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Logarithmic Lyapunov functions for direct adaptive stabilization with normalized adaptive laws

SUHAIL AKHTARY, RAVINDER VENUGOPAL} and DENNIS S. BERNSTEIN{*

The problem of discrete-time and continuous-time adaptive stabilization under full-state feedback control is considered.
In the discrete-time case the main result is based on a gain update law involving a step-size function. The formulation
generalizes and unifies prior results based on quadratic and logarithmic Lyapunov functions. In the continuous-time
case adaptive stabilization under full-state feedback using a normalized gradient algorithm is considered and Lyapunov

stability is demonstrated.

1. Introduction

In adaptive control the rate of parameter estimate
adaptation is a function of the parameter error and
the regressor. Let 6, 6 and ¢ denote the parameter
estimate, parameter error and regressor, respectively.
The update law 6 = f(8,¢) is normalized if 7(6,¢)
is radially bounded in ¢ (Ioannou and Sun 1996). For
example é:goTé(p/(l +¢"¢) is normalized whereas
6= @'y is un-normalized. By choosing the normalizing
factor 1+¢'¢ to be independent of the parameter
error (as in Tao 2003, p. 102), the estimation algorithm
retains its sensitivity to parameter error while reducing
sensitivity to the regressor. Reduced sensitivity to the
regressor helps reduce parameter drift.

In continuous time, un-normalized adaptive control
laws arise naturally from Lyapunov design with a quad-
ratic Lyapunov function (Narendra and Annaswamy
1989, Kristic er al. 1995, Ioannou and Sun 1996).
Normalized adaptive laws are then obtained by normal-
izing the un-normalized laws to reduce parameter drift.
For normalized control laws the Gronwall-Bellman
lemma is used to prove convergence (Sastry and Bodson
1989, Ioannou and Sun 1996). However, the Lyapunov
stability of normalized control laws is not addressed in
the literature.

In the discrete-time setting, all estimation algorithms
are normalized. Convergence of discrete-time adaptive
control is demonstrated via the key technical lemma
(Goodwin et al. 1980), which does not guarantee
Lyapunov stability. The difficulty in performing
Lyapunov analysis for discrete-time adaptive control
algorithms has been recognized in the literature
(Kanellakopolous 1994) and has been mainly attributed
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to the fact that, unlike in the Lyapunov derivative,
the Lyapunov difference is not linear in the parameter
error or the increment of the parameter error. This is
not the main impediment, however, since the Lyapunov
difference is quadratic in the estimation error, which is
the product of the parameter error and the regressor.
The negative-definite terms in the Lyapunov difference
arising from the estimation algorithm cannot be used
to bound the positive-definite terms arising from the
plant dynamics since the positive definite terms are
un-normalized while the negative definite terms are
normalized. Hence, by using a quadratic Lyapunov
function (Venugopal et al. 2003), convergence can be
established, but Lyapunov stability is not guaranteed.

It turns out that the positive-definite terms can be
normalized using a logarithmic Lyapunov function for
the plant dynamics. This approach was taken in Haddad
et al. (2002) and Johansson (1989, 1995). Although the
bound logx < x —1 removes the logarithm function
from the analysis at an early stage, the subsequent
analysis is greatly improved.

The present paper has three objectives. First, we use
a logarithmic Lyapunov function to demonstrate the
Lyapunov stability of continuous-time direct adaptive
stabilization under full-state feedback when a normal-
ized adaptive law is used. Second, we provide a complete
development of a discrete-time adaptive stabilization
algorithm for the case of full-state feedback. This devel-
opment clarifies and extends the development in
Haddad et al. (2002) by providing a more general char-
acterization of the allowable normalizing step size and
update rule. Finally, we show that, for the single input
case with a specialized cost function, the main result has
an optimality interpretation in terms of a gradient
update direction and optimal step size. This result coin-
cides with the main result of Venugopal et al. (2003),
thus effectively extending the results of Venugopal et al.
(2003) to include Lyapunov stability.

The contents of this paper are as follows. Lyapunov
stability of continuous-time direct adaptive control
with full-state feedback and a normalized adaptive
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law is demonstrated in § 2. In § 3 we present a Lyapunov-
based proof demonstrating convergence of the plant
states and boundedness of the feedback gains in discrete
time. We provide explicit bounds on the adaptive step
size necessary for stability. In §4 we provide an optimal
interpretation of the proposed algorithm for the single
input case. Finally, §5 presents simulation results.

2. Continuous-time adaptive stabilization

We make the following assumptions.
Assumption 1:  The input matrix B is known.

Assumption 2:  There exists K, € R™" such that A=
A + BK, is known and asymptotically stable.

Note that Assumption 2 does not require that K be
known. It does, however, require that 4, be known.
This requirement can be satisfied for the case of matched
uncertainty. For example, consider the single-input
system in companion form

. Op—tyx1 L1 ’ B O(—1)x1
a b

where aeR™ and beR is non-zero. Letting
K, = (1/b)(a — a), where a;, € R™"_ it follows that

Ay 011 Ay
e [ 2] [e-o [

where «q 1s chosen such that A4, is asymptotically stable.
The choice of a, does not depend on knowledge of either
a or b. The same is true for systems in multivariable
canonical form.

Theorem 1: Consider the linear system
x(0) = xo €]

where x e R", ueR"”, 4R and Bec R . Let
P € R™" be the unique positive-definite matrix satisfying

X = Ax + Bu,

AP+ PA+R=0 )

where R € R™" is positive definite, and consider the
control law

u= Kx 3)
with gain update
. BTPxx"
K=——"7-+—/—/—. 4
1+ xTPx @

Then the solution (0, K,) of the closed-loop system (1), (3)
and (3) is Lyapunov stable, K converges and x — 0 as
k — oo.

Proof: Defining IEéK—KS and using (3) and (1) it
follows that

x = Ax + BKx (5)
and
P B Pxx”
K= 6
1+ xTPx ©)

Next consider the Lyapunov candidate
V(x,K) = In(1 + x" Px) + tr(K"K). (7)

Then the derivative of the Lyapunov function along
the closed-loop system trajectories is given by

. TK"B" + xT 4l Px + xTP(4,x + BKx)
a 1+ xTPx

xx' PBK KB PxxT
—tr —tr
1+ xTPx 1+ xTPx

= {xT(ASTP + PA)x + xTKTB"Px + x"PBKx

— x"PBRx - kaTBTPx} J(1+x"Px)

_ —x'(A{ P+ PA)x
o 1 + xTPx

—x"Rx
= <
1 4+xTPx —
Hence the closed-loop system given by (1), (3) and (4) is
Lyapunov stable. Furthermore it follows from Theorem

4.4 of Khalil (1996) that x — 0 as k — oco. Convergence
of K follows from (4). ]

Remark 1: The system (1) can also be stabilized
with the un-normalized gain adaptation K = —B' Pxx'
(Hong et al. 2001).

3. Discrete-time adaptive stabilization
Consider the discrete-time system
Xjp1 = Axy + Buy, k=1,2,... ®)

where x, € R", u, e R”, 4 € R”" and B e R"". We
invoke the following assumptions concerning 4 and B.

Assumption 3: There exists K, € R™" such that A, 2
A+ BK is known and asymptotically stable.

Assumption 4: There exist G € R™™", positive-definite
2 eR™"™ and y > 0, all of which are known, such that
GB + (GB)' is positive definite and

Y < Amin [(GB + BTGT)(BTGTZGB)“]. 9)
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Assumption 4 implies that GB is non-singular and
rank(B) = m.
For convenience define

£ (K) 2 x41 (K) = 441 (Ky)

where x;,(K) = (4 + BK)xy, the state at time k + 1
when the gain matrix K is used at time k.

Theorem 2: Consider the linear system (8) and assume
that Assumption 3 and Assumption 4 are satisfied.
Let I e R™" be positive definite, let u >0, and let
0 :R" — (0,00) be such that

inﬂ_\g” p(x)(1 + ux'x) > 0 (10)
xXe
and
sup p(x)x'I'x < y. (11)
xeR"

Furthermore, consider the adaptive feedback control law
u, = Kixy (12)

and gain update
K1 = Ki — p(xi)ZGe(Ki)xi I (13)
Then the solution (0, K;) of the closed-loop system (8),

(12) and (13) is Lyapunov stable, K; converges, and
X — 0 as k — oo.

Proof: Defining K £ K;, — K and @, él%kxk and using
(12) and (8) it follows that

Xjp1 = Asxy + Buy.. (14)

Subtracting K, from both sides of (13) and using (14)
yields

Ki1 = K — p(x)2GBK; x; x; T (15)

Next consider the Lyapunov candidate
Vix, )2 In(1 + X Py) +atr(C'K'27'K)  (16)
where a > 0 and P is a positive-definite matrix chosen
below. Suppressing the argument of p, the Lyapunov

difference along the closed-loop system trajectories is
given by

AV E V(xirts Kepr) — Ve, Kp)
= In(1 + x4 1 PXjp1)
-1, - T T yv—1
+ atr[F (K, — pSGBRx,xI )"z
x (K, — pZGBkkxkar)]
—In(1 4+ x} Pxy) —atr(F 'K 271 K)).

Omitting dependence on the time step k& and letting
V> Amax (BT PB) it follows that

AV =1In

[1 4+ (Ax + Bi) P(Ax + Bii) + x" Px — xT Px

1 4+ xTPx

i| — aptr(FfllzTGBIZxxTF)

—aptr(xxTKTBYGTK) + ap? tr(xx T KT BT'GTXGBKxx™T)

<In

=In

1+ xTATPAx + x" AT PBii + " BT PAx + vii'ii + T Px — x" Px
1+ xTPx

—ap tr([E'TGBIE'xxT) —ap tr(IE'TBTGTIE'xxT) + ap tr(FxxTIZTBTGTZGBIZxxT)

(1 4+ xT(ATPA, — P)x + xT AT PBii + ii" B PA.x + vii it + xT Px
1+ xTPx

—ap tr(x"KTGBKx) — aptr(x"K'BYGTKx) + ap* tr(x" I'xxT KT BTGT G BKx)

1 4+ xTPx

o [ . XT(ATPA, — P)x + X" AT PBi+ ii" B"PAx + vﬁT[{i|

— a,oxTI%TGBIZx — a,oxTIZTBTGTI%x + apszFxxTIZTBTGTZGBI%x

- X (AT PA, — P)x+ x" AL PBii+ " BT PAx + vii'ii

1+ xTPx

—apx"K'GBKx — apx " K"B"G"Kx + ap’x"I'xx"K'B"G" >GBKx. 17
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Let P € R"" be the unique positive-definite matrix
satisfying

ATPA,—P+R=0

where R € R™" is positive definite and chosen such
that Ain(P) = . Next, let £ € (0,1) and let £ > 0 be
sufficiently small such that

46ATPBB"PA, < ER.
Hence
AlPA,— P+ R+ 454 PBB'PA, <0 (18)

where R2 (1—£)R is positive definite. Therefore,
equation (17) and (18) imply

AV < [ — xTRx — xT4ATPBB"PAx + X" AT PBii
+ @ B PAx + vﬁTﬁ} /(1 +xTPx)
- aprKTGBKx - aprKTBTGTKx
+ap*x"I'xx"K"B'"G'>GBKx.

Adding and subtracting

where
P(x) £ p(x)[Z — p(x)x"TxN] (20)

and where ZZ2GB+ (GB)', N 2 (GB)'2GB, and
52 (1/48) + v.

Next we show that there exists ¢ > 0 such that, for
all x e R"

(1+x"P)¥P(x) > gl. 1)

Since Ay (P) = w, it follows from (9), (10), and (11) that
there exist 7, > 0 and 7, > 0 such that, for all x € R"
P+ px'x) = 7 (22)

and

p(xX)x'TXN < A, y(ZN"HN — 1, N. (23)
Since

Amin(N"2ZN"VA < N7'2ZN712
it follows that
Amin(ZN YN = NV (NTVPZNVHNY2 < 7z (24)

1 a'a
481+ xTPx Now (23) and (24) imply that, for all x € R"
yields p(x)x'TxN < Z — t,N. (25)
AV < xTRx (1748 i i+ vi'i
~ 14+xTPx 1+ xTPx

— aprKTGBKx — aprIETBTGTI%x + apszI"xxTIETBTGTZGBI%x
 x'4EA] PBB' PAx — ' B' PAyx — x" A PBii+ (1/48)i" i
1+ xTPx

(1/48)i it + vii it
1+ xTPx

_ xTRx
T 14+ xTPx

— a,oxTIETGBsz — aprKTBTGTKx + apszFxxTKTBTGTZGBKx

RexTATPB—La"  — XTATPB+ (1/48)i"] [ZBTPASx}

1 4+ xTPx i

xRy (1/4&+vi'a
T 14+x"Px 14+ xTPx
- a,oxTIE'TGBIE'x - a,oxTIE'TBTGTIZx + ap2xTFxxTI€'TBTGTZGBI€'x
2xT4TPB " { L,  —3l, } |:ZBTPASxi|
R I 0 V21V |
xTRx (1/4& + v)xTKTKx
- 1+xTPx 1 +xTPx

- aprkTGka - a,oxTIETBTGTIZx + apszFxkaTBTGTZGka

sxTK"Kx
1+ xTPx

T
X Rx TST ~
= — m —ax' K ‘P(X)Kx +

(19)
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From (22) and (25) it follows that, for all x € R"
p(x)(1 +x"Px)[Z = p(x)x"TxN]| = iuN. (26)

Letting a > §/t;1pAnin(N) implies ;7o N > §/a. Con-
sequently ¥(x) > (8/a)l for all x € R", and therefore it
follows from (19) that, for all x € R"

T
xTRx <0.

x' Px

Hence the equilibrium (0, K) is Lyapunov stable. Since
V(x,K) is radially unbounded, it follows that Kj
is bounded for all x, € R", K, € R"". Furthermore,
it follows from Theorem 4 that x, — 0 as k — oc.
Convergence of K} follows from (13). ]

AV < —

Remark 2: Making G and X large causes y, and thus p,
to be small.

Proposition 1: p: R" — (0, 00) satisfies (10) and (11) if
and only if there exist Ty > 0 and t©y > 0 such that
p(0) > 7 (27)
and, for all non-zero x € R"
T

<p(x) < L2 (28)

1+ uxTx xTrx’

Remark 3: The parameter p can be made arbitrarily
large by scaling R.

Remark 4: The step-size function p need not be
continuous. For example, let ||- || be a norm on R",
a >0, Apax(I) < B < u, and k1,4, € (0,y). Then

i /(14 BxTx) i x) <«

p(x) £ T x
/(1 + Bx x) if [|Ix]| > &

(29)
satisfies (28) with 0 < 7; < min{k|,k,} and 0 < 1, <
min{y — k1, ¥ — k2}.

Letting (-)" denote the Moore—Penrose generalized

inverse, the following specialization of Theorem 2 is
given in Haddad et al. (2003).

Corollary 1: Consider the linear system (8) and assume
that Assumption 3 is satisfied. Let Q € R™ ™ be positive
definite such that hy.(Q) < 2 and consider the adaptive
feedback control law (12) and gain update

K1 = Ky — 0B e (Kp)x]. (30)

Then the solution (0, K;) of the closed-loop system (8),
(12) and (30) is Lyapunov stable, K; is bounded and
X — 0 as k — oo.

Proof: The result is a special case of Theorem 2 with
2= Ima r= Ina G= QB-‘-: n = 13 Y€ (0’ 2/)‘max(Q)) and
1/xTx if x#0

A
p(x) =
) 1 if x=0.

Remark 5: Comparing the continuous-time gain
update (4) and the discrete-time gain update (15) we
note that the former achieves stabilization by tracking
the zero state, while the latter stabilizes by tracking the
states of the reference model x| = Agx;.

4. Optimal adaptive stabilization

In this section we consider the single input case
m=1 and provide an optimality interpretation for a
special case of Theorem 2. The following result extends
Theorem 1 of Venugopal et al. (2003).

Theorem 3: Consider the system (8) with m=1,
assume that Assumption 3 is satisfied, and define the
cost function

TK) 2 | Ky - K2 (31)

Let E € R™" be positive definite and consider the adap-
tive feedback control law (12) and gain update

Kis1(B) = Ky — BiB' Ee(Ki)xi (32)
where
|E" (K ;
A T - T22 lf Xk 75 0
B =1 | B Een(Ko)x] || (33)
1 lf X = 0.

Then the equilibrium solution (0, K,) of the closed-loop
system (8), (12) and (32) is Lyapunov stable, K is
bounded, and x;, — 0 as k — oco. Furthermore, if ¢,.(K;) =
0, then Ki . =Ky, and if e.(K;) #0, then the cost

Sfunction Ji1(Ky1(B)) is minimized by B = B;. with the

minimum value

|E" ek 5
| BT Eer(Ki)x]

Ji1(Kie1(Br) = Ji(Ky) — (34)

5 -
F

Proof: If £.(K;) =0 then it follows from (32) that
Ky = K. Now assume &;(K}) # 0. Then it follows
from (31) that
2
St (K1) = | Kier — K| ¢
= |IKy — BB Eey(K)xi |17
=Ji+ Bill BT Esi (KX I
— 2B [ B' Eey (Kp)xi Ky |

=Ji+Bill B Eep (KX IE — 2811 E e (K1l
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| E'e(Kp) Hi )

—J+ -2
[ ﬁk('gk HBTEek(Kk)xHi

x | BT Eey(Ki)x{ I

2
:Jk+[<ﬂk— | e K3 )

| BT Een(K)xT |

B a0,
| BT Eei(K)xF |

]HBTEek(Kk)xEn%.

Therefore, the adaptive step size given by (33) minimizes
Jip1(Kip1(Br)) with minimum value given by (34).
Furthermore, from (31) it follows that
2
|E en(Ko)]
2
| BT Eer(Ki)xi |

IBk =

IE"? BK;oxi I3
~ IBTEBR ]I}
B xr Kl B"EBK, x;
B tr[xkxglsz(BTEB)zlzkxkxg]
o
~ x/x;BYEB’

To prove stability we invoke Theorem 2 with X~ = 7,
Ir=1,G=B"E n=1,ye(0,2/BEB), and

1
—_— if 0
o(x)2 { xTxBTEB s ]

1 if x=0.

Remark 6: Consider the one-step cost function JAk(Kk) £

%sg(Kk)Esk(Kk). Then the gradient of J; is given by
aJy
e = B" Eey(Ki)xy (35)

k

which is the direction of the gain update in (32). Hence
the gain update (32) is a gradient update with optimal
step size (33).

Remark 7: Theorem 1 of Venugopal er al. (2003) is
based on a quadratic Lyapunov function that yields
convergence of x; but not Lyapunov stability as given
by Theorem 2. Theorem 3 extends Theorem 1 of
Venugopal et al. (2003) by guaranteeing Lyapunov
stability of the equilibrium (0, Kj).

5. Examples

Example 1: In this example we compare the perform-
ance of normalized and un-normalized state feedback

control laws for a system of the form (1). Consider
the unstable continuous-time system in controllable
canonical form

0 1 0 0 0

, 0 0 1 0 0
X = X+ u

0 0 0 1 0

—0.25 1.875 —4.375 3.75 1

with xo =[1 1 1 1]'. We assume that the fourth row of
A is unknown, B is known and

0 1 0 0

0 0 1 0
Ag = X.
0O 0 0 1

-1 -2 —4 -3

The closed-loop system response with both normalized
and un-normalized control laws is shown in figure 1 and
figure 2. The poor transient response for the normalized
control law is due to the fact that it stabilizes the system
(1) by tracking the zero state. Consequently the tracking
error and the regressor are the same and normalization
with respect to the regressor limits the maximum rate
of adaptation.

Example 2: Consider the unstable single input system
in controllable canonical form

0 1 0 —1
Xip1 = ) 0 X + w Uy, Xo = 1

where the second row of 4 is unknown and it is known
that @ €(0,0.5]. Let G=[0 1] and X =1. Then
y € (0,2/ max{a}) € (0,4). Now let I' = I,

) 2/x"x if x#0
X) =
P 1 if x=0

0 1
A, = .
[0.25 o]

The closed-loop system response with « = 0.38 is shown
in figure 3.

and

Example 3: Consider the unstable two input system in
controllable canonical form

0 1 0 0 0
025 —-1.5 031 -2 a

Mt = 0 0 | Xp+ 0o o |%
0.53 035 0.75 —-0.7 0 o
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Time
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Figure 1. Norm of states and control signal versus time for Example 2.
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Time
100 ‘
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0 2 4 6 8 10 12 14 16 18 20
Time

Figure 2. Norm of states and control signal versus time for Example 3.



lix II

lIx II

3.5

25

10

-10

-15
0

Lyapunov functions for direct adaptive stabilization

Time(k)

Figure 4. Norm of control signal versus time for Example 1.
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with xg =[2 0 1 —1]T. We assume that the second and
fourth rows of 4 are unknown and it is known that
o,0) € (0, 1] Let 2 = [2 and

01 00
G= .
0 0 0 1
Then y € (0, min{2/ max{a;},2/ max{a,}}) < (0,2). Now
let I' = 14

) 1/x"x if x#0
p(x) =
1 if x=0

and

0 1 0 0
0.2 02 0.13 0.16
0 0 0 1
0.1 015 03 03

The closed-loop system response with «; = 0.7 and
a, = 0.95 is shown in figure 4.
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Appendix

The following is a discrete-time version of
Theorem 4.4 of Khalil (1996).

Theorem 4: Let N denote the set of non-negative inte-
gers, let D C R" be an open neighbourhood of the origin,
Wi:D— (0,00), W,:D— (0,00), W:D—|0,00),
fTNxD—->R" and V:NxD—- R be such that
Wi(x) < V(k,x) < Wy(x) for all k e N and x € D and
AV A Vik+ 1, f(k,x))— V(k,x) < —=W(x) for all k e N
and x € D. Furthermore, define B, 2 {(xeD: x| <r}
and let 1, <min_, Wi(x). Then all solutions
of xpp1 =fk,x;) with xg €{x e B,: Wyx) <t} are
bounded and satisfy W(x,) — 0 as k — oo.

Proof: Choose 7, > 0 such that 7z, < miny, . W;(x).
Then {xeB. Wyx)<t}cCc{xeB.:V(kx) <t}C
{xe B Wi(x) <t} Let xye{xeB.: Wyx)<t].
Then x € {x € B,: V(k,x) <t} for all k> 0. Hence

Ix(0)|| < r for all k> 0. Since V(k, x) is bounded from
below, the limit

IA

k k
Jim Y W) < = Tim D AV(E X))
¢=0 =0

= V(O’ XO) - kli—r>noo V(kv -xk)

exists. This implies that W(x;) — 0 as k — oo. [

References

GoopwiIN, G. C., RAMADAGE, P. J., and CaInes, P. E.,
1980, Discrete-time multi-variable adaptive control. /IEEE
Transactions Automatic Control, 25, 449-456.

Goobpwin, G. C., and SiN, K. S., 1984, Adaptive Filtering
Prediction and Control (Englewood Cliffs, NJ: Prentice-
Hall).

HappaAD, W. M., HavyakawaA, T., and LEONESSA, A., 2002,
Direct adaptive control for discrete-time non-linear
uncertain dynamical systems. Proceedings of the American
Control Conference, Anchorage, AK, pp. 1773-1778.

HoNG, J., and BERNSTEIN, D. S., 2001, Adaptive stabilization
of non-linear oscillators using direct adaptive control.
International Journal of Control, 74, 432-444.

IoanNou, P. A., and Sun, J., 1996, Robust Adaptive Control
(Upper Saddle River, NJ: Prentice-Hall).

JoHANSsSON, R., 1989, Global Lyapunov stability and exponen-
tial convergence of direct adaptive control. International
Journal of Control, 50, 859-869.

JoHANSSON, R., 1995, Supermartingale analysis of minimum
variance adaptive control. Control Theory and Advanced
Technology, 10, 993-1013.

KANELLAKOPOULOS, 1., 1994, A discrete-time adaptive non-
linear system. IEEE Transactions on Automatic Control,
39, 1262-1265.

KuariL, H. K., 1996, Nonlinear Systems (Upper Saddle River,
NIJ: Prentice Hall).

Krstic, M., KANELLAKOPOULOS, I., and Kokotovic, P.,
1996, Nonlinear and Adaptive Control Design (New York:
Wiley Interscience).

NARENDRA, K. S., and ANNASwAMY, A. M., 1989, Stable
Adaptive Systems (Englewood Cliffs, NJ: Prentice-Hall).
NARENDRA, K. S.; and Lin, Y. H., 1980, Stable discrete adap-
tive control. IEEE Transactions on Automatic Control, 25,

456-461.

SASTRY, S., and BopsoN, M., 1989, Adaptive Control: Stability,
Convergence and Robustness (Englewood Cliffs, NIJ:
Prentice-Hall).

Tao, G., 2003, Adaptive Control Design and Analysis (Wiley).

VENUGOPAL, R., Rao, V. G., and BERNSTEIN, D. S., 2003,
Lyapunov-based backward-horizon discrete-time adaptive
control. Adaptive Control Signal Processing, 17, 67-84.



