¼ zðtÞ þ Z2ðtÞ ð2Þ

cðtÞ ¼ fðtÞ þ zðtÞ ð3Þ

where Z2ðtÞ 2 R and zðtÞ 2 Rn are additive noises. Taking into account the noisy measurements of
regressors as well as outputs constitutes an EIV problem [5, 8–10, 13]. Applying (2), (3) to (1)
yields

yðtÞ ¼ cTðtÞyþ eðtÞ ð4Þ

eðtÞ ¼ ZðtÞ � zTðtÞy ð5Þ

where ZðtÞ ¼4 Z1ðtÞ þ Z2ðtÞ denotes the total error on output measurements. Let us state the
identification problem for the EIV model.
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Problem 1
Given the system model (1) and the measurement model (2), (3), estimate the system parameter
y based on the available measurements cðtÞ and yðtÞ:

For a common framework for deterministic and stochastic signals [13, p. 34], we employ the
definition of quasi-stationary signals and the notation

%E½ f ðtÞ� ¼4 lim
N!1

1

N

XN
t¼1

E½ f ðtÞ� ð6Þ

which works on the deterministic components as well as the stochastic parts of the quasi-
stationary signal f ðtÞ; where E denotes mathematical expectation. We implicitly assume that the
limit in (6) exists when %E is used.

We introduce the following assumptions.

A1. The system is represented as a linear regression model, and the number of parameters to
be estimated is known a priori. If the system is dynamic, it is uniformly stable.

A2. Measurements cðtÞ and yðtÞ are jointly quasi-stationary.
A3. The noises ZðtÞ and zðtÞ are zero mean and at most finitely cross-correlated with cðtÞ; that

is, there exists t > 0 such that

%E½fðtÞzTðt� kÞ� ¼ 0; %E½zðtÞzTðt� kÞ� ¼ 0 ð7Þ

%E½fðtÞZðt� kÞ� ¼ 0; %E½zðtÞZðt� kÞ� ¼ 0 ð8Þ

for all jkj5t:
A4. For t in A3, cðtÞ satisfies

rank½ %Rccðt; t� t;NÞ þ %Rccðt� t; t;NÞ� ¼ n ð9Þ

where N is the number of samples and the empirical correlation matrix %Rccðt1; t2;NÞ
with t1 ¼ t; t2 ¼ t� t or t1 ¼ t� t; t2 ¼ t is defined by

%Rccðt1; t2;NÞ ¼
4 1

N � jt1 � t2j

XN
t¼1þjt1�t2 j

cðt1Þc
Tðt2Þ ð10Þ

3. LEAST-CORRELATION ESTIMATES

Consider an arbitrary estimate %y with the residual

eðt; %yÞ ¼ yðtÞ � cTðtÞ%y ð11Þ

which models the mismatch between observations and estimates. If the residual from the least-
squares estimate is not white, then at least one of the following statements is true.

(1) Either the modelling is not complete or the estimation procedure has an error at least.
(2) Either ZðtÞ or zðtÞ is coloured.
(3) There is a non-zero correlation between cðtÞ and either ZðtÞ or zðtÞ:
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Applying (4), (5) to (11) gives conditions (1) and (2). Condition (3) is obtained by applying least-
squares to the EIV problems (4), (5) [2, 14].

Given %y ¼ y and ZðtÞ ¼ 0; the correlation %E½eðt; %yÞeðt0; %yÞ� is zero for all jt� t0j5t due to A3,
but the mean square error %E½e2ðt; %yÞ� is never zero. Based on this insight, we introduce a criterion

J2ð%y; t;NÞ ¼
1

Nt

XN
t¼1þt

eðt; %yÞeðt� t; %yÞ

 !2

ð12Þ

where NgðtÞ ¼
4
N � gðtÞ; t is an integer defining the correlation lag and N denotes the number of

samples. It is noted that Jð%y; 0;NÞ is the criterion of least squares. Function (12) is rewritten as

J2ð%y; t;NÞ ¼
1

2Nt
ðY0=t �C0=t %yÞ

TðYt=0 �Ct=0 %yÞ
� �2

ð13Þ

with the stacks of measurements C0=t; Ct=0 2 R2Nt�n and Y0=t; Yt=0 2 R2Nt defined by

C0=t¼
4

C0

Ct

" #
; Ct=0¼

4
Ct

C0

" #
; Yt=0¼

4
Yt

Y0

" #
; Y0=t¼

4
Y0

Yt

" #
ð14Þ

where Y0; Yt 2 RNt and C0; Ct 2 RNt�n are defined by

Y0ðt;NÞ ¼
4

yðNÞ

yðN � 1Þ

..

.

yð1þ tÞ

2
6666664

3
7777775
; Ytðt;NÞ ¼

4

yðNtÞ

yðNtþ1Þ

..

.

yð1Þ

2
6666664

3
7777775

ð15Þ

C0ðt;NÞ ¼
4

cTðNÞ

cTðN � 1Þ

..

.

cTð1þ tÞ

2
66666664

3
77777775
; Ctðt;NÞ ¼

4

cTðNtÞ

cTðNtþ1Þ

..

.

cTð1Þ

2
66666664

3
77777775

ð16Þ

For notational convenience, we define X 2 Rn�n; U 2 Rn and O 2 R as

Xðt;NÞ ¼4
1

2Nt
CT

0=tCt=0 ¼
1

2Nt
CT

t=0C0=t

¼
1

2
f %Rccðt; t� t;NÞ þ %Rccðt� t; t;NÞg ð17Þ

Uðt;NÞ ¼4
1

2Nt
CT

0=tYt=0 ¼
1

2Nt
CT

0=tYt=0

¼
1

2
f%rcyðt; t� t;NÞ þ %rcyðt� t; t;NÞg ð18Þ
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Oðt;NÞ ¼4
1

2Nt
YT

0=tYt=0 ¼
1

2Nt
YT

0=tYt=0

¼
1

2
f%ryyðt; t� t;NÞ þ %ryyðt� t; t;NÞg ð19Þ

where %rcyðt1; t2;NÞ and %ryyðt1; t2;NÞ are empirical correlations defined as in (10). Minimizing (13)
yields the least-correlation estimate.

Theorem 2 (least-correlation estimate)
Consider J2ð%y; t;NÞ in (12) or (13). Suppose that A4 is satisfied. Then Xðt;NÞ is nonsingular.
Furthermore, J2ð%y; t;NÞ has a unique minimum at

#yðt;NÞ ¼ ðCT
0=tCt=0Þ

�1CT
0=tYt=0 ¼ X�1ðt;NÞUðt;NÞ ð20Þ

and the corresponding minimum of J2ð#y; t;NÞ is

J2ð#yðt;NÞ; t;NÞ ¼ fOðt;NÞ � UTðt;NÞX�1ðt;NÞUðt;NÞg2 ð21Þ

Proof
The matrix Xðt;NÞ is nonsingular since the empirical correlations in (17) have full rank due to
A4. Taking the gradient of (13) with respect to %y yields the necessary condition

CT
0=tCt=0

#y ¼ CT
0=tYt=0 ð22Þ

that is

Xðt;NÞ#y ¼ Uðt;NÞ ð23Þ

where #y minimizes (13). Adding and subtracting UTX�1U in (13) and completing the squares
yields

J2ð%y; t;NÞ ¼ fð%y� X�1UÞTXð%y� X�1UÞ þ ðO� UTX�1UÞg2 ð24Þ

Since the second term of (24) is independent of %y; (20) is unique and minimizes J2ð%y; t;NÞ since
A4 is satisfied. Substituting (20) into (24) yields (21). &

Remark
It is noted that (22) plays an important role similar to the normal equation of least squares.
Setting t ¼ 0 to (22) and (20) yields the normal equation

Xð0;NÞ#y ¼ Uð0;NÞ ð25Þ

that is

%Rccð0;NÞ#y ¼ %rcyð0;NÞ ð26Þ

and the least-squares estimate

#yð0;NÞ ¼ X�1ð0;NÞUð0;NÞ ¼ %R�1ccð0;NÞ%rcyð0;NÞ ð27Þ

respectively.
Now let us consider the convergence of the least-correlation estimate. As the number of

samples tends to infinity, the empirical correlations in (17)–(19) converge to the corresponding
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mathematical correlations with probability 1 as given by

lim
N!1

Xðt;NÞ ¼ lim
N!1

1

2
f %Rccðt; t� t;NÞ þ %Rccðt� t; t;NÞg ¼ RccðtÞ ð28Þ

lim
N!1

Uðt;NÞ ¼ rcyðtÞ ð29Þ

lim
N!1

Oðt;NÞ ¼ ryyðtÞ ð30Þ

due to A1–A3 and the ergodicity [13, Theorem 2.3, p. 43].

Theorem 3 (consistency)
Suppose that A1–A4 are satisfied. Let #yðt;NÞ be defined by (20). Then

lim
N!1

#yðt;NÞ ¼ y with probability 1 ð31Þ

Proof
According to the ergodicity as well as A1–A2,

sup
%y
jJ2ð%y; t;NÞ � %J2ð%y; tÞj ! 0; with probability 1 as N !1 ð32Þ

where %J2ð%y; tÞ ¼4 %E2½eðt; %yÞeðt� t; %yÞ�: The criterion J2ð%y; t;NÞ; therefore, converges uniformly to
%J2ð%y; tÞ: This implies that the unique minimizing argument #yðt;NÞ of J2 converges to the min-
imizing argument #yðtÞ of %J2: We show the uniqueness of #yðtÞ and #yðtÞ ¼ y as follows. When N
goes to infinity, (22) and (24) gives the unique minimum

#yðtÞ ¼ R�1ccðtÞrcyðtÞ ð33Þ

of %J2 as in the proof of Theorem 2. Moreover, #yðtÞ is evaluated as

#yðtÞ ¼ R�1ccðtÞfRccðtÞyþ rcZðtÞ � RczðtÞyg ¼ y ð34Þ

since rcZðtÞ ¼ 0; RczðtÞ ¼ 0 due to A3. &

Setting t ¼ 0 in Theorem 3 gives the convergence property of least-squares which is
equivalent to References [13, Theorem 8.2, p. 254], [14], [15, Theorem 5.2.1, pp. 226–227]. For
the EIV model (1)–(5), the least-squares estimates #yð0;NÞ in (27) generates the error-prone
results as

lim
N!1

*yð0;NÞ ¼ R�1ccð0ÞfrcZð0Þ � Rczð0Þyg ð35Þ

where *yðt;NÞ ¼4 #yðt;NÞ � y; since Rczð0Þ cannot be zero even if zðtÞ is white. The conventional
least-squares estimate, therefore, is not consistent for EIV models.
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4. GEOMETRICAL ASPECT OF THE LEAST-CORRELATION ESTIMATE

Consider (22). Two equations

CT
0=tYt=0 �CT

0=tCt=0
#yðtÞ ¼ 0 ð36Þ

CT
t=0Y0=t �CT

t=0C0=t
#yðtÞ ¼ 0 ð37Þ

are equivalent to. Let us rewrite the estimated outputs as

#Y t=0ð#yðtÞÞ ¼ Ct=0
#yðtÞ ð38Þ

#Y0=tð#yðtÞÞ ¼ C0=t
#yðtÞ ð39Þ

and the corresponding residuals as

Et=0ð#yðtÞÞ ¼ Yt=0 �Ct=0
#yðtÞ ð40Þ

E0=tð#yðtÞÞ ¼ Y0=t �C0=t
#yðtÞ ð41Þ

From the above expressions, we obtain the following property:

Lemma 4 (orthogonality)
Suppose that A4 is satisfied. Let #yðtÞ be defined by (20). Then

CT
0=tEt=0 ¼ CT

t=0E0=t ¼ 0 ð42Þ

Proof
Using (40), (41)–(36), (37) yields (42). &

Corollary 5
Property (42) is equivalent to

#YT
0=tEt=0 ¼ #YT

t=0E0=t ¼ 0 ð43Þ

Proof
Left-multiplying (42) by #yTðtÞ and employing (38), (39) gives (43). &

Let Yt=0 and Y0=t be linear vector spaces, Yt=0 2 Yt=0 and Y0=t 2 Y0=t; respectively, and let #Yt=0
and #Y0=t be corresponding subspaces, #Yt=0 2 #Yt=0 � Yt=0 and #Y0=t 2 #Y0=t � Y0=t: Let Pt=0 and
P0=t; defined by

Pt=0¼
4 C0=tfC

T
t=0C0=tg

�1CT
t=0 ð44Þ

P0=t¼
4 Ct=0fC

T
0=tCt=0g

�1CT
0=t ð45Þ
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operate on Yt=0 and Y0=t; respectively. Then the operators Pt=0; P0=t map the measurements
Yt=0; Y0=t to the estimates #Y t=0; #Y0=t as

#Y t=0ð#yðtÞÞ ¼ Pt=0Yt=0 ð46Þ

#Y0=tð#yðtÞÞ ¼ P0=tY0=t ð47Þ

With an identity matrix I 2 RNt�Nt ; let us define a matrix

J ¼
0 I

I 0

" #
ð48Þ

Note that J2 ¼ I : Observations on Pt=0 and P0=t include the following properties summarized in
Figure 1 and Lemma 6. Figure 1 depicts the relationships among the operators Pt=0; P0=t; the
measurements Yt=0; Y0=t; Ct=0; C0=t; the estimates #Y t=0; #Y0=t; and their residuals Et=0; E0=t:

Lemma 6
Pt=0 and P0=t have the following properties:

1. Pt=0 and P0=t are oblique projection operators.
2. Pt=0 ¼ PT

0=t and P0=t ¼ PT
t=0:

3. Pt=0 ¼ JP0=tJ and P0=t ¼ JPt=0J:
4. ðI � P0=tÞJ ¼ JðI � Pt=0Þ and ðI � Pt=0ÞJ ¼ JðI � P0=tÞ:

Figure 1. Relationship among operators, measurements, estimates, and/or residuals.
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5. Both ðI � P0=tÞJ and ðI � Pt=0ÞJ are self-adjoint.
6. Suppose that JðI � Pt=0Þ and JðI � P0=tÞ operate on Yt=0 and Y0=t; respectively.

Then range½Pt=0� is orthogonal to range½JðI � Pt=0Þ�; and range½P0=t� is orthogonal to range
½JðI � P0=tÞ�:

Proof
Each item is composed of two statements. It is enough to sketch one of them.

1. Pt=0 is idempotent, P2
t=0 ¼ Pt=0; but not self-adjoint, Pt=0=PT

t=0 [16, 17, p. 71].
2. The statement follows immediately from (44) and (45).
3. Applying the equivalent expression

P0=t ¼
CtfCT

t=0C0=tg
�1CT

0 CtfCT
t=0C0=tg

�1CT
t

C0fCT
t=0C0=tg

�1CT
0 C0fCT

t=0C0=tg
�1CT

t

2
4

3
5 ð49Þ

to the right-hand side of the first equality shows

JP0=tJ ¼
C0fCT

t=0C0=tg
�1CT

t C0fCT
t=0C0=tg

�1CT
0

CtfCT
t=0C0=tg

�1CT
t CtfCT

t=0C0=tg
�1CT

0

2
4

3
5

¼C0=tfC
T
t=0C0=tg

�1CT
t=0 ¼ Pt=0 ð50Þ

4. JðI � Pt=0Þ ¼ J � JPt=0 ¼ J � JPt=0JJ ¼ J � P0=tJ ¼ ðI � P0=tÞJ:
5. Since we confine our discussion to real data in this work, it is enough to show the self-

symmetry instead of the self-adjoint as

½ðI � P0=tÞJ�
T ¼ J � JPt=0JJ ¼ J � P0=tJ ¼ ðI � P0=tÞJ ð51Þ

6. Consider an arbitrary vector Yt=0 2 Yt=0: Applying Pt=0 to Yt=0 generates #Y t=0 from (46)
and using ðI � P0=tÞJ to Yt=0 yields

ðI � P0=tÞJYt=0 ¼ ðI � P0=tÞY0=t ¼ Y0=t � #Y0=t ¼ E0=t ð52Þ

According to Corollary 5, E0=t and #Y t=0 are orthogonal. Thus the spaces spanned by E0=t and
#Y t=0 are also orthogonal. &

5. NUMERICAL EXAMPLE

Fourier series is an optimal fitting in the sense of least squares [18]. We modify the problem into
the EIV setting with

fðtÞ ¼ ½sin 2pt sin 6pt�T

y ¼ ½4=p 4=3p�T
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zðtÞ ¼ sign½sin 2pt�

Z1ðtÞ ¼ zðtÞ � fTðtÞy

Z2ðtÞ ¼
0:2

1� 0:8q�1
xZðtÞ

ziðtÞ ¼ Gzðq�1Þxzi ðtÞ; i ¼ 1; 2

where xZðtÞ and xzi ðtÞ are white with variances chosen such that the signal-to-noise ratios

SNRi ¼ 10 log10
%E½fTðtÞfðtÞ�

E½zTðtÞzðtÞ�

� �
ð53Þ

SNRo ¼ 10 log10
%E½z2ðtÞ�
E½Z2ðtÞ�

� �
ð54Þ

are about 20; 15; 10; 5; or 0 dB; but the maximum SNRo is limited to about 10 dB due to the
modelling residual Z1ðtÞ: According to A3, the regressor noise zðtÞ should be at most finitely
correlated, but in this example we consider an infinitely correlated case as well as a finitely
correlated noise as follows:

Case 1:

FIR : Gzðq�1Þ ¼ 0:3þ 0:7q�1 ð55Þ

Case 2:

IIR : Gzðq�1Þ ¼
0:3

1� 0:7q�1
ð56Þ

Figures 2–4 and Tables I and II summarize the simulation results from 100 Monte Carlo runs
for each case and some theoretical evaluations. In each figure ‘þ’ denotes the true parameter

Figure 2. Effect of SNR: FIR input noise, 104 samples.
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Figure 3. Effect of the number of samples: FIR input noise, SNRi ’ SNRo ’ 5 dB:

Figure 4. Effect of t on IIR input noise: SNRi ’ SNRo ’ 5 dB; 104 samples.

Table I. Comparison of empirical estimates and theoretical calculations: FIR input noise, 104 samples.

SNRi SNRo Theory (%) Simulation (%)

Estimate (dB) (dB) E½*y1� E½*y2� %*y1 %*y2

20 10 �1.0 �1.3 �1.02 �1.31
15 10 �3.1 �3.3 �3.07 �3.46

#yð0Þ 10 10 �9.0 �9.3 �9.06 �9.32
5 5 �24.0 �24.2 �24.07 �24.05
0 0 �49.9 �50.0 �50.00 �50.07

20 10 0.0 0.0 �0.04 �0.31
15 15 0.0 0.0 �0.01 �0.42

#yðtÞ 10 10 0.0 0.0 �0.08 �0.36
(t ¼ 2) 5 5 0.0 0.0 �0.07 �0.08

0 0 0.0 0.0 �0.18 �0.94
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and the rectangular means the expected range of corresponding estimate defined by

##yi ¼
%#yi� 3 %sð#yiÞ; i ¼ 1; 2 ð57Þ

where %#yi and %sð#yiÞ denote the empirical mean and the empirical standard deviation of the
estimate #yi; respectively. Tables I and II compare theoretical errors E½*yi�; which are evaluated
by the corresponding equations (33) or (35), with the empirical errors %*yi from simulations.
For the IIR noise case in Table II, the correlations with sufficiently large time intervals are
counted in. Generally speaking based on Tables I and II, there are good agreements between the
theoretical calculations and the Monte Carlo simulations.

Before proceeding, let us sketch why the case with t ¼ 8 in Table II and Figure 4 goes against
the trend that the identification error decreases as t increases. Consider the empirical correlation
matrix

%Rffðt; t� t;NÞ ¼4
1

Nt

XN�t
t¼1

fðtÞfTðtþ tÞ

which is a deterministic component of Xðt;NÞ: In this example, %Rffðt; t� t;NÞ is singular if
th ¼ k=12; k ¼ �1;�3;�5; . . . ; where h ¼ 0:01 in this example. Analysis of the singularity
shows that one of two eigenvalues of %Rffðt; t� t;NÞ is zero if th ¼ �k=12 and th=� k=4: The
case t ¼ 8 is sufficiently close to the singularity condition th ¼ �1=12 that the least-correlation
algorithm does not work well on one out of two parameters.

Figures 2 and 3 confirm numerically that the method of least correlation works well for the
EIV problem. Figure 3 states that the least-correlation estimate can provide almost exact pa-
rameters from severely contaminated data provided that the number of samples is sufficiently
large. We try to show in Figure 4 that the method of least correlation can be applied to the
problems with regressors corrupted by infinitely correlated noise which apparently violates A3.
Figure 4 says that the least-correlation method can give useful estimates if A4 is satisfied with
sufficiently large t: Table II shows that the simulation results in Figure 4 are also supported by
the theoretical calculations.

Table II. Comparison of empirical estimates and theoretical calculations: IIR input noise,
SNRi ’ SNRo ’ 5 dB; 104 samples.

Theory (%) Simulation (%)

Estimate t E½*y1� E½*y2� %*y1 %*y2

0 �24.0 �24.2 �24.22 �24.33
2 �13.5 �14.3 �13.41 �14.03

#yðtÞ 4 �7.3 �9.4 �7.19 �9.45
8 �2.0 �23.3 �2.04 �24.83
16 �0.2 0.1 �0.48 0.27
32 0.0 0.0 0.32 0.43
64 0.0 0.0 �0.36 �0.72
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6. RLC ALGORITHMS

With the augmented regressors ci=i�t 2 Rn�2; ci�t=i 2 Rn�2 and the augmented output yi�t=i 2 R2

defined by

ci=i�t¼
4 ½cðiÞ cði � tÞ�

ci�t=i¼
4 ½cði � tÞ cðiÞ�

yi�t=i¼
4 ½yði � tÞ yðiÞ�T

an equivalent expression of (20) is written as

#yðt; tÞ ¼
Xt
i¼1þt

ci=i�tc
T
i�t=i

 !�1 Xt
i¼1þt

ci=i�tyi�t=i ð58Þ

Employing the steps given in Reference [19, pp. 262–263], which derives the recursive least-
squares (RLS) algorithm from its off-line version}the least-squares estimate (27), for the least-
correlation estimate (20) yields the RLC algorithm

#yðt; tÞ ¼ #yðt; t� 1Þ þ KðtÞðyt�t=t � cT
t�t=t

#yðt; t� 1ÞÞ ð59Þ

KðtÞ ¼ Pðt� 1Þct=t�tðI þ cT
t�t=tPðt� 1Þct=t�tÞ

�1 ð60Þ

PðtÞ ¼ Pðt� 1Þ � KðtÞcT
t�t=tPðt� 1Þ ð61Þ

for t > t provided that the initial values PðtÞ and #yðt; tÞ are given. The recursive algorithm
(59)–(61) is equivalent to (20), which means that the estimates from both algorithms are the
same at the final time. Figure 5 shows the estimates for the example in Section 5 by the RLC
algorithm (59)–(61) and the RLS algorithm [13, 19].

On the other hand, for the continuous-time expression of (12)

J2
c ð%y; t; tÞ ¼

1

t� t

Z t

t
eðs; %yÞeðs� t; %yÞ ds

� �2

ð62Þ

applying the minimization procedure [20, pp. 370–371] gives the continuous-time RLC
algorithm

’PðtÞ ¼ �PðtÞ½cðtÞcTðt� tÞ þ cðt� tÞcTðtÞ�PðtÞ ð63Þ

’#yðtÞ ¼ �PðtÞ½cðtÞeðt� tjtÞ þ cðt� tÞeðtjtÞ� ð64Þ

for t > t; where the errors eðt� tjtÞ and eðtjtÞ are defined by

eðt� tjtÞ ¼ cTðt� tÞ#yðtÞ � yðt� tÞ ð65Þ

eðtjtÞ ¼ cTðtÞ#yðtÞ � yðtÞ ð66Þ

respectively. Note that t in (62)–(66) denotes the time in the continuous-time domain.
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7. CONCLUDING REMARKS

Based on observations about the residuals from least-squares applied to EIV models, we
introduce a criterion defined by squaring empirical correlation between residuals. The necessary
and sufficient condition minimizing the criterion yields a new identification procedure called the
least-correlation estimate. The estimate generalizes the well-known least-squares since the least-
correlation becomes the least-squares when the correlation lag goes to zero. We show that the
estimate converges to the true value as the number of samples tends to infinity. Monte Carlo
simulations also support the consistency numerically. Moreover, the numerical results suggest
that the estimate can deal with the infinitely correlated noise as well as the finitely correlated
noise. Analysis shows that the least-correlation estimate has an interesting geometrical property
which is partly similar to that of the least-squares estimate. One of the differences is that the
least-correlation estimate is not an orthogonal projection but an oblique projection. Finally, we
derive the RLC algorithm on both the continuous-time and discrete-time domains. A simulation
demonstrates that the recursive version works well.

It is possible to interpret the least-correlation estimate as a deterministic representation of the
‘error whitening Wiener filter’ [11]. The previous works [11, 12] provide expressions for unbi-
asedness and orthogonality. In this paper, we also discussed sufficiency for a minimum, the
consistency of the estimate, the geometrical interpretation of the estimator, and the recursive
realization on continuous-time domain.

This work is extended to the estimates for EIV nonlinear models [21]. Input design problem,
which is closely related to A4, for the best estimate is a further work for application. Another
study will be a kind of realization problem for the RLC algorithm to be numerically robust and
computationally efficient.

Figure 5. Online estimates by RLS and RLC algorithms, y1 ¼ 4=p; y2 ¼ 4=3p: FIR input noise, t ¼ 2;
SNRi ¼ SNRo ¼ 5 dB; sampling 10 ms:
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