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SUMMARY

This paper fully describes the RTAC experimental testbed which provides a means for implementing and
evaluating nonlinear controllers. The description of the testbed includes all physical parameters of the device
that are relevant to the design and implementation of controllers. Next, four nonlinear controllers are
considered. The first controller is a static, full-state-feedback, globally asymptotically stabilizing control law
developed using partial feedback linearization and integrator backstepping. Next, three nonlinear control-
lers based upon passivity principles are presented, two of which are encompassed by the classical passivity
framework, while the third is based upon the novel concept of virtual resetting absorbers. The passive
controllers do not require either translational position or velocity measurements. All of the controllers are
implemented on the RTAC testbed and their performance is examined. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The rotational/translational actuator (RTAC) provides a low-dimensional nonlinear system for
investigating nonlinear control techniques.1~5 The lossless formulation of this problem involves
the nonlinear coupling of an undamped oscillator with a rotational rigid body mode. Stabiliz-
ation and disturbance rejection objectives for this problem have been formulated as a benchmark
problem.4

This paper has three objectives. First, the RTAC experimental testbed is fully described. This
testbed has been designed to provide the means for implementing and evaluating a variety of
nonlinear controllers. The description of the RTAC testbed includes all physical parameters of
the device that are relevant to the design and implementation of controllers. Next, we consider
several nonlinear control designs for the RTAC, including integrator backstepping and passivity-
based controller designs. Finally, all of the controllers are implemented on the RTAC testbed and
their performance is evaluated.

The integrator backstepping design is based on the work of Wan et al.1,2 This approach
requires that the equations of motion be reformulated by partial feedback linearization.6
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Integrator backstepping7 is then used to produce a family of globally asymptotically stabilizing
control laws.

Three passivity-based controllers are developed for the RTAC. These controllers have intuit-
ively appealing energy-dissipative properties and thus also inherent stability robustness to plant
and disturbance uncertainty. Two of these controllers are encompassed by the classical passivity
framework,8~14 with versions of these controllers appearing in References 3 and 4. The final
controller is based upon the novel concept of resetting absorbers.15,16

2. EXPERIMENTAL TESTBED

An RTAC experimental testbed has been constructed based on the nonlinear system model of
References 1—4 to evaluate the performance of various nonlinear controllers. A photograph of the
testbed appears in Figure 1. A model of this arrangement, illustrated by Figure 2, consists of
a translational cart of mass M connected by a spring of stiffness k to a wall. The rotational
actuator, which is mounted on the cart, consists of a proof mass of mass m and centroidal moment
of inertia I mounted at a fixed distance e from its centre of rotation. A control torque denoted by
N is applied to the rotational proof mass.

Let q denote the translational position of the cart from its equilibrium position, and let h denote
the counterclockwise rotational angle of the eccentric mass, where h"0 is perpendicular to the
direction of translation, as shown in Figure 2. The equations of motion are given by

(M#m)q(#kq"!me(h$ cos h!hQ 2 sin h) (1)

(I#me2)h$"!meq( cos h#N (2)

Figure 1. The RTAC testbed
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Figure 2. Model of the RTAC experiment

Note that while the model is lossless, the experimental testbed experiences unmodelled damping
effects such as air and motor friction.

Equations (1) and (2) are given in first-order form by

xR "f (x)#g(x)N (3)

where x"[q, qR , h, hQ ]T,

f (x)"

qR
!(I#me2) (kq!mehQ 2 sin h)

(M#m) (I#me2)!(me cos h)2
hQ

me cos h(kq!mehQ 2 sin h)

(M#m) (I#me2)!(me cos h)2

, g(x)"

0
!me cos h

(M#m) (I#me2)!(me cos h)2
0

M#m

(M#m) (I#me2)!(me cos h)2

The translational cart consists of a pair of acrylic plates together with some mounting
hardware. The spring k is realized by 2—12 helical springs mounted symmetrically and preten-
sioned. The control torque N is implemented by means of a rotary DC brush motor, onto whose
shaft is mounted an eccentric arm. The cart is mounted on an air bearing, resulting in low-friction,
one-dimensional motion. The remainder of this section provides a more detailed description of
the experimental setup, including hardware components and controller implementation.

The translational cart is constructed of two 8@@]8@@]0)25@@ acrylic plates. The lower plate is
bolted to a 3@@]3@@ carriage, which is constrained to ride on the air slide. The air slide has a usable
length of 7@@, thus allowing $2@@ of travel from the centre. The upper plate is mounted directly
above the lower plate on 1)125@@ tall acrylic mounting posts located at the corners of the plates.
The DC motor is mounted on the upper acrylic plate with its shaft pointing downward. The
springs have an experimentally measured stiffness of 3)1 oz/in, and the nominal configuration of
six springs attached yields an effective spring constant of k"18)6 oz/in.

With the arm motionless at 90° there is no coupling between the translational and rotational
motions. By measuring the experimental free response, the natural frequency of the oscillator in
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this configuration was determined to be 1)64 Hz. Since the way in which the experiment was
constructed made it difficult to determine the mass of each subpart precisely, the measured
stiffness and the measured natural frequency were used to identify the effective mass of the cart.
This total mass M consisting of the masses of the acrylic plates, the mounting section of the air
slide, the DC motor, and the mounting hardware was determined to be approximately 65 oz. The
damping ratio of the oscillator with the eccentric arm held motionless was also determined from
the free response characteristics and was seen to vary from approximately 0)45% when the RTAC
is configured for experimentation, to less than 0)1% when no power or data cables are attached.
The supply hose for the air slide must remain attached to the cart, however, and the air drag
resulting from the motion of the hose and the cart is responsible for much of the remaining
damping.

The eccentric arm connected to the motor shaft is a 4)25@@]0)75@@]0)0625@@ aluminium bar, into
which a 2)75@@ long slot is cut to facilitate mounting additional proof masses. The bar is attached
to a steel collar which is fastened with set screws to the shaft of the DC motor. While the eccentric
arm alone serves as a rotational proof mass, additional proof masses constructed of steel can be
mounted to the eccentric arm at a range of locations. The additional proof masses are each
0)75@@]0)75@@]0)0625@@ and weigh 0)14 oz. They can be stacked as many as six high, and mounted
on the arm between 1)5@@ and 3)25@@ from the motor shaft. The aluminium arm is scored at 0)125@@
intervals to permit repeatability of the experimental configuration when additional proof masses
are attached. The effective values of the parameters m, e, and I vary depending on the number and
location of the attached proof masses. With no proof masses attached to the arm, m"1)56 oz,
e"1)76@@ and I"0)74 oz in2, where m is measured, and e and I are calculated based on geometry
and material properties. When no additional proof masses are attached to the arm, the value
of the coupling parameter e, which will be defined in Section 3, is e"0)14. In a typical
configuration of 5 additional proof masses mounted on the arm 3)875@@ from the rotation axis, the
coupling increases to e"0)18. The physical parameters of the RTAC testbed are summarized in
Table I.

The torque actuation is provided by a 12 V DC brush motor which is 2)25@@ long and 1)38@@ in
diameter. The motor produces 3)04 oz in/A, and is rated for continuous torque of 14)2 oz in, and
continuous power output of 45 W. To achieve the torque ratings, the motor is capable of
operating with a continuous 4)67 A load, although higher currents can be tolerated for short
periods of time. In order to utilize torque as the control input, we use a DC servo drive to
command the current into the motor. The pulse-width-modulated drive is rated to produce 5 A
continuous current and 10 A peak current with a bandwidth of 2)5 kHz.

Table I. Summary of the RTAC physical parameters

Bare arm 5 Added proof
masses

Cart mass M 65)5 oz 65)5 oz
Arm mass m 1)56 oz 2)28 oz
Spring constant k 18)6 oz/in 18)6 oz/in
Eccentricity e 1)76 in 2)43 in
Arm inertia I 0)74 oz in2 0)74 oz in
Coupling e 0)14 0)18
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To avoid damaging the motor, a number of mechanisms are utilized to ensure that the current
into the motor is limited. In the hardware elements of the control system, fuses of various ratings
can be installed. A 4 A, fast-blow-type fuse is typically used. Software-based current limiting is
also implemented. Since the servo drive is configured for a transconductance of 0)5 A output per
unit voltage command, we limit the current command to the motor by inserting a software
voltage saturation element in the controller. When a controller is first implemented, the software
saturation may be set fairly low, whereas for well-tested controllers the software limiting is usually
set to $8 V, limiting the current command to $4 A. Note that the software limiting does not
have the same effect as the hardware limiting, since reaching a software limit entails control signal
saturation, whereas blowing a fuse immediately disconnects the control.

The angular position of the eccentric arm is sensed by an incremental optical encoder mounted
on the motor. The encoder has 1000 lines per revolution and two-channel quadrature output
(4 ‘edges’ per encoder line) yielding an effective angular resolution of 360°/4000"0)09°. Due to
limitations in the encoder electronics the maximum angular rate of the arm for which the encoder
will be effective is 1250 rad/s, well above the bandwidth of the system. To estimate angular
velocity, we apply a finite difference scheme to the angular position data.

Translational displacement of the cart is measured by a linear variable displacement transducer
(LVDT). The LVDT consists of an 5)3@@ long stationary body that is mounted to the table and
a 11)1@@ long core that is attached to the cart. The core rides inside the body of the LVDT without
contact. The LVDT has an output range of $2@@ and an output gain of 5)0 V per inch, producing
a $10 V maximum output. The output is linear to within 25 mV, or 0)005 in. To estimate
translational velocity, we apply a finite difference scheme to the translational position data.

To implement real-time control, we use a dSPACE ds1102 control board in conjunction with
the Real ¹ime ¼orkshop software which provides an interface to Matlab’s Simulink. As a result,
controllers that can be represented by Simulink block diagrams without function calls to external
M-files can be automatically converted to assembly code for implementation on the control
board. This arrangement allows for parameterized control laws, where the parameters can be
displayed and adjusted while the experiment is running.

The control board has two 12-bit A/D inputs, two 16-bit A/D inputs, two encoder inputs, and
four 12-bit D/A output channels, as well as digital I/O channels. The input from the LVDT is
sampled by a 16-bit A/D converter, and the command to the servo drive is sent to a 12-bit D/A
channel. The control board, which is resident in a 90 MHz Pentium-based host PC, utilizes an
internal 40 MHz Texas Instruments TMS320C31 floating point digital signal processor for
control. Sample rates for the controllers considered in this paper are 5 kHz, corresponding to
a 200 ls sampling period.

3. INTEGRATOR BACKSTEPPING CONTROLLER

In this section we review the integrator backstepping design procedure used in Reference 2 to
obtain a family of globally asymptotically stabilizing controllers for (3). Following the procedure
in Reference 2, we normalize the equations of motion, scaling displacement, torque, and time
according to

m¢S
M#m

I#me2
q, l¢S

M#m

k(I#me2)
N, q¢S

k

M#m
t (4)
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to obtain

m$#m"e(hQ 2 sin h!h$ cos h) (5)

h$"!em$ cos h#l (6)

In the normalized equations (5)— (6) the parameter e defined as

e¢
me

J(I#me2) (M#m)
(7)

quantifies the coupling between the translational and rotational motions. Note that in this section
the notation ( ) ), when applied to the scaled variables, denotes differentiation with respect to the
scaled time q.

We next apply a change of co-ordinates motivated by the geometric properties of (3). The
diffeomorphic transformation that achieves partial feedback linearization is given by

z
1
¢m#e sin h, z

2
"¢mQ #ehQ cos h, y

1
¢h, y

2
¢hQ

Equation (3) can now be rewritten in terms of the variables z
1
, z

2
, y

1
and y

2
as

zR
1
"z

2
(8)

zR
2
"!z

1
#e sin y

1
(9)

yR
1
"y

2
(10)

yR
2
"v (11)

where

v"
e cos y

1
1!e2 cos2 y

1

[z
1
!(1#y2

2
)e sin y

1
]#

1

1!e2 cos2 y
1

l (12)

The integrator backstepping procedure [7] can now be used to develop a globally asymp-
totically stabilizing control law in terms of the variable v. To do this, we find a function y

1
(z

1
, z

2
)

that globally asymptotically stabilizes (8), (9), and then backstep twice to obtain a control v that
globally asymptotically stabilizes (8)— (11). The transformation (12) is used to determine the
corresponding scaled torque l, and the scaling (4) is used to determine the actual torque
command N. In terms of the scaled variables m, h, q and l, the control law derived in Reference 2 is
given by

l"C!(c
1
#c

2
)hQ !Ac1c2#

p
1

p
2
B (h#c

0
arctan(mQ #ehQ cos h))#

c
0
((c

1
#c

2
)m#mQ )

1#(mQ #ehQ cos h)2

!

ep
0
(c

2
mQ #c

2
ehQ cos h!m) [sin h#sin(c

0
arctan(mQ #ehQ cos h))]

p
1
(h#c

0
arctan(mQ #ehQ cos h ))
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#2
c
0
m2(mQ #ehQ cos h)

(1#(mQ #ehQ cos h)2)2
#

ep
0
c
0
m(mQ #ehQ cos h)cos(c

0
arctan(mQ #ehQ cos h))

p
1
(1#(mQ #ehQ cos h)2) (h#c

0
arctan(mQ #ehQ cos h))

!

ep
0
(mQ #ehQ cos h)hQ cos h

p
1
(h#c

0
arctan(mQ #ehQ cos h))

#

ep
0
hQ (mQ #ehQ cos h) [sin h#sin(c

0
arctan(mQ #ehQ cos h))]

p
1
(h#c

0
arctan(mQ #ehQ cos h))2

!

e cos h
1!e2 cos2 h

[m!hQ 2e sin h]D (1!e2 cos2 h) (13)

where the controller parameters p
0
, p

1
, p

2
, c

0
, c

1
and c

2
are all positive, and 0(c

0
(2. Global

asymptotic stability of the origin is obtained for every allowable choice of these parameters.

4. PASSIVE SYSTEMS

In this section, we define dissipativity, passivity, and losslessness for a general class of dynamical
systems. We then restrict our attention to the control systems considered in this paper, and give
sufficient conditions that guarantee the passivity of these systems.

A dynamical system with input u(t)3º-Rm, output y (t)3½-Rp, and internal state
x(t)3X-Rn is said to be dissipative if there exists a continuous storage function »

s
: XP[0,R)

and a supply rate w :º]½PR such that, for all t'0, the dissipation inequality

»
s
(x(t))!»

s
(x(0)))P

t

0

w (u(s), y (s)) ds (14)

is satisfied. A dissipative system is called passive if ½"º"Rm, X"Rn, »
s
(0)"0 and (14) holds

for the particular supply rate w (u, y)"uTy. A passive system is called lossless if (14) holds with
equality for all t'0.8,9,13,14

Here, we consider systems of the form

xR (t)"f (x(t))#G(x (t))u (t) (15)

y(t)"h (x(t))#J (x(t))/ (x(t), u(t), t)u(t) (16)

with internal state x (t)3Rn, input u (t)3Rm, output y (t)3Rm, and non-negative scalar function
/ :Rn]Rm][0,R)P[0,R). We assume f (0)"0, h (0)"0, and f ( ) ), G( ) ), h ( ) ) and J ( ) ) are
smooth functions of appropriate dimension. Furthermore, the system (15), (16) is assumed to be
zero-state detectable and completely reachable, where zero-state detectable means u(t),0,
y(t),0 implies x(t),0, and completely reachable means that for all states x

0
, x

1
there exists

a finite time t
1

and a square-integrable control u (t) defined on [0, t
1
] such that the state can be

driven from x (0)"x
0

to x (t
1
)"x

1
. In this paper, when a controller is represented in the form

(15), (16), we will include the subscript ‘c’ and interchange the roles of u and y. Note that due to the
presence of the multiplier / (16) is not affine in the control, and thus cannot be addressed by the
framework in Reference 10. Passive systems that are not affine in the control are also considered
in Reference 17.

The following result for systems of the form (15), (16) with /(x, u, t),1 characterizes a passive
system in terms of KYP-type conditions.
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Lemma 1 (Reference 10)

The system (15), (16) with /(x, u, t),1 is passive if and only if there exist functions
»

4
:RnP[0,R), l :RnPRp and ¼ :RnPRp]m with »

4
(x) continuously differentiable, »

4
(0)"0,

such that, for all x3Rn,

» @
4
(x) f (x)"!lT (x)l(x) (17)

1
2
» @

4
(x)G(x)"hT (x)!lT (x)¼ (x) (18)

J(x)#JT(x)"¼T (x)¼(x) (19)

For systems that do not satisfy / (x, u, t),1, the following result provides a sufficient condition
for passivity.

Lemma 2

Consider the system (15), (16). Assume there exists a function »
4
: RnP[0,R) that is continu-

ously differentiable, and »
4
(0)"0. If

» @
4
(x) f (x))0 (20)

» @
4
(x)G(x)"hT (x) (21)

J(x)#JT(x)*0 (22)

then (15), (16) is passive.

Proof. Using (20)— (22) it follows that

P
T

0

uT(t)y (t) dt"P
T

0

[uT(t)h (x(t))#uT(t)J (x(t))/ (x(t), u(t), t)u (t)] dt

"P
T

0

[uT(t)h (x(t))#/ (x(t), u(t), t)uT (t)J (x (t))u (t)] dt

*P
T

0

hT(x (t))u (t) dt

"P
T

0

» @
4
(x (t))G(x (t))u (t) dt

"P
T

0

[» @
4
(x (t)) ( f (x(t))#G(x(t))u(t))!» @

4
(x (t)) f (x (t))] dt

"P
T

0
C

d

dt
»

4
(x(t))!» @

4
(x (t)) f (x (t))Ddt

"»
4
(x(¹ ))!»

4
(x (0))#P

T

0

!» @
4
(x(t)) f (x(t)) dt

*»
4
(x(¹ ))!»

4
(x (0))

which verifies (14) with w"uTy. Hence (15), (16) is passive. K
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Two well-known properties of passive systems will be exploited in this paper: passive systems
are stable in the sense of Lyapunov, and the negative feedback interconnection of two passive
systems is passive with respect to the inputs and outputs of either of the original systems, and thus
is Lyapunov stable.11,12

5. PASSIVE CONTROLLERS

Our primary objective for controller design is to asymptotically stabilize the origin x"0 of the
system (3). In order to exploit the stability robustness property associated with the feedback
connection of a passive plant with a passive controller, we must first ensure that the plant to be
controlled is passive. However, due to the rigid-body rotational mode, the undamped RTAC
model (3) is actually unstable, and, accordingly, not passive. Therefore, the approach we take for
control design is to passify the plant model using bounded state feedback, and then investigate the
performance of various asymptotically stabilizing passive control designs.

Note that our stability objective, namely, asymptotic stability of the origin, necessarily
redefines the equilibrium structure of the system, since the equilibria of the open-loop system have
the form q"0, qR "0 and hQ "0, with h arbitrary. In our passive controller designs, we include the
condition that the controller should not distinguish between the states h mod 2n, since the
inability of the controller to recognize this physical equivalence can result in undesirable
unwinding behaviour.3 An example of unwinding is given in Section 6.2.

5.1. Passifying the plant model

To passify the plant model, let g'0 and set

N"!mge sin h#u (23)

where the input u will be determined later based on the output of a passive controller. This
inner-loop control is chosen because it is a bounded function of the state, and because it will not
cause unwinding. The term !mge sin h in (23) lends itself to the interpretation of the gravitational
torque that would result if the eccentric arm were in a gravitational field of strength g oriented in
the h"0 direction. Consequently, the inner-loop system can be viewed as the emulation of
a pendulum absorber, which is used to reduce vibration levels in tower structures.18 Tuning of
this emulated absorber can be accomplished by adjusting the value g.

With the control (23) and in the absence of a disturbance force F, (3) becomes

xR "fM (x)#g(x)u (24)

where

fM (x)"

qR
!(I#me2) (kq!mehQ 2 sin h)#me cos hmge sin h

(M#m) (I#me2)!(me cos h)2

hQ
me cos h(kq!mehQ 2 sin h)!(M#m)mge sin h

(M#m) (I#me2)!(me cos h)2

(25)
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Now, consider the storage function

»
4
(x)¢1

2
(M#m)qR 2!meqR hQ cos h#1

2
(I#me2)hQ 2#1

2
kq2#mge(1!cos h) (26)

which represents the kinetic energy of the cart and arm masses, the potential energy stored in the
spring element, and the potential function associated with (23). Corresponding to (20), (21) we
have

» @
4
(x) fM (x)"0 (27)

» @
4
(x)g(x)"hQ (28)

so that, according to Lemma 2, (24) with input u and output

y"hQ (29)

is passive, and (24), (29) will be termed the passified plant.

5.2. Damped pendulum absorber emulation

In this subsection, we design a controller that asymptotically stabilizes the passified plant (24),
(29). Let a, c'0, and

u"!a tanh chQ (30)

which has the desirable property of being a bounded function of hQ . This controller effectively adds
a bounded damping term to the pendulum absorber designed in the inner loop, and the resulting
controller emulates a damped pendulum absorber. Note that the parameter a determines the
saturation level for the controller, while the product ac defines the small amplitude gain, since the
linearization of a tanh chQ about hQ "0 is achQ . With the control input defined by (23) and (30), the
control torque N is bounded in magnitude by mge#a.

The closed-loop system (24), (29), (30) is given by

xR "fM (x)!g (x)a tanh chQ (31)

By choosing » (x)"»
4
(x) to be a Lyapunov candidate, where »

4
(x) is given in (26), along the

trajectories of the closed-loop system we have

»Q (x)"!ahQ tanh chQ )0 (32)

and asymptotic stability of the origin follows from the invariant set theorem.19 It also follows
from the invariant set theorem that the closed-loop trajectory from every initial condition will
asymptotically approach an equilibrium position in state space of the form q"0, qR "0, hQ "0,
h"nn, n"0, $1, $2,2, which corresponds to one of two physical configurations: a stable
configuration corresponding to the arm pointed ‘down’ (h"0 mod2n), or an unstable configura-
tion corresponding to the arm pointed ‘up’ (h"nmod 2n). Furthermore, if a particular trajectory
tends to asymptotically approach the unstable configuration, a small disturbance would cause it

444 R. T. BUPP, D. S. BERNSTEIN AND V. T. COPPOLA

( 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 435—457 (1998)



Figure 3. Coupled pendula absorber

to approach the stable configuration. While this is desirable global behavior, the origin x"0 is
not globally asymptotically stable.

5.3. Coupled pendula absorber emulation

In this subsection we extend the emulated damped pendulum absorber design of Section 5.2 to
emulate the multi-mode absorber comprised of a system of coupled pendula4 as shown in
Figure 3. This added flexibility can be exploited by tuning the controller to effectively reject
disturbances with two dominant frequency components, or to efficiently stabilize a multi-mode
plant as in Reference 20. These capabilities are not explored further in this paper, however.

For the coupled pendulum absorber, the pendulum emulated by the eccentric arm and the
damped pendulum control law (30) is termed the primary pendulum. The angular motion of the
primary pendulum is imagined to be transmitted by a massless rigid rod and ideal gearbox
assembly to an auxiliary pendulum. A nonlinear rotational spring element is introduced to couple
the dynamics of the two pendula. The auxiliary pendulum hangs vertically in an emulated
gravitational field of strength g

#
, and the damping is represented by !d

#
hQ
#
. Note that since the

rotational motion of the auxiliary pendulum is normal to the direction of motion of the cart,
its physical realization does not directly produce a reaction force on the cart, but rather
only produces a reaction force on the primary pendulum. Since the control input is torque
applied to the eccentric arm, we are thus able to emulate the effect of this auxiliary pendulum
subsystem.

The primary pendulum is defined by the parameters m, I and e, the h degree of freedom, and
controller parameters g, a and c as before. The auxiliary pendulum is defined by a virtual mass
m

#
at a distance e

#
about the rotational axis, and the h

#
degree of freedom, measured from the

vertical. The inertia of the auxiliary pendulum about the pivot is I
#
. The nonlinear rotational

spring that couples the primary and auxiliary pendula has restoring torque !i sin(h
#
!h), where

i'0.
To realize the coupled pendula absorber in Figure 3 as a passive compensator, we write the

equations of motion with input y"hQ and output !u as

xR
#
"f

#
(x

#
)#G

#
(x

#
)y (33)

!u"h
#
(x

#
)#J

#
(x

#
)/ (x

#
, y, t)y (34)
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where x
#
"[h h

#
hQ
#
]T, and

f
#
(x

#
)"

0

hQ
#

!

i sin(h
#
!h)

I
#

!

m
#
g
#
e
#
sin h

#
I
#

!

d
#

I
#

hQ
#

, G
#
(x

#
)"

1

0

0

(35)

h
#
(x

#
)"i sin(h!h

#
), J

#
(x

#
)"a, / (x

#
, y, t)"

tanh cy
y

(36)

Notice that since 0(/ (y)(1, (33), (34) is of the form (15), (16).
A storage function for the compensator (33)— (36) is given by

»
4#

(x
#
)¢1

2
I
#
hQ 2
#
#m

#
g
#
e
#
(1!cos h

#
)#i (1!cos(h!h

#
)) (37)

which represents the kinetic energy of the auxiliary pendulum plus the potential energies of the
auxiliary pendulum and the elastic coupling. The system (33)— (36) with input y, output !u, and
storage function »

4#
(x

#
) satisfies

» @
4#

(x
#
) f

#
(x

#
)"0 (38)

» @
4#

(x
#
)G

#
(x

#
)"hT

#
(x

#
) (39)

J
#
(x

#
)#JT

#
(x

#
)"2a'0 (40)

corresponding to the conditions of Lemma 2. The compensator is thus passive.
Because the closed-loop system is comprised of the negative feedback interconnection of

passive systems, it is passive, and thus Lyapunov stable. Asymptotic stability of the closed-loop
system follows from the invariant set theorem, where »

#-
(x, x

#
)"»

4
(x)#»

4#
(x

#
) is used as

a Lyapunov function for the closed-loop system. It also follows from the invariant set theorem
that the stability properties of the equilibria q"0, qR "0, hQ "0, hQ

#
"0, h"$n

1
n, h

#
"$n

2
n for

integers n
1

and n
2
, are qualitatively similar to those of the closed-loop system involving the

damped pendulum absorber of Section 5.2 in that all closed-loop trajectories asymptotically
approach the origin, modulo n in the rotational states h, h

#
.

5.4. Virtual resetting absorber controllers

The third dissipative controller we consider is a virtual resetting absorber controller, which
emulates an absorber system whose states are reset to achieve instantaneous reduction of the
‘total energy’ of the closed-loop system, where the total energy includes the kinetic and potential
energies associated with the actual physical plant, as well as the emulated energy associated with
the states of the controller. One type of virtual resetting controller, called a virtual trap-door
absorber, is described in Reference 15, where the resetting algorithm is used to achieve finite-time
stabilization of the double integrator. A general theory of virtual resetting absorber controllers is
developed in Reference 16. Resetting differential systems are also considered in References 21 and
22 as a special case of differential equations with impulse effect.
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Resetting differential systems consist of three main elements: a continuous-time dynamical
equation, which governs the motion of the system between resetting events; a difference equation,
which governs the way the states of the controller are instantaneously changed when a resetting
event occurs; and a condition that determines when the states of the system are to be reset. The
evolution of the state of a resetting differential system is as follows: while the resetting condition is
not met, the state is given by the solution of the differential equation, with appropriate initial
conditions. Upon reaching a point in time and/or state space that satisfies the resetting condition,
the state of the system is instantaneously reset according to the resetting law. The state then
proceeds to evolve as a solution of the differential equation again, until the resetting condition is
again satisfied.

The resetting controller is given by

xR
#
"C

hQ
#

!i
I#

sin(h
#
!h)D, ihQ sin(h!h

#
)'0 (41)

*x
#
"C

h!h
#

!hQ
#
D, ihQ sin(h!h

#
))0 (42)

u"i sin(h
#
!h) (43)

The continuous-time equation governing the behavior of the state x
#
between resetting events is

given by (41). These dynamics represent the coupled pendula absorber of Section 5.3 where the
gravity term g

#
and the dissipation term d

#
are both set to zero. Notice that unlike the passive

controller designs of Sections 5.2 and 5.3, this controller has no dissipation term in its dynamics
(41).

The resetting law (42) describes the instantaneous change in the controller state that occurs
when the resetting condition is met; that is, when the resetting condition is met, the state x

#
is

instantly reset to x
#
#*x

#
, and thus, according to (42), h

#
is reset to h

#
#h!h

#
"h, and h

#
is

reset to hQ
#
!hQ

#
"0. This resetting law (42) thus resets h

#
to h and hQ

#
to 0.

The resetting condition in (41), (42) involves a sign condition on the function ihQ sin(h!h
#
). The

motivation for this condition, as well as for the form of the reset law (42), is based on properties of
the emulated energy, which is given by

»
#
(x

#
, x)"1

2
I
#
hQ 2
#
#i (1!cos(h!h

#
))*0 (44)

When the resetting condition is not met, it follows from (41) that

d

dt
»

#
(x

#
, x)"ihQ sin(h!h

#
) (45)

It follows from (24)— (28) and (41)— (45) that

d

dt
»

#
(x

#
, x)"ihQ sin(h!h

#
)"!hQ u"!

d

dt
»

4
(x) (46)

Thus, »
#
is increasing if and only if »

4
is decreasing. It is now clear from (41), (42) and (45) that the

resetting condition (42) allows the states of the controller to evolve without resetting as long as
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the emulated energy (44) is increasing; that is, no resetting occurs provided the controller is
removing energy from the plant (24). When the controller is no longer able to remove energy from
the RTAC, the controller states are reset with h

#
reset to h, and hQ

#
reset to 0. This change in

controller state causes the emulated energy (44) to be instantly transferred from »
#
(x

#
, x)*0 to

»
#
(x

#
#*x

#
, x)"0, effectively dumping any ‘energy’ that had accumulated in the controller.

In this approach, energy is allowed to flow from the plant into the controller, but due to the
resetting mechanism, no energy can flow from the controller back to the plant. Hence, in the
discussion that follows, we will refer to this resetting controller as the virtual one-way absorber, or
simply the one-way absorber. While this resetting algorithm has no mechanism for doing positive
work on the plant, its discrete resetting action (42) prevents it from being captured by the
standard dissipativity framework.

To implement the one-way absorber controller on the RTAC, only the angle h is measured. The
value of the compensator energy (44) is evaluated at each time step, and the controller states are
reset whenever the compensator energy is less than or equal to the value of the compensator
energy at the previous sampling instant.

6. EXPERIMENTAL RESULTS

6.1. Performance comparison

In this section, the controller designs of Sections 3 and 5 are implemented and evaluated on the
RTAC testbed. The baseline experiment used to evaluate the performance of the controllers is an
initial condition response, where q(0)"1)5@@ and qR (0)"0. This initial condition is roughly as
large as the testbed will allow, and the responses are representative of those obtained at other
initial conditions. For the passivity-based controllers, the arm is set initially to h"0 and hQ (0)"0.
With the RTAC held in this initial configuration, the controller is active, although no control
torque is applied by the motor. The experiment begins when the cart is released. For the
integrator backstepping controller, when the cart is held motionless at q (0)"1)5@@, control
torques cause the arm to be initially at rest at approximately h"145°.

The time histories of the cart position and arm angle are recorded, and the value of the control
signal is computed by multiplying the output of the controller (measured in volts) times the
transconductance of the servo drive (0)53 A/V) times the motor constant (3)04 oz in/A). For each
experiment, a settling time is computed as the time required for the cart displacement to become
less than 10% of the initial value, that is, 0)15@@. An approximate damping ratio is assigned to each
response based on logarithmic decrement analysis. Clearly, the responses of these nonlinear
systems are not expected to mimic the response of a linear system. However, by approximating
the rate of decrease of the amplitude of the cart displacement during roughly the first 5 s of the
experiment, an effective damping ratio can be assigned that is useful for comparison purposes.
A summary of the performance of the various controllers is given in Table II.

The open-loop response to the given initial condition is given in Figure 4. Note that in the
absence of control, the eccentric arm tends to drift into a position parallel with the axis of
translation. In this case, the arm tends toward !90°.

The integrator backstepping controller described in Section 3 is implemented with p
0
"5000,

p
1
"500, p

2
"500, c

0
"0)5, c

1
"1 and c

2
"1. These parameters were selected by trial and error

as it is not clear precisely what role is played by the individual controller parameters in
determining the closed-loop response. The strategy is to choose controller parameters that

448 R. T. BUPP, D. S. BERNSTEIN AND V. T. COPPOLA

( 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 435—457 (1998)



Table II. Summary of controller performance

Controller f
!11309

u
.!9

Open loop 0)44% —
Coupled pendula absorber 3)2% 0)52 oz in
Integrator backstepping 3)7% 12)2 oz in

(saturated)
Damped pendulum absorber 5)1% 0)47 oz in
Virtual resetting absorber 5)2% 0)44 oz in

Figure 4. Uncontrolled response of the RTAC to a 1)5 in initial displacement

minimize the settling time from the given baseline initial condition. The factor most responsible
for limiting the performance of this controller is the maximum current constraint. The current
limiter is set to 4 A or 12)2 oz in of torque.

The experimental initial-condition response is shown in Figure 5. The initial angle of the arm is
about 145°, which is due to the control torques generated by the full-state feedback controller
when the cart is held at q"1)5@@. The integrator backstepping controller settles the cart to 10% of
the initial displacement in about 6 s. Based on logarithmic decrement analysis during this period,
the effective damping ratio is approximately 3)7%. The controller then continues to bring the cart
and arm to rest at the desired zero position. The controller output is characterized by a large
amplitude control signal—saturating often during the initial two seconds—with substantial high
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Figure 5. Integrator backstepping controller: response of the RTAC to a 1)5 in initial displacement

frequency content. It is interesting to note that prior to saturation at 12)2 oz in, the commanded
control torque was as large as 65 oz in.

The damped pendulum absorber described in Section 5.2 is designed with m"3)4 oz,
g"19)7 ft/s2, e"2)33 in, a"10 oz in and c"0)0057 s. The parameters m and e are chosen to
approximately reflect the actual mass and eccentricity of the arm. The parameter g is tuned so
that, in the absence of damping, the initial condition response of the cart excites the greatest
amount of motion in the arm. This procedure helps tune the natural frequency of the absorber to
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Figure 6. Damped pendulum absorber controller: response of the RTAC to 1)5 in initial displacement

the natural frequency of the cart, which is useful for efficiently transferring the energy from the
cart to the arm where it can be dissipated. The parameter a is chosen first to set the torque bound,
while the damping parameter c is tuned to provide adequate damping. If c is too large then the
energy transfer from the cart to the arm becomes greatly reduced, whereas if c is too small then
energy is transferred but not dissipated.

The damped pendulum absorber response to the baseline initial condition is given in Figure 6.
The cart settling time is approximately 4)5 s, corresponding to an approximate damping ratio
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of 5)1%. After this time, the cart suffers residual oscillations of approximately 0)04@@ amplitude
that are not damped by the controller. The control signal appears smooth.

The coupled pendula absorber described in Section 5.3 is designed with m"3)4 oz,
g"34)6 ft/s2, e"2)33 in, a"10 oz in, c"0)0057 s, i"14)2 oz in, I

#
"11)3 oz in2, e

#
"0, and

d
#
"14)2 oz in sec. Here again the parameters m and e are chosen to reflect the actual mass and

eccentricity of the arm. The design of the remaining parameters is more complicated than the
design of the damped pendulum absorber since the absorber subsystem here is of higher order. To
achieve good settling behaviour, the parameters are tuned so that the initial condition response of
the cart excites one ‘mode’ of the coupled pendulum absorber system as much as possible. The
other ‘mode’ of the absorber could in theory be tuned to achieve improved disturbance rejection
for disturbances at some other frequency, or to improve settling behaviour of some other mode of
the plant.

The coupled pendula absorber response to the baseline initial condition is given in Figure 7.
The cart settling time is approximately 6)75 s, corresponding to an approximate damping ratio of
3)2%, based on logarithmic decrement analysis during the 5)5 s of the experiment. The cart suffers
residual oscillations of approximately 0)1@@ amplitude that are not damped by the controller. The
control signal appears smooth and appears to possess two dominant frequencies components.

The one-way absorber controller described in Section 5.4 is designed with m"3)4 oz,
g"19)7 ft/s2, e"2)33 in, i"4)25 oz in and I

#
"1)1 oz in2. As was the case for the previous

absorber-based controllers, the parameters m and e are chosen to reflect the actual mass and
eccentricity of the arm. As it was for the damped pendulum absorber controller, the parameter g is
chosen to allow the most efficient energy transfer from the cart to the eccentric arm. Now, instead
of proceeding to the selection of the proper dashpot parameter as we did in the damped pendulum
absorber design, we simply design the controller parameters i and I

#
to exchange energy

efficiently with the eccentric arm. Since the one-way controller is implemented on a digital control
board with a 200 ls sampling period, a comparison of the current value of the emulated energy
(44) with the value of the emulated energy computed during the previous sample interval is used
to determine whether or not the controller emulated energy has stopped increasing. When the
emulated energy has stopped increasing, the states of the controller are reset so that the value of
the controller energy function is zero.

The response of the one-way absorber controller to the baseline initial condition is given in
Figure 8. The settling time for this controller is approximately 4)5 s which corresponds to an
approximate damping ratio of 5)2%. Residual cart oscillations of 0)08@@ amplitude are not damped
by the controller. Some discontinuity in the control signal due to the resetting nature of this
controller is apparent in the figure.

One major difference between the integrator backstepping controller and the passive designs
can be seen in the cart displacement response as time progresses. It has been noted in all of the
passivity-based control cases that there is a residual oscillation of the cart that the controllers
cannot remove. This is due to the stiction in the motor/arm assembly which is not included in the
dynamical model and which causes the zero-state detectability condition to fail. For oscillations
of this level, the accelerations of the cart are so small that the stiction force alone keeps the
arm from moving, and, without motion in the arm, energy cannot be removed from the cart.
To contrast, the integrator backstepping controller, being a full-state-feedback control
law, applies torque based on measured cart displacement and velocity, and thus, despite the
presence of stiction, can remove the low-amplitude cart oscillations that the passive controllers
cannot.
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Figure 7. Coupled pendula absorber controller: response of the RTAC to a 1)5 in initial displacement

While all of the controllers achieve settling performance corresponding to an effective damping
ratio in the 3—5% range, the nature of the control signals varies greatly. The control signal for the
integrator backstepping controller can be seen to saturate often during the first two seconds of the
experiment, and it has substantial high frequency content. In contrast, the control signals for the
absorber-based controllers are characterized by relatively low amplitude, generally less than
0)5 oz in, or about 4% of the level of the integrator backstepping controller. These control signals
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Figure 8. Virtual one-way absorber controller: response of the RTAC to a 1)5 in initial displacement

tend to be smooth in comparison with the backstepping controller, although small discontinuities
due to controller resetting can be seen in the control signal for the virtual one-way absorber
controller.

It is to be expected that the integrator backstepping controller could achieve better perfor-
mance than the absorber-based controllers, since the former was not restricted by passivity
constraints. In fact, simulations indicate that the integrator backstepping controller can achieve
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Figure 9. An example of controller unwinding: the globally stabilizing controller (solid line) unwinds from an initial angle
of 730° to zero, while the damped pendulum absorber controller (dashed line) converges to an angle of 720°

much lower settling times compared to passive designs. However, due to the control amplitude
constraint imposed to safeguard the actuator, these ultra-high authority integrator backstepping
controllers could not be implemented, and, although as implemented they used 25 times more
control torque, the integrator backstepping controller was only able to achieve settling behaviour
roughly comparable to the absorber-based controllers.

6.2. Experimental example of unwinding

To illustrate controller unwinding, we compare the response of the damped pendulum absorb-
er controller with that of a globally asymptotically stabilizing controller of the form

N"!mge tanh h!achQ (47)

Unwinding of the integrator backstepping controller could not be demonstrated experimentally
because of the excessive control signal amplitudes. Nonetheless, the unwinding behaviour of the
controller (47) typifies the behaviour of controllers that globally asymptotically stabilize the
origin x"0 of the RTAC.

The parameters m, g, e, a and c in (47) are chosen to be the same as for the damped pendulum
absorber controller, and are given in Section 6.1. With these parameters, the damped pendulum
absorber controller and the globally stabilizing controller (47) give very similar performance for
the baseline initial condition.
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To illustrate unwinding, we consider the initial condition q"0, qR "0, hQ "0, h"730°, which
represents the cart at rest at the zero position, and the arm at rest at two rotations plus 10°. The
response of the RTAC is illustrated in Figure 9. The damped pendulum absorber controller
causes the eccentric arm to move only 10° to the 720° position, exciting very little motion in the
cart. In contrast, the globally stabilizing controller (47) does not recognize the h"720° and
h"0° positions as equivalent, and therefore unwinds the arm to 0°. This unwinding creates large
control signals, high rotational speeds for the arm, excites substantial motion in the cart, and
overshoots the zero position by nearly a full revolution before coming to rest at the desired
equilibrium position.

7. CONCLUSIONS

The RTAC experimental testbed was fully described. An integrator backstepping controller and
three passive nonlinear controllers were designed and implemented on the RTAC, and the
performance of the controllers in settling the RTAC system from a specified initial condition was
evaluated and compared. In order to implement passive controllers, we first utilized an ‘inner-
loop’ control to passify the RTAC model. Three absorber-based, passive controllers were then
considered: the damped pendulum absorber, which caused the arm to emulate a nonlinear,
single-degree-of-freedom absorber; the coupled pendula abosrber, which caused the arm to
emulate a nonlinear, multi-degree-of-freedom absorber; and the virtual one-way absorber, a type
of virtual resetting lossless absorber controller that allows energy to flow into the virtual
subsystem, but uses a resetting mechanism to ensure that the energy cannot return to the plant.

A disadvantage of the passive controllers is that they all suffer performance degradation due to
the unmodelled stiction in the motor. The stiction causes the arm to remain at rest even though
the cart undergoes small amplitude, very lightly damped oscillations. The integrator backstep-
ping controller, being a full-state feedback controller, is able to use measurements of the cart
position and velocity to generate control torques that overcome the stiction and bring the RTAC
asymptotically to rest.

While all of the controllers considered achieved an effective damping ratio of 3—5% for the
baseline initial condition considered, the integrator backstepping controller utilized 25 times
more torque—saturating at 12)2 oz in, compared to less than 0)5 oz in for the passive controllers.
While the passive controllers do not reach the maximum torque constraint, they also cannot
make use of the extra available torque. The best performance of these absorber-based controllers
is achieved by careful tuning of the control parameters, and ‘increasing the gain’ only serves to
detune the controller. A controller that more efficiently uses the available torque to improve the
settling performance of the RTAC would be desirable.
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