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Abstract. The objective of this paper is to compare two approaches to the adaptive 
rejection of disturbance inputs represented by a finite sum of sinusoids. The first ap 
proach is based on adapting the parameters of a finite impulse response (FIR) feedback 
controller using a least mean square (LMS) type algorithm to achieve asymptotic dis- 
turbance rejection. The second approach is based on using the recursive least squares 
(B.LS) algorithm to search within the set of parametrised stabilisin8 controllers for 
a controller that leads to asymptotic disturbance rejection. The two approaches are 
compared in terms of their basic characteristics, as well ss their performance in a 
simulation example. 
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1. INTRODUCTION 

Consider a linear time-invariant system subject to a dis- 
turbance input represented by a finite sum of sinusoids, 
where the frequencies, amplitudes, and phases of the dif- 
fuent sinusoids are not known. It is desired to construct 
an (adaptive) control system that would asymptotically 
reject the disturbance input. The problem is referred to 
as adaptive regulation. 

The adaptive regulation problem described above is partly 
motivated by problems in the area of active noise and 
vibration control, where the objective is complete sup 
pression of the e&&s of noise or external excitations 
at a particular location. In this application area, adap- 
tive cancellation techniques have been shown to be very 
effective in suppressing the eHects of narrow band dis- 
turbancea. Among the most successful techniques of this 
type are those based upon least mean square (LMS) gra- 

dient approximation methods (Nelson and Elliot, 1992; 
Elliot et al., 1987; Fuller et aL, 1992). Dating back to 
the work of Widrow and Hoff (Widrow and HoH, 1960), 
these methods provide au e%ctive technique for esti- 
mating performance gradients with respect to 8lter gains 
to adaptively cancel the e&&s of periodic disturbances. 
Another class of adaptive cancellation algorithms in- 
cludes those based upon recursive least squares @US) 
techniques (Ben Amara et al., 1995.; Pala&wami, 1993). 
These techniques are usually based upon an internal 
model controller structure for disturbance cancellation. 
By recursively modifying the controller parameters, the 
RLS algorithm yields control gains that adaptively can- 
cel the disturbance s@al. A mcent survey of adap- 
tive disturbance cancellation techniques can be found 
in (Fuller and von Flutow, 1995). 

The design of an adaptive regulator involves two steps, 
the ilrst of which consists of selecting a non-adaptive 
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control system configuration. The configuration should 
be such that, ifthe disturbance input is completely known, 
the controller parameters cau be tuned to achieve reg- 
ulation. The second step involves augmenting the non- 
adaptive regulator with au adaptation mechanism, the 
purpose of which is to tune the controller parameters 
on-line to achieve regulation. Different (control config- 
uration, adaptation mechanism) pairs could be identi- 
fied in the literature. One of the most widely used such 
pairs is based on a controller iu the form of a finite 
impulse response (FIR) filter and where the filter pa- 
rameters are tuned using a Least Mean Square (LMS) 
type adaptation mechanism. The approach will be re- 
ferred to as the FIR-LMS approach. A second approach 
is based on using the Youlaparametrization to construct 
the set of parametrized stabilizing (PS) controllers. The 
parametrization of interest iu this paper is one where the 
Youla parameter itself, and not the controller, is an FIR 
filter. The adaptation mechanism is represented by the 
recursive least square (RLS) algorithm with a forgetting 
factor, and will be used to tune the parameters of the 
FIR Youla parameter (filter). The approach is referred 
to as the PS-RLS approach. 

The main objective of this paper is to present a com- 
parison of the different properties associated with the 
two adaptive regulation approaches mentioned above. 
The comparison will be conducted at two levels. At the 
first level, we study the solvability of the non-adaptive 
regulation problem. The solvability analysis is based on 
characterising the set of all regulators corresponding 
to each feedback configuration. The characterization is 
given in terms of a design parameter common to all reg- 
ulators, which is the Youla parameter. Based on the de- 
rived properties of the Youla parameter, a comparative 
analysis of the size of the set of regulators correapond- 
ing to each design method cau be given. The larger the 
set of regulators, the more likely other performance re- 
quirements, besides regulation, would be met. A second 
level of comparison involves the conditions under which 
each approach is guaranteed to yield regulation. The two 
adaptive systems are compared based on their require- 
ments for convergence and computational load. 

In order to provide a common framework for these meth- 
ods, we adopt the standard twoinput two output (TITO) 
formulation which provides a universal framework for 
feedback control techniques (Francis, 1987; Maciejowski, 
1989) and is summarized in Section 2. After stating the 
adaptive disturbance cancellation problem in Section 3, 
we then proceed iu Section 4 to present a commonframe- 
work for the analysis of the non-adaptive versions of the 
disturbance rejection approaches discussed in this pa- 
per. The requirements for an FIR controller to be sta- 
bilizing and to achieve regulation are given iu section 

5. The adaptive FIR-LMS approach is then discussed iu 
Section 6. Next, we proceed in Section 7 to review the 
off-line design of a PS regulator. The RLS algorithm and 
principal convergence results are summarized in Section 
8. The performances of the LMS and RLS techniques 
are compared in Section 9 using simulation results for 
the noise cancellation problem in an acoustic duct. The 
behavior of the closed-loop system is simulated in the 
presence of a single tone disturbances. A comparison 
of the two adaptive approaches to disturbance rejection 
is given in Section 10. The comparison results indicate 
that the PS-RLS approach is more amenable to analysis 
studies and has better stability and convergence prop 
erties than the FIR-LMS approach. On the other hand, 
the latter has less computational requirements and is 
easier to implement. 

2. THE TIT0 STANDARD PROBLEM 
FORMULATION 

As a motivating example, we consider the noise cancella- 
tion problem in an acoustic duct. The acoustic duct cau 
be modeled as a TM’0 system by considering a finite 
number of modes (Hong et al., 1995) and defining the 
inputs and outputs as shown in Figure 1. The transfer 
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Fig. 1. Duct example. 

functions can be interpreted as G,, from the primary 
source (disturbance w) to the error (performance e), G,, 
from the secondary source (control input u) to the error 
e, G,,,r from the primary source w to the reference (mea- 
surement y) and G,, from the secondary source u to the 
reference y. The controlled system can be expressed iu 
state space form as 

+(k + 1) = At(k) + &w(k) -t &u(k), (1) 
e(k) = C,z(k) + &,w(k) + &u(k), (2) 
30) = C+(k) + L,w(k) + &u(k), (3) 
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The state equations (1) - (3) give rise to four transfer 
functions, namely, G,, (from w to e), G,, (from u to 
e), G,, (from us to y) and the plant GUV (km u to y). 
From equations (I)-(3), it follows that e = Grcw+Gucu 
and y = G,,,uy~ + Guyu. We introduce the notation 

to denote a state space realization of a system with 
transfer matrix G. A block disgram of the closed loop 
system is shown in Figure 2. 

, e 

Fig. 2. Block diagram of the closed-loop system. 

In the next section, we discuss the augmentation of the 
system shown in Figure 2 with an adaptation mecha- 
nism in order to reject a particular class of disturbance 
inputs. 

3. THE ADAPTIVE DISTURBANCE 
CANCELLATION PROBLEM 

Throughout the rest of the paper, it is assumed that the 
disturbance is a liiear combination of sinusoids of the 
form 

w(k) = -g Cg3s(Wik + &) (5) 
i=l 

with unknown frequencies wi, amplitudes y, and phases 
Oi, 0 5 i s k0. The purpose of the adaptation is to 
tune a particular parametrization of a feedback con- 
troller G, in order to achieve asymptotic disturbance 
rejection. A block diagram of the adaptive closed-loop 
system is shown in Figure 3. 

Two approaches to the adaptive rejection of sinusoidal 
disturbance inputs are considered in this paper. The 

first approach, representing the conventional approach, 
is based on adapting the parameters of a finite impulse 
response (FIB.) feedback controller using the least mean 
squares (LMS) algorithm to achieve asymptotic distur- 
bance rejection (FIR-LMS approach). The second ap; 
proach is based on considering the set of parametrized 
stabiii (PS) controllers for the plant, and using the 
recursive least squares (RLS) algorithm to search within 
this set for a controller that leads to asymptotic distur- 
bance rejection (PSBU approach). Since the problem 

Adaptation - 
Algorithm _ 

e 

Fig. 3. Block diagram of the adaptive closed-loop sys- 
tern. 

under consideration is complete disturbance rejection, 
and not simply attenuation of the disturbance effects, it 
is desired to first determine conditions under which the 
existence of feedback FIR and PS regulators is guar- 
anteed. Assuming the existence conditions are satisfied, 
and given that the disturbance input is not known, the 
next step is to use adaptation to construct the desired 
regulators. 

In order to be able to compare the existence conditions 
for both types of regulators, it desired to derive those 
conditions in terms of a common design parameter. The 
next section discusses the use of the Youla parametrize 
tion of stabilizing controllers in order to achieve this 
objective. 

4. A FRAMEWORK FOR FEEDBACK SYSTEMS 
ANALYSIS 

The Youla parametrisation of the set of all stabilizing 
controllers for a given plant provides a unified frame- 
work for the design of the regulators needed for dis- 
turbance rejection. A common design parameter for all 
controllers is the Youla parameter (a transfer function or 
matrix). The unification in the design of the regulators 
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is due to the fact that the regulation requirement can 
be translated into requirements on the Youla parameter 
8s will be discussed in the next sections. Hence, the de- 
sign requirement of different regulators can be compared 
based on the requirement imposed on the Youla param- 
eter. In the following, standard results regarding the 
construction of the set of parametrized stabilizing wn- 
trollers and the stability analysis of feedback systems are 
suIIIlIw1zed, and R& denotes the set of proper asymp- 
totically stable transfer matrices (Vidyasagar, 1985; Fran- 
cis, 1987; Maciejowski, 1989). 

4.1 A Base Stabilizing Controller 

Suppose that G,, has a stabilizable and detectable real- __ 

ization G,, N 
[&++I1 

and let K and L denote 

the state feedbackrand obzer gains, respectively, of a 
feedback controller Gc,e of the form 

G 
A + B,K + LC,, + L&K 1 -I+ 

c,o H K 
1 D . Stabi- 

,.., 1 
lizing w&rollers of this form can be’ obt&>d using 
standard LQG theory (Anderson and Moore, 1990). The 
controller Gc,s will be called the base stabilizing con- 
troller. 

Fig. 4. The closed-loop system 

4.2 Panrmethation of the set of all stabilizing controllers 

It is well known (Vidyasagar, 1985) that the plant and 
base stabilizing controller have a eprime fraction repre- 
sentations G,,, = NM-’ = fi-‘N and G,,e = UV-’ = 
v-‘6, where N, M, fi, h?, U, V, 6, v are aI in RX,. 
The factors in the fraction representations satisfy the 
double Bezout identity. Using the base controller Ge,e, 
the set of all stabilizing controllers can be constructed 
using the Youla parametrization (Youla et al., 1976) 
which implies that for every Q E RX,, the controller 
G~,Q given by 

G c,Q = (u + MQ)(V + NQ)-' 

= (P + Qiq”(~ -t Qm (6) 

is a stabilizing controller for the plant G,,. Moreover, 
every stabilizing controller for the plant Gur, can be writ- 
ten in the form (6) for some Q E RH,. 

4.3 The Closed-Loop System 

The above section discussed the stabilization of the plant 
G,,. The following lemma relates the stabiiabiity of 
Guy to that of G. 

Lemma 1. :(Francis, 1987) Assume G,, isstrictly proper 
(&, = 0) and G has a stabilizable and detectable real- 
ization (4). Then the controller G,,Q stabilizes G if and 
only if G,,Q stabilizes Guy. 

Given a stabilizing controller as in (6), the closed-loop 
system shown in Figure 2 can be reconfigured as shown 

inFigure5,whereTisgivenbyT= T o 
[ 1 Twe ” where 

T we = G,, + G,,,UI@G,,, TIL = G,cei, and T,, = 
h?G,, (The realizations of Twe, T,, and T,, can be 
found in (Maciejowski, .1989). Moreover, T,,, T,, and 
T,, areallinRH,_ 

Fig. 5. Block diagram of the closed-loop system. 

Letting W(z) and E(t) denote the 2 transforms of the 
disturbance {w(D)} and the performance variable {e(-)} 
respectively, it follows that E(z) = P~,o(z)W(z) where 

FT.&) = Tw&) + Ze(4Q(4Twrb) (7) 

For Q E R.?L , it follows from Lemma 1 that FT,Q is 
asymptotically stable. 

5. OFF-LINE DESIGN OF THE FIR REGULATOR 

As the first step in developing the FIR-LMS approach, 
thii section presents conditions under which asymptotic 
disturbance rejection in the feedback system shown in 
Figure 2 is realized using a controller G, in the form of 
an FIR filter 
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Cc(z)= $$ (8) 

where 

h(z) = hoz”’ + hlZ”h” +. . . + I& (9) 
Working within the set of parametrized stabilising con- 
trollers, a characterisation of the set of Youla parameters 
that yield stabii FIR controllers is given. Additional 
conditions on the Youla parameter are then derived in 
order for the FIR controller to achieve asymptotic dis- 
turbance rejection. In the rest of the paper, only single- 
input singlooutput (SISO) systems are considered. 

5.1 Stabilization and Structural Rcquinment 

A controller with transfer function G, that is to achieve 
regulation should iirst be stabiii. Let G,,o = UV-’ 
be a stabiig controller for GUol = NM” such that 
MV-NU= 1. Since G, should 
should exist Q E RH, such that 

Q(z) = $$$ whereno =_91ol”q+pl~“.-~+-..+q,~ 
and d,(z) = z”* + qnq+l.z”P + . .. + qzn, . Let U = 
2, V = 2, N = v, and M = 2, 
where deg(ny) = deg(d,), deg(n,) = deg(d,). Then G, 
is expressed as 

G,= %nMdC + donvdp 
ww& + don,dp 

(10) 

The following lemma gives conditions on the Youla pa- 
rameter so that a stable controller be stabilizing (The 
proofs of the three lemmas given below are not included 
due to space limitation). 

Lemma 2. : Structure Speci& Stable Stabilization. 
Let do be a given polynomial with all roots inside the 
unit circle. Then a controller with transfer function Gc = 
~ERH,isstsbilieingifandonlyif3Q== E 
RH, such that 

nonHde + don&, = nc;(dCdp)* 

nqnNdc + donydp = d&d&,)* 

(11) 

(12) 

The above result is then specialised for the csse where 
the stabiliiing controller is of the form of an FIR filter. 

Lemma 3. : Stabilization using an FIR controller. 
&sume the plant G,, is strictly proper. Then a con- 
troller with transfer function Ge(r) = $$ E RH, is 
stabtimg if and only if there exists a parameter vector 

such that 

8, = [!I0 -. ??2n,1= (13) 

(1) % = nh + deg(d,) + deg(&) . 
(2) The polynomial d, has all roots inside the unit cir- 

cle (i.e. the transfer function Q = 2 is in RX=). 
(3) The parameter vector 8, &i&es 

where the real matrices AI and A2 and the vectors 
Bl and BZ are computed from the data (4) and (5). 

5.2 Regulation Rcquinmcd 

Consider now the additional requirement of regulation. 
The closed loop system response is given by 

E(z) =‘FL&) + T,c(z)Q(z)T~,(zllW(z), 
T,,, T,,, Twr E RL (15) 

In order to satisfy the regulation requirement, au ad- 
ditional linear constraint is imposed on the parameter 
vector 8, as given by the following Lemma. 

Lemma 4. : Regulation using an FIR. controller. 
Consider a strictly proper plant G,,,,. The controller G, 
in (6) is an FIR filter as in (8), stabii, and yields 
asymptotic disturbance rejection if and only if there ex- 
ists a parameter vector (13) sati&ing conditions 1 and 
2 of Lemma 3 and in addition, 

[~~]e.+[~~]=o (16) 

where the real matrices Al, As, and As and the vectors 
Bl, &, and Bs are computed from the data (4) and (5). 
Moreover, AI, A2, Bl, and B2 are as in Lemma 3. 

Remark: For the case where e = y, (i.e. G,, = GwsI, 
G ue = GUv ), regulation is not possible in most of the 
cases. In fact, the expression for E(z) in this case is 
given by 

1 
E(z) = 1 + G~(~)G~.(~) Pdz)W(Z)I* (17) 

which implies that unless G,, contains some of the modes 
of the disturbance and G,, has se.ros at the remain- 
ing modes of the disturbance, regulation can not be 
achieved, i.e., regulation is totally dependent on the 
plant, and not the controller. 
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6. THE FIR-LMS APPROACH 

Assuming the regulation requirements given in the pre- 
vious section are satisfied, this section presents the on- 
line (adaptive) construction of an FIR regulator, under 
the assumption the disturbance input properties are not 
known. A traditional approach to achieve this objective 
is to tune the FIR controller parameters using the Least 
Mean Square (LMS) algorithm. In order to describe the 
algorithm, let &, denote an estimate of q, the nominal 
parameter vector, and &, = 0; - & the parameter esti- 
mation error. The updated parameter vector, obtained 
using the LMS algorithm, is given by 

&(k + 1) = &h(k) + &(k)e(k), (18) 

where 4 is the regression vector, to be defined below, and 
e the error signal (performance variable). It is desired 
to have the algorithm tune the nh + 1 coefficients of 
the FIR controller G, in order to have the performance 
variable e approach zero asymptotically. The purpose 
of this section is to derive conditions for the asymptotic 
convergence of the estimated parameter vector 8), to the 
nominal parameter vector 8;. 

The analysis of the convergence properties of the algo- 
rithm (18) is performed in several steps. First, an ex- 
pression for the performance variable e as a function 
of 4 and & is derived. Second, a difference equation 
representing the parameter estimation error dynamics 
(error system) is determined. The third step of the anal- 
ysis is to show that the origin of the error system is an 
asymptotically stable equilibrium point, which implies 
that 8h converges asymptotically to 6:. The proof of 
convergence of the parameter estimates is based on the 
observation that the error system can be represented as 
a perturbation of a system for which the origin is an 
exponentially stable equilibrium point. The latter prop- 
erty is then used to show that the origin of the error 
system is asymptotically stable. The details of the steps 
described above are given in the following. 

6.1 The pegomaance variable 

The performance variable (error signal) e is given by 

e = [Gwe + G,,G,[l - GuyGJIGwy] w, (19) 

which indicates that e is not an afllne function of the 
controller parameter vector 

@,, =[hs.+,,]=. (26) 

Assumpfion 1. : Uniqueness of the solution to the 
regulation problem. The integer nh is such that there 
exists a unique parameter vector 

0;: = [h&l,0 - -. ~o,J 

that achieves regulation. 

(21) 

Let Go be the corresponding controller, and e,, the corre- 
sponding performance variable. Note that e, is bounded 
above in magnitude by an exponentially decaying func- 
tion. An expression for e(k) as a function of e,,(k) is 
derived below. It can be easily shown that 

e=e-e,+e, 

= G,,e[l - G,G,,]-’ [G, - G,] [l - G,,G,]-‘G,,w 

+e,. (22) 

Define the signal 

u- -Gurrw = y- G,,,u 

and the operators 

(23) 

W’) = [l - G&Z-l)G&-l)l-l, 

LW) = L(Q-l)4nh+l)x(n~+l), 

W&q-‘)= Gue(cl)[l - Gc(t,q-‘)G,,(q-‘)I-‘, 

Wr’) = M(q-‘)Z(nn+l)x(nr+l), 

where Z denotes the identity matrix. It can then be 
shown that 

[G&Z-‘) - G&Z-‘)] L(n-‘)G,,(q-‘)w(k) = 

[[L(q-i)d(W%(~)] (24) 

where 

d(k) = [-v(k). . . - v(k - nh + l)p, 

t&(k) = o; - A(k). (25) 

The performance variable e in (22) is then expressed as 

The expression given above for the error is not in a suit- 
able form for the analysis to be conducted in the next 
section. A more convenient form is one where the error 
is the sum of two quantities, the first representing the 
scalar product of a “Iiltered version” of the regression 
vector and the parameter estimation error &,, the sec- 
ond representing a bounded perturbation term. For this 
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purpose, and following simple algebraic manipulations, 
the above expression for the error is rewritten as 

e(k) = [F(k (1-‘)4@)]~ k(k) + b(k) (27) 

where F(k, q-l), = M(k, q-‘)L(q-i) and 

J(k) = {(Wk, q-‘)(lL(q-‘)d(k)lT4(k)) 

- [F(k) q-%(k)]= &(k))} + e,(k). In the last part of 

this section, the boundedness of the perturbation term 
b(k) is studied. As mentioned earlier, the signal e,,(k) is 
bounded above in magnitude by an exponentially decay- 
ing function of time. It remains to study the properties 

of (~(k,q-‘)([L(q-‘)~(k)l=~~(k)) { 
- [F(k, q-‘)4(k)lT L(k))}. The following two assump 

tions are then invoked: 

Assumpfion 2. : The system G(q-‘) is asymptotically 
stable. 

Assumption 9. : The system iCi(k, q-l) is exponentially 
asymptotically stable, i.e. there exist 0 < o < 1 and 
0 < K such that IIM(k,Z)l < Ka@“) where IM(k,Z) is 
the impulse response of M(k, q-l). 

Assumption 2 is used to guarantee the boundedness of 
the signal u, and hence the boundedness of the regres- 
sion vector 4. Assumption 3 is satisfied if M(k, q-l) is 
exponentially stable for all k 2 0 and M(k, q-l) changes 
slowly with time (Sethares et al., 1989). Let &k) = 
L(q”W0) and ll~lloo = sup&(k&,,. It can then be 
shown that 

Wk, q-‘)((L(q-%(k))=&(k)) - 

(M(k, q-‘)L(q-‘)d(k))=&(k))( I 

The expression for the performance variable is rewritten 
as 

e(k) = [F(k,n-1)4(k))]T h,(k) -t A&, q-‘)&(k) 
+e,(k) (29) 

where A(k, q-l) is a bounded operator with 
IIW, ~-‘)ll~ = W). 

6.2 The error system and convergence analysis 

The error system is obtained by subtracting 0: from 
both sides of (18) and substituting (29) fci e, resulting 

in the following dynamic system equation: 

h,(k + 1) = [I - p#W[F(k, q-‘)d(k)l=] &h(k) 
-&(k)P(k, q-%(k) + e,(k)1 (30) 

It is desired to have the origin be an asymptoticalIy sta- 
ble equilibrium point for the above system. The stability 
analysis is conducted in two steps. In the first step, the 
stability of the origin for the unperturbed system 

&(k + 1) = [I - /4(k)[F(k, q-%(k)l=] &(k) (31) 

is analyzed, and then the asymptotic stability of the 
origin for the system (30) is given. The exponential sta- 
bility of the origin for the system (31) is guaranteed if 
there exist CY > 0 and m > 0 such that Vj, Vk > 0, 

Xj f “5’ 4(i)F(q-‘, i>d(i)jT 
[ I 

> Q. (32) 
i=k 

(Aj [A] denotes the jth eigenvalue of A). The above per- 
sistence of excitation assumption holds if F(q-l, k) is 
strictly passive and C$ is persistently spanning (i.e. (32) 
holds with F(q-‘, k) = I, the identity operator). The 
operator F(q-l, k) is strictly passive if F(q”, k) is strictly 
positive real at each time step k and F(q-‘, k) changes 
slowly with time (Sethares et al., 1989). The usefuhress 
of the exponential stability property of the origin stems 
from the fact that it allows one to add perturbations, 
such as those in (30), to the dynamics of the nominal 
unperturbed system (31) and still be able to guarantee 
some stability properties for the resulting perturbed sys- 
tern (30). In fact, assuming (32) holds, and given that 
4 is bounded, A(k, q-l)& is a linear bounded open+ 
tor, and e,(k) decays exponentially fast to zero, then 
there exists a p* such that for p 5 cc’, the origin is an 
asymptotically stable equilibrium point for the system 
(30). 

Theorem 1. : The origin is an asymptotically stable equi- 
librium point for (30) if Assumptions l-2 are satisfied, 
M(k,q-‘) is exponentially asymptotically stable, 4 is 
persistently exciting as given by (32) with F(k, q-l) = 
M(k, q-‘)L(k), the step size p is small, L%,(O) is small, 
and the initial conditions of M(k,q-l) are small. The 
system M(k, q-l) is exponentially asymptotically sta- 
ble if 

(1) The frozen time system M(k, q-l) is exponentially 
stable for all k. 

(2) M(k, q-‘) is slowly varying. 

The persistency of excitation is guaranteed if 

(SP) M(k, q-‘)L(q-‘) is strictly passive. 
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(PS) The regressor 4(k) is persistently spanning. 

Condition (SP) is satisfied if 

(1) The frozen time system M(k, q-‘)L(q-‘) is strictly 
passive for all k. 

(2) M(k, q-‘)L(q-1) is slowly varying. 

Condition (PS) is satisfied if 

(1) Gm,, has no zeros at the disturbance modes. 
(2) nh + 1 < 2ko . 

The prooh of most of the results given above can be 
found in (Sethares et d, 1989). 

7. OFF-LINE DESIGN OF THE PS REGULATOR 

As in the off-line design of the FIR regulator, it is BS- 
sumed in this section that the disturbance input is wm- 
pletely known and proceed with the numerical design of 
a new class of regulators for the plant. The new class 
of regulators is wnstructed by assuming the Youla pa- 
rameter Q which enters into the construction of the sta- 
bii controllers (6), is an FIR filter (as opposed to 
requiring the regulator itself to be an FIR filter). As will 
be &cussed later, a significant advantage that results 
from considering such regulators is that they are very 
easy to design, adapt and analyze. 

From section 4.3, we have 

The asymptotic disturbance rejection requirement can 
be cast in the form of interpolation conditions. 
Let PI, *em, p,,, denote the poles of W(z) which, according 
to (5), are all simple and located on the unit circle. 

Lemma 5. (Ben Amara et al., 1995.): Consider the closed- 
loop system transfer function FT,Q (7). Then asymptotic 
disturbance rejection is achieved if and only if the inter- 
polation wnditions 

T,t?(Pi) + Tue@i)Q@i)Twy@i) = 09 
i=l,...,n,= 

are satis&& 

(33) 

Letting the parameter Q(r) be of the form 

Q(*) = 2 p&‘, 
id 

it follows that the interpolation conditions (33) are equiv- 
alent to the linear wnstraint 

where 

At$+b=O, (35) 

(35) 

andAisarealmatrixofsisen,xn~andbisannp 
vector. Note that, in general the number of parameters 
in (34) need to be greater than or equal to the number 
of interpolation conditions (33) in order to have at least 
one solution. 

The adaptation process is based on adjusting the pa- 
rameter vector 6, on-line to minimize a time domain 
performance index. The following result relates the in- 
terpolation conditions (35) to the minimisation of a time 
domain criterion. 

Lemma 6. (Ben Amara et al., 1995.): Assume the signal 
w is quasi-stationary and rank A = rank [A b] = 
nP. Then 0, solves the minimization problem 

(37) 

if and only if 0, satisfies the interpolation conditions 
(35). 

First, a numerical off-line controller design procedure 
is presented. A recursive version of the off-line design 
algorithm is then used for on-line (adaptive) controller 
design. 

The off-line numerical controller design procedure is based 
on the assumption that a sequence of disturbance input 
values is available a priori. A least squares optimization 
algorithm is used to select the controller parameters. 

Let Q(z) be as in (34) and define the signals 

W) = C&)Wz), (38) 

K(z) = zJ&)z&)W(z). (39) 

The disturbance response can then be expressed ss 

e(k) = UO(~) - 4(Wq, 

where {Vi(.)} = 2-‘(V;.(z)), i = O,l, and 

(40) 

W = [W(k) * * . - VI (k - 71q + l)]? (41) 

Since the sequence of disturbance input values is avail- 
able a priori, the sequence {VI (0)) can be easily wm- 
puted and used to determine the sequence of vecturs 
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{ b( .)}. The latter can then be used in a least-squares- 
based controller design algorithm. 

Lemma 7. (Ben Amara et al., 1995.): Assume the ma- 
trix A in (35) is square (r+, = n,) and invertible and 
that VI (-) is pemistently exciting of order R(. Then q = 
-A-lb is the unique xninimk for the mean square er- 
rorandisgivenby 

If the numerator of Tla(z)TWr(z) and the denominator 
of W(z) are coprime, then the condition that or(.) be 
persi&&ly exciting of order n( is equivalent to that of 
w being persistently exciting of order np. 

8. THE PSRLS ADAPTIVE REGULATOR 

This section presents a review of a recursive least squares 
(RLS) based adaptive algorithm that constructs a con- 
troller capable of asymptotically r+cting band-limited 
(not necea&ly periodic) disturbance inputs of the form 
(5). The adaptive controller design approach is based 
on searching, online, within the set of parametrised sta- 
bii controllers for the plant, for a particular con- 
troller that achieves asymptotic disturbance rejection. 
Thesearchisbasedonsdjustingtheparametersofan 
FIR Youla parameter Q in order to asymptotically con- 
verge to the desired regulator. A recursive version of the 
least squares algorithm used in the off-line controller de 
sign is presented. The weighted least squares algorithm, 
of which the standard least squares algorithm used in 
Section 7 is a particular case, is used to derive the re- 
cursive algorithm. 

Define the signal r(k) = it?(q-‘)y(k) - fi(q”)u(k) and 
consider the performance variable 

e(k) = [G&“) + T,,(q-‘)QT,,(q”)lw(k) 
= L(q-‘)w(k) + Tle(q-‘)Qr(k) 
= Twe(a-‘)w(k) + QZe(q-‘)rO) 

+[Ze(q-‘)Q - QZ&-‘)lW 
kt e,(k).= [T,,(q”)Q - QZ&“)]r(k) and define a 
pseudo performance variable e’(L) = e(t) - ez(k). As- 
suming Q is of the form (34), then e’(l) is given by 

g(k) = TW,a(q-l)w(k) + c&(q-‘)r()) 

= ~dk) - 4Twq(k) (43) 

where u,(k) = T,,(q-‘)w(k), WI(L) = T,,(q“)r(t), and 
4 is given by (41). It can be seen from the above that 
the construction of the vector d(m) requires lmowledge of 
only the control signal u(-) and the meanvement y(m). 

The recursive least squaree algorithm with time varying 
forgetting factor is used to adjust the pammeter vector 
0, online in order to achieve an asymptotic controller ca- 
pable of rejecting the disturbance input. The parameter 
adjustment algorithm is given by 

b,(k + 1) = d,(k) + L(k $ l)Z(k + l), (44) 

p(k+l) X(k+1) 
= --+P(k) - 

L(k + 1Mk + qTw)l, (45) 

L(k + I) = I+ d(k + l)TP(k)&(k + 1)’ (46) 

with dq(0) = 80, P(0) = PO > 0, and where A(k) is 
the time-varying forgetting factor satisfying 0 < XG,, 5 
X(k) 5 x,, < 1. 

kt 0; denote the parameter vector satisfying the inter- 
polation conditions. The parameter error at time k can 
be de&d aa 

t&(k) = e; - t$ (k) (47) 

The parameter estimation error (47) asymptotically con- 
verges to sero provided the interpolation equations (33) 
admit a unique solution and that the signal 01(s) in the 
regression vector 4(e) is such that 

hence, resulting in an adaptive implementation of the 
Internal Model Principle when the performance e and 
the me asure.ment y are the same (&“[A] denotes the 
smallest eigenvalue of A). 

Remark: The adaptive parameter adjustment algorithm 
where the RLS algorithm with a forgetting factor is used 
can also deal with situations where the coefkients ci, 
frequencies wi, and phm &, i = O,...,r, in (5) art 
unknown and possibly piece-wise constant. III fact, for 
0 < X(k) < 1, the gain L(e) does not decay to sero which 
allows the algorithm to remain alert to changes in the 
nominal paraineter vector e;. 
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9. SIMULATION EXAMPLES 

In this section, the FIR-LMS and PS-RLS approaches 
are applied to the noise cancellation problem in an acous- 
tic duct. The acoustic duct model is obtained by wn- 
sidering only five modes of vibration. With a sampling 
period T. = .5 msec, the discrete time state space repre- 
sentation (A = [Al A& B = [Bl Bz]=, C = [Cl Cz]) 
of the plant is given by 

AI= 

- 0.7376 -0.6205 0.0441 -0.0573 0.0323 
0.5468 0.7398 0.0888 -0.1953 0.0439 
0.0357 0.0583 0.8483 0.4889 0.0124 
0.0977 0.1335 -0.4770 0.7059 0.1823 
0.0050 0.0298 0.0064 -0.1582 0.7277 
0.0135 0.0448 -0.0295 -0.0627 -0.5768 

-0.1238 -0.0307 0.0736 0.0424 0.2110 
0.0044 0.0420 -0.0395 0.0244 -0.1478 
0.0009 0.0103 0.0219 -0.1030 0.0387 

. 0.0110 0.0098 -0.0106 0.0015 -0.0284 

AZ= 

-0.0375 0.0567 0.0037 0.0130 -0.0036 
-0.0944 0.0793 -0.0047 0.0114 -0.0107 
0.0564 -0.0113 -0.0235 0.0188 0.0110 

-0.0944 0.2040 -0.0608 0.0730 0.0137 
0.6488 -0.0248 -0.0141 0.0196 0.0252 
0.6104 0.4816 -0.0453 0.0688 0.0095 

-0.1357 0.6092 0.5478 -0.1327 -0.0607 
0.1294 -0.4521 0.7550 0.1937 -0.0058 

-0.1390 0.1253 0.0388 0.5817 0.7302 
0.0187 -0.0411 0.0641 -0.7330 0.6314 

Br = 
0.0229 -0.5343 0.3014 0.4218 0.1799 

3 -0.5228 -0.1281 0.0027 -0.1584 -0.0470 ’ 

B2= 0.1835 -0.3094 0.1040 0.1436 0.0469 -0.i136 -0.3564 -0.1864 0.0234 -0.0025 I ’ 

cr C 0.0148 0.0271 -0.0391 -0.0225 0.0896 = 0.7105 0.2944 -0.2970 0.4395 -0.2010 1 ’ 

ca -0.0273 -0.0383 -0.0617 0.0752 -0.0711 = 0.3056 -0.3081 0.0971 -0.1032 0.0187 1 * 
The disturbance UI(.) is a single sinusoid given by 

u(k) = csin(wkT, + 4), (49) 
where c, w, and 4 are the amplitude, frequency, and 
phase of the continuous time sinusoid. The triple (c, w, 

4) is (1, 1256 rad/sec, 3 rad) for 0 5 k < T and then 
changes to (.5, 1194 rad/sec, 1.5 rad) for T 5 k where 
T = 40 set for the FIR-LMS case and T = .5 set for 
PSRLS case. 

In the case of the PS-RLS approach, the base stabilizing 
LQG controller G,,o was designed using the LQG theory. 
The forgetting factor in the RLS algorithm is chosen to 
be X = .95. The initial conditions of the algorithm are 
bs(O) = [0, OIT and P(0) = 1001 where I is 2 x2 identity 
matrix. 

The performances of the closed-loop control systems are 
shown in Figures 6 - 7. It can be seen that the two adap- 
tive control systems were both capable of rejecting the 
disturbance input even when the frequency of the dis- 
turbance input changes. However, it took the FIR-LMS 
algorithm a much longer time to converge compared to 
the time it took the PS-RLS approach to converge. In ah 
cases, and as required by the interpolation conditions, 
the frequency response of the closed-loop system trans- 
fer function FT,Q after parameter convergence indicates 
that the latter has zeros at the modes of the disturbance 
(not shown here due to space Iimitation). 

10. COMPARISON OF THE ADAPTIVE 
DISTURBANCE REJECTION ALGORITHMS 

This section wmpares the properties of the FIR-LMS 
and PSRLS approaches to the adaptive disturbance re- 
jection problem. First, a comparison of the off-line de- 
signs of the FIR controller and PS controller is given. 
The framework for the analysis of feedback system, pre- 
sented in section 4, allows the comparison to be per- 
formed by considering the properties of the YouIa pa- 
rameter Q, which is the common design parameter in 
both controllers. A comparison of the wnvergence prop- 
erties of the two adaptive algorithms is then given. The 
latter properties are dependent on the particular 
parametrization of each controller. 

10.1 Comparison of the o&line designs 

The off-line design approach assumes knowledge of the 
disturbance input properties. The comparison is given 
in terms of the properties of the Youla parameter used 
in constructing the FIR or PS regulators. 

In the case of the FIR regulator, the YouIa parame- 
ter Q was chosen to be a fulIy parametrized transfer 
function, that is, a transfer function with parametrised 
numerator and denominator. The design of the FIR reg- 
ulator involved satisfying two sets of constraints on the 
parameters of Q. The first set of constraints result from 
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the structural and stabilization requirements on the con- 
troller. These constraints are used to set conditions on 
the Youla parameter so that the resulting controller is 
of the form of an FIR filter and stabiig. The sec- 
ond set of constraints represent interpolation conditions 
that have to be satisfied in order for regulation to be 
achieved. All the constraints are in the form of linear 
equations in the unknown parameter vector ~9~ (13). In 
the PS controller case, the Youls parameter was chosen 
to be an FIR filter. The controller is designed by having 
the parameter vector 8, (36) satisfy only the set of linear 
constraints corresponding to interpolation conditions for 
regulation. Stability is guaranteed since Q E RH,,,,. For 
a Q of order nq, the number of free parameters to be 
determined is 2no _t 1 parameters in the case of the FIR 
controller, and nq parameters in the case of the PS con- 
troller . 

Bssed on the above, it can be seen that, for a given 
n,, the set of stabilizing controllers considered in the 
search for an FIR controller that achieves reegulation is 
larger than the set of stabilizing controllers considered in 
the search for a PS controller that achieves regulation. 
However, the number of constraints imposed on Q in 
the design of the FIR regulator is much larger than the 
number of constraints imposed on Q in the design of 
the PS regulator, which may lead to a smaller set of 
FIR regulators, if any at all, compared to the set of PS 
controllers that achieve regulation. 

10.2 Comparison of the adaptive algorithms 

In the adaptive controller design case, the disturbance 
input properties, that is the amplitudes, frequencies, and 
phases, are not known. 

The FIR controller parametrization, with only the nu- 
merator coeEcients to be adjusted, makes it easy to di- 
rectly adjust the unknown controller parameters on-line 
as given by (18). However, the expression for the per- 
formance variable e is not afEne in the parameter vector 
6h, and therefore, the analysis of the FIR-LMS adap 
tive control system properties is not easy to conduct. 
The suflicient conditions for convergence given by Theo- 
rem 1 place some stringent requirements on the operator 
M(k, q-‘)L(q-‘). Pointwise in time exponential stabil- 
ity of M(L, c-l) and strict passivity of M(h, q-‘)L(q”) 
were among the requirements for asymptotic conver- 
gence. There is no mechanism in the algorithm (18) to 
guarantee that such requirements are met. It should be 
noted that the strict passivity requirement wss invoked 
as part of a sufficient condition .to have (32) satisiied. 
However, (32) may still be satisfied in the frequency 
range of interest without having the pointwise in time 

strict passivity of M(k, q-‘)L(q-‘) be satisfied. Based 
on the observations given above, it is also clear that the 
bounded input bounded output (BIBO) stabiity of the 
adaptive closed loop system can not be guaranteed a 
priori. Regarding the speed of convergence, and as il- 
lustrated in the simulation example, the convergence of 
the estimated parameters to their nominal values is very 
slow. 

The main advantages the PSRLS approach has over the 
FIR-LMS approach can be stated as follows. 
l- Given that the closed loop system transfer function 
is af6ne in Q and that Q is a linear combination of sta- 
ble transfer functions, the resulting expression for the 
performance variable e is ffie in 8, which helped in 
conducting the performance analysis of the closed loop 
system as given in (Ben Amara et ol, 1995.) and sum- 
marized in section 8. 
2- The only requirement for asymptotic convergence is 
the persistence of excitation assumption (48) which rep 
resents a very mildrequirement. This convergence prop 
erty holds for any 6,(O) whereas those given for the FIR.- 
LMS approach hold only for L%(O) in the neighborhood 
of4. 
3- The speed of convergence in the simulation of the 
estimated parameters is much higher than that of the 
FIR-LMS approach. 
4- The BIB0 stability of the adaptive closed loop sys- 
tem is guaranteed since the performance variable e is 
driven to 2ero asymptotically. 
The main drawback of the PSRLS approach is that it 
is computationally more expensive than the FIRLMS 
approach as is obvious fzom (18) and (44)-(46). 

11. SUMMARY AND CONCLUSIONS 

This paper presented a comparison of a conventional 
approach to the adaptive disturbance rejection, namely 
the FIR-LMS approach, to the newly proposed PSRLS 
approach. First, conditions for the existence of an FIR 
controller that achieves regulation are given. The FIR- 
LMS approach is then presented. The convergence prop 
erties of the approach are discussed. The su.Ecient con- 
ditions for convergence are stringent and not possible 
to guarantee. The PS-RLS approach is then summa- 
rized and its convergence properties given. Simulation 
results, using the acoustic duct example, are used to il- 
lustrate the performances of the two approaches. The 
comparison results indicate that the PS-RLS approach 
is more amenable to analysis studies and has better sta- 
bility and convergence properties than the FIR-LMS ap 
proach. On the other hand, the latter has less computa- 
tional requirements and is easier to implement. The two 
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Fig. 6. Response of the adaptive control system for duct 
using the FIR-LMS algorithm with p = .OOl. Top: 
Disturbance input w(k). Middle: Response of the 
adaptive control system to the disturbance input 
w(k). Bottom : CoefEcients of the FIR controller. 
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Fig. 7. Response of the adaptive control system using the 
PS-RLS algorithm. Top: Disturbance input w(k). 
Middle: Response of the adaptive control system to 
the disturbance input w(k). Bottom : Parameters 
of the controller parametrizing mapping Q. 
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