
Automatica 44 (2008) 2258–2265
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Stabilization of a 3D axially symmetric pendulumI

N.A. Chaturvedi a,∗, N.H. McClamroch b, D.S. Bernstein b

a Research and Technology Center, Robert Bosch LLC, Palo Alto, CA 94304-1230, United States
b Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, United States

a r t i c l e i n f o

Article history:
Received 1 March 2007
Received in revised form
25 September 2007
Accepted 20 January 2008
Available online 7 March 2008

Keywords:
3D pendulum
Spherical pendulum
Lagrange top
Inverted equilibrium
Swing-up

a b s t r a c t

Stabilizing controllers are developed for a 3D pendulum assuming that the pendulum has a single axis of
symmetry and that the center of mass lies on the axis of symmetry. This assumption allows development
of a reducedmodel that forms the basis for controller design and global closed-loop analysis; this reduced
model is parameterized by the constant angular velocity component of the 3D pendulum about its axis
of symmetry. Several different controllers are proposed. Controllers based on angular velocity feedback
only, asymptotically stabilize the hanging equilibrium. Then controllers are introduced, based on angular
velocity and reduced attitude feedback, that asymptotically stabilize either the hanging equilibrium
or the inverted equilibrium. These problems can be viewed as stabilization of a Lagrange top. Finally,
if the angular velocity about the axis of symmetry is assumed to be zero, controllers are introduced,
based on angular velocity and reduced attitude feedback, that asymptotically stabilize either the hanging
equilibrium or the inverted equilibrium. This problem can be viewed as stabilization of a spherical
pendulum.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pendulum models have provided a rich source of examples
that have motivated and illustrated many recent developments
in nonlinear dynamics and control. Much of the published
research treats 1D planar pendulum models or 2D spherical
pendulum models or some multi-body version of these. In Shen,
Sanyal, Chaturvedi, Bernstein, and McClamroch (2004), a large
part of this published research is summarized, emphasizing
both control design and dynamical system results. In the
closely related papers Chaturvedi, Bacconi, Sanyal, Bernstein,
and McClamroch (2005), Chaturvedi, McClamroch, and Bernstein
(2007) and Chaturvedi and McClamroch (2007), based on the
developments in Shen et al. (2004), controllers for stabilization of
equilibriummanifolds of a 3D pendulum are obtained. Controllers
are introduced that provide asymptotic stabilization of a reduced
attitude equilibrium. The reduced attitude of the 3D rigid
pendulum is defined as the attitude or orientation of the 3D rigid
pendulum, modulo rotation about a vertical axis. Stabilization
results presented in these papers correspond to the stabilization
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of the 3D pendulum to a rest position. Thus at equilibrium, the 3D
pendulum is completely at rest and does not spin.

The present paper considers control of a 3D pendulum for zero
or nonzero spin motions, assuming that the pendulum has a single
axis of symmetry and is supported at a pivot that is assumed to be
frictionless and inertially fixed. The rigid body is axially symmetric.
The location of its center of mass is distinct from the location of the
pivot; the center of mass and the pivot are assumed to lie on the
axis of symmetry of the pendulum. Forces that arise from uniform
and constant gravity act on the pendulum.

It can be shown that if the center of mass and the pivot lie
on a principal axis, then there exist invariant solutions of the 3D
pendulum that correspond to spins about the axis of symmetry. In
this paper we stabilize these constant (zero/nonzero) spinmotions
corresponding to the hanging and the inverted attitudes. Two
independent control moments are assumed to act about the two
principal axes of the pendulum that are not the axis of symmetry;
in other words, there is no control moment about the axis of
symmetry of the pendulum.

The formulation of the models depends on construction of a
Euclidean frame fixed to the pendulumwith origin at the pivot and
an inertial Euclidean frame with origin at the pivot. We assume
that the pendulum fixed frame is selected to be coincident with
the principal axes of the pendulum, so that the center of mass
of the pendulum lies on the axis of symmetry of the pendulum.
We also assume that the inertial frame is selected so that the
first two axes lie in a horizontal plane and the “positive” third
axis points down. These assumptions are shown to guarantee that
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Fig. 1. A schematic of a cylindrically symmetric 3D axisymmetric pendulum.

the angular velocity component about the axis of symmetry of
the rigid pendulum is constant. This conservation property allows
development of reduced equations of motion for the 3D axially
symmetric pendulum. The resulting reduced model is expressed
in terms of two components of the angular velocity vector of the
pendulum and the reduced attitude vector of the pendulum.

The main contributions of this paper are as follows. Controllers
are developed that asymptotically stabilize the hanging relative
equilibrium or the inverted relative equilibrium of the pendulum;
for the special case that there is zero angular velocity about the
axis of symmetry of the pendulum, controllers are developed that
asymptotically stabilize the hanging reduced equilibrium or the
inverted reduced equilibrium. If the angular velocity component
about the axis of symmetry is nonzero, these control results can
be compared with results in the literature on stabilization of
Lagrange tops, e.g. Wan, Coppola, and Bernstein (1995). If the
angular velocity component about the axis of symmetry is zero,
our control results can be compared with results in the literature
on stabilization of spherical pendula, e.g. Shiriaev, Ludvigsen, and
Egeland (2004). In all of these cases, our stabilization results are
new in the sense that global models are introduced and used for
global analysis of the closed-loop systems.

The results are derived using novel Lyapunov functions that
are suited to the geometry of the 3D axially symmetric pendulum.
An important feature of the development is that the results are
stated in terms of a global representation of the reduced attitude.
In particular, we avoid the use of Euler angles and other nonglobal
attitude representations.

This work compares with Bullo and Murray (1999), which
considers PD control laws for systems evolving over Lie groups.
In contrast with the PD-based laws in Bullo and Murray (1999)
that generally give a conservative domain of attraction, we
provide almost-global asymptotic stabilization results. Finally,
we note that results in this paper avoid the artificial need
to develop a “swing-up” controller, a locally asymptotically
stabilizing controller, and a strategy for switching between the two
as in Astrom and Furuta (2000) and Shiriaev et al. (2004).

2. Models of the 3D axially symmetric pendulum

In this section we introduce reduced models for the controlled
3D axially symmetric pendulum, and we summarize stability
properties of the uncontrolled 3D axially symmetric pendulum. A
schematic of a cylindrical 3D axisymmetric pendulum is shown in
Fig. 1.
Since the pendulum is assumed to be axially symmetric, we
choose the pendulum fixed coordinate frame so that the inertia
matrix is J = diag(Jt, Jt, Ja). Let ρ denote the vector from the
pivot to the center of mass of the pendulum; in the pendulum
fixed coordinate frame it is a constant vector given by ρ =

(0, 0,ρs)
T, where ρs is a nonzero scalar. The angular velocity vector

of the pendulum is denoted by ω = (ωx,ωy,ωz)
T, expressed

in the pendulum fixed coordinate frame. As introduced in Shen
et al. (2004) the reduced attitude vector Γ = (Γx,Γy,Γz)

T of the
pendulum is the unit vector pointing in the direction of gravity,
expressed in the pendulum fixed coordinate frame.

Euler’s equations in scalar form for the rotational dynamics
of the 3D axially symmetric pendulum, taking into account the
moment due to gravity and the control moments, are

Jtω̇x = (Jt − Ja)ωzωy − mgρsΓy + τx, (1)

Jtω̇y = (Ja − Jt)ωzωx + mgρsΓx + τy, (2)

Jaω̇z = 0. (3)

Here τx and τy denote the control moments. As shown in Shen
et al. (2004) the rotational kinematics of the 3D pendulum can be
expressed in terms of the reduced attitude vector according to the
three scalar differential equations

Γ̇x = Γyωz − Γzωy, (4)

Γ̇y = −Γxωz + Γzωx, (5)

Γ̇z = Γxωy − Γyωx. (6)

This model can be viewed as defining the motion of the 3D
pendulum on the quotient space TSO(3)/S1 ∼= R3

× S2. Hence, we
can view the motion of the 3D pendulum as evolving on R3

× S2

according to Eqs. (1)–(6).
Eq. (3) implies that the angular velocity component ωz about

the pendulum axis of symmetry satisfies

ωz = c, (7)

where c is a constant. Ignoring (3) and substituting (7) into (1), (2),
(4) and (5) lead to the reduced dynamics equations

Jtω̇x = c(Jt − Ja)ωy − mgρsΓy + τx, (8)

Jtω̇y = c(Ja − Jt)ωx + mgρsΓx + τy, (9)

and the reduced kinematics equations

Γ̇x = cΓy − Γzωy, (10)

Γ̇y = −cΓx + Γzωx, (11)

Γ̇z = Γxωy − Γyωx. (12)

The motion of the 3D pendulum can be viewed as evolving on
R2

× S2 according to (8)–(12).
In the remainder of this paper, we develop controllers that

asymptotically stabilize an equilibrium of (8)–(12). Note that an
equilibrium of (8)–(12) corresponds to a relative equilibrium of
(1)–(6) which represents a pure spin of the 3D pendulum about its
axis of symmetry. For the case where c = 0, a relative equilibrium
solution of Eqs. (1)–(6) is an ordinary equilibrium solution.

The uncontrolled equations (8)–(12) have two distinct equilib-
rium solutions, namely

ωx = ωy = 0, Γ = Γh = (0, 0, 1) (13)

and

ωx = ωy = 0, Γ = Γi = (0, 0,−1). (14)

The first equilibrium is referred to as the hanging equilibrium,
since the center of mass of the pendulum is directly below
the pivot. The second equilibrium is referred to as the inverted
equilibrium, since the center of mass of the pendulum is directly
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above the pivot. Note that these are relative equilibria of the
uncontrolled equations (1)–(6) corresponding to a pure spin of
the pendulum about its axis of symmetry. As shown in Shen et al.
(2004), the hanging equilibrium of (1)–(6) is stable in the sense of
Lyapunov, and the inverted equilibrium of (1)–(6) is unstable. We
next present a result for the stability of the hanging and inverted
equilibrium of (8)–(12).

Theorem 1. Consider the 3D axially symmetric pendulum given by
the Eqs. (8)–(12). Then the linearized dynamics about the hanging
equilibrium is Lyapunov stable for all c ∈ R and the linearized
dynamics about the inverted equilibrium is Lyapunov stable if and
only if J2a c2 > 4mgρsJt .

Proof. To linearize the dynamics in Eqs. (8)–(12) about the
equilibrium (0, 0,Γh) or (0, 0,Γi), we consider a perturbation
of the variables (ωx,ωy,Γ) ∈ R2

× S2 in the tangent plane
T(0,0,Γh){R

2
× S2} or T(0,0,Γi){R

2
× S2}. For all perturbations that

lie in the tangent plane T(0,0,Γh){R
2

× S2} or T(0,0,Γi){R
2

× S2}, the
Z-component of the perturbation in Γ does not vary. Hence, we
express the linearization using perturbations of x = [ωx ωy Γx Γy]

T.
Linearizing the dynamics in (8)–(12), we obtain ∆ẋ = A∆x,

where∆x represents a perturbation vector of x from its equilibrium
value and

A =


0 ck2 0 −k1
−ck2 0 k1 0
0 −γ 0 c
γ 0 −c 0

 , (15)

where k2 =
Ja−Jt
Jt

∈ R, k1 =
mgρs
Jt

> 0, c ∈ R and γ = 1 for
the hanging equilibrium and γ = −1 for the inverted equilibrium.
Computing the eigenvalues of (15), we obtain

λ = ±
1
2

√
±2

√
D − 2c2k22 − 2c2 − 4γk1,

where D = c4k42 − 2c4k22 + 4c2k22γk1 + c4 + 4c2γk1 + 8c2k2γk1 and√
· represents the square root with positive real part. Since every

complex number with a nonzero imaginary part has one square
root with positive real part, all eigenvalues of the matrix A lie in
the CLHP iff they are purely imaginary. Hence, A in (15) is Lyapunov
stable iff D > 0 and 2

√
D − 2c2k22 − 2c2 − 4γk1 < 0.

It can be shown that ifD > 0, then 2
√

D −2c2k22−2c2−4γk1 <
0 iff c4k22 + k21 − 2c2k2k1γ > 0.

Since c4k22 + k21 − 2c2k2k1γ ≥ c4k22 + k21 − 2|c2k2k1γ| and γ = ±1,
therefore c4k22+k21−2c2k2k1γ ≥ (c2|k2|−|k1|)2. Thus, all eigenvalues
of the matrix A lie on the imaginary axis iff D > 0. It can also be
shown that D = c4(k22 − 1)2 + 4c2γk1(k2 + 1)2. If γ = 1, it is
clear that D > 0. Thus, the linearized dynamics about the hanging
equilibrium is Lyapunov stable for all c ∈ R. For the case γ = −1,
D > 0 if and only if c4(k22 − 1)2 > 4c2k1(k2 + 1)2. Substituting for
k1 and k2 yields

c2
[(

Ja − Jt
Jt

)2
− 1

]2

> 4
(
Ja − Jt

Jt
− 1

)2 mgρs

Jt
.

Simplifying the above, we obtain J2a c
2 > 4mgρsJt . Thus, if J2a c2 >

4mgρsJt then all eigenvalues lie on the imaginary axis and are
nonrepeated, or else at least two lie in the ORHP. Therefore, the
linearized dynamics about the inverted equilibrium is Lyapunov
stable iff J2a c2 > 4mgρsJt . �

As shown in Theorem1, the equilibriumof the uncontrolled sys-
tem (8)–(12) is at best, Lyapunov stable. This background provides
motivation for the study of controllers that asymptotically stabilize
either the hanging equilibrium or the inverted equilibrium.
3. Stabilization of the hanging equilibrium of the Lagrange top

In this sectionwe assume that the constant angular velocity c 6=

0. For this case, the 3D axially symmetric pendulum described by
Eqs. (8)–(12) is effectively a Lagrange top; hence that terminology
is used in this section. We propose two classes of feedback
controllers that asymptotically stabilize the hanging equilibrium
of the reduced model described by Eqs. (8)–(12). In each case, we
obtain almost-global asymptotic stability.

We begin by considering controllers based on the feedback of
the angular velocity of the form

τx = −ψx(ωx), (16)
τy = −ψy(ωy), (17)

whereψx : R→ R andψy : R→ R are smooth functions satisfying
the sector inequalities{
ε1|x|

2
≤ xψx(x) ≤ ε2|x|

2,

ε1|x|
2

≤ xψy(x) ≤ ε2|x|
2,

(18)

for every x ∈ Rwhere ε2 ≥ ε1 > 0.

Lemma 1. Consider the 3D axially symmetric pendulum given by Eqs.
(8)–(12). Let (ψx,ψy) be smooth functions satisfying (18) and choose
τx and τy as in (16) and (17). Then the hanging equilibrium of (8)–(12)
is asymptotically stable. Furthermore, let ε ∈ (0, 2mgρs) and define

Hε ,

{
(ωx,ωy,Γ) ∈ (R2

× S2) :
1
2

[
Jt(ω

2
x + ω2

y)

+mgρs‖Γ − Γh‖
2
]

≤ 2mgρs − ε

}
. (19)

Then, all solutions of the closed-loop system given by (8)–(12)
and (16) and (17), such that (ωx(0),ωy(0),Γ(0)) ∈ Hε, satisfy
(ωx(t),ωy(t),Γ(t)) ∈ Hε for all t ≥ 0, and limt→∞ ωx(t) = 0,
limt→∞ ωy(t) = 0 and limt→∞ Γ(t) = Γh.

Proof. Consider the closed-loop system given by (8)–(12) and (16)
and (17). We propose the following candidate Lyapunov function

V(ωx,ωy,Γ) =
1
2

[
Jt(ω

2
x + ω2

y) + mgρs‖Γ − Γh‖
2
]
. (20)

Note that the Lyapunov function is positive definite on R2
× S2 and

V(0, 0,Γh) = 0. Furthermore, the derivative V̇ along a solution of
the closed loop is given by

V̇(ωx,ωy,Γ) = −ωxψx(ωx,ωy) − ωyψy(ωx,ωy),

≤ −ε1(ω
2
x + ω2

y) ≤ 0,

where the last inequality follows from (18). Thus V is positive
definite and V̇ is negative semidefinite on R2

× S2. Next, note that
the set Hε can be expressed as the sub-level set

Hε = {(ωx,ωy,Γ) ∈ R2
× S2 : V(ωx,ωy,Γ) ≤ 2mgρs − ε}.

Since V̇(ωx,ωy,Γ) ≤ 0 on Hε, all solutions such that
(ωx(0),ωy(0),Γ(0)) ∈ Hε satisfy (ωx(t),ωy(t),Γ(t)) ∈ Hε for all
t ≥ 0. Thus, Hε is an invariant set of the closed loop.

Furthermore, from the invariant set theorem, we obtain that
the solutions satisfying (ωx(0),ωy(0),Γ(0)) ∈ Hε converge to the
largest invariant set in {(ωx,ωy,Γ) ∈ Hε : (ωx,ωy) = (0, 0)}. Thus,
ωx ≡ ωy ≡ 0 implies that Γx = Γy = 0 and Γ̇z = 0 and hence,
Γz = ±1. Thus, as t → ∞, eitherΓ → Γh orΓ → Γi. However, since
(0, 0,Γi) 6∈ Hε, it follows that Γ → Γh as t → ∞. Thus, (0, 0,Γh)
is an asymptotically stable equilibrium of the closed loop given by
(8)–(12) and (16) and (17), with Hε as a domain of attraction. �

The conclusions of Lemma 1 can be strengthened to show that
the domain of attraction is nearly global. This is presented in the
following theorem.
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Theorem 2. Consider the 3D axially symmetric pendulum given by
Eqs. (8)–(12). Let (ψx,ψy) be smooth functions satisfying (18).
Choose τx and τy as in (16) and (17). Then, all solutions of the
closed-loop system given by (8)–(12) and (16) and (17), such that
(ωx(0),ωy(0),Γ(0)) ∈ (R2

× S2) \ M satisfy limt→∞ ωx(t) = 0,
limt→∞ ωy(t) = 0 and limt→∞ Γ(t) = Γh. Here, M is the stable
manifold of the closed-loop equilibrium (0, 0,Γi), and it is a closed
nowhere dense set of Lebesgue measure zero.

Proof. We present an outline of the proof. Denote

N ,

{
(ωx,ωy,Γ) ∈ (R2

× S2) :
1
2

[
Jt(ω

2
x + ω2

y)

+mgρs‖Γ − Γh‖
2
]

≤ 2mgρs

}
. (21)

Then as in Chaturvedi et al. (2005) andChaturvedi andMcClamroch
(2007), it can be shown that all solutions of the closed loop
(8)–(12) and (16) and (17), satisfying (ωx(0),ωy(0),Γ(0)) ∈

∂N \ {(0, 0,Γi)} enter the set Hε in Lemma 1, for some ε >

0, in finite time. From Lemma 1 and the definition of N , we
note that for every ε ∈ (0, 2mgρs) and (ωx(0),ωy(0),Γ(0)) ∈

Hε

⋃
(∂N \ {(0, 0,Γi)}), ω(t) → 0 and Γ(t) → Γh as t → ∞. Since

N =
⋃

ε∈(0,2mgρs)

(
Hε

⋃
∂N

)
,

it follows that all solutions satisfying (ωx(0),ωy(0),Γ(0)) ∈ N \

{(0, 0,Γi)} converge to the hanging equilibrium.
Next, it can be shown that all solutions of the closed loop

(8)–(12) and (16) and (17), enter the set N in finite time. Thus
all solutions either converge to the inverted equilibrium, or the
hanging equilibrium. It is sufficient to show that the stable
manifold of the inverted equilibrium (0, 0,Γi), has dimension less
than the dimension of R2

× S2 i.e. four, since all other solutions
converge to the hanging equilibrium.

Using linearization, it can be shown that the equilibrium
(0, 0,Γi) of the closed loop is unstable and hyperbolic with
nontrivial stable and unstable manifolds. Denoting the stable
manifold by M, it follows from Theorem 3.2.1 in Guckenheimer
and Holmes (1983) that the dimension of the M is less than
four and hence, the Lebesgue measure of this global invariant
stable sub-manifold is zero (Krstic & Deng, 1998). Since, the
domain of attraction of an asymptotically stable equilibrium is
open, M is closed and hence, nowhere dense (Chaturvedi, Bloch,
& McClamroch, 2006). �

Theorem 2 provides conditions under which the hanging
equilibrium of the Lagrange top is made asymptotically stable by
feedback of the angular velocity. Since the hanging equilibrium of
the uncontrolled Lagrange top is stable in the sense of Lyapunov,
any controller of the form (16) and (17) can be viewed as providing
damping. Note that such a controller does not require knowledge
of the moment of inertia, location of the center of mass, or spin
rate of the Lagrange top. In Lemma 1, the hanging equilibrium of
the closed loop has a domain of stability that is easily computed. In
Theorem 2, the domain of attraction is almost global.

Next we consider controllers based on feedback of the angular
velocity and the reduced attitude. These controllers provide more
design flexibility than the controllers that depend on angular
velocity only; hence they can provide improved closed-loop
performance.

Theorem 3. Consider the 3D axially symmetric pendulum given by
Eqs. (8)–(12) with c 6= 0. Let Φ : [0, 1) → R be a C1 monotonically
increasing function such that Φ(0) = 0, Φ′(x) > 0 if x 6= 0, and
Φ(x) → ∞ as x → 1. Furthermore, let (ψx,ψy) be smooth functions
satisfying the inequality given in (18). Choose

τx = −ωx +ψx

(
(Γz − 1)Γy

)
− c(Jt − Ja)ωy

+ Jt(Γz − 1)(−cΓx + Γzωx)ψ
′

x

(
(Γz − 1)Γy

)
+ (Γz − 1)ΓyΦ

′

(1
4
(Γz − 1)2

)
+ mgρsΓy, (22)

τy = −ωy +ψy ((1 − Γz)Γx) − c(Ja − Jt)ωx

+ Jt(Γz − 1)(cΓy − Γzωy)ψ
′

y ((1 − Γz)Γx)

− (Γz − 1)ΓxΦ
′

(1
4
(Γz − 1)2

)
− mgρsΓx. (23)

Then (ωx,ωy,Γ) = (0, 0,Γh) is an equilibrium of the closed loop
given by (8)–(12) and (22) and (23) that is asymptotically stable with
R2

×
(
S2 \ {Γi}

)
as a domain of attraction.

Proof. Consider the system represented by (8)–(12) and (22) and
(23). We propose the following candidate Lyapunov function.

V(ωx,ωy,Γ) =
Jt
2

[
ωx −ψx

(
(Γz − 1)Γy

)]2
+

Jt
2

[
ωy −ψy ((1 − Γz)Γx)

]2
+ 2Φ

(1
4
(Γz − 1)2

)
.

Note that the above Lyapunov function is positive definite and
proper on R2

× S2 with V(0, 0,Γh) = 0.
Suppose that (ωx(0),ωy(0),Γ(0)) 6= (0, 0,Γi). Computing the

derivative of the Lyapunov function along a solution of the closed
loop, we obtain

V̇(ωx,ωy,Γ) = −
[
ωx −ψx

(
(Γz − 1)Γy

)]2
−

[
ωy −ψy ((1 − Γz)Γx)

]2
−Φ′

(1
4
(Γz − 1)2

) [
(Γz − 1)Γy

]
ψx

(
(Γz − 1)Γy

)
−Φ′

(1
4
(Γz − 1)2

)
[(1 − Γz)Γx]ψy ((1 − Γz)Γx) ,

≤ −
[
ωx −ψx

(
(Γz − 1)Γy

)]2
−

[
ωy −ψy ((1 − Γz)Γx)

]2
− ε1Φ

′

(1
4
(Γz − 1)2

)
(Γz − 1)2(Γ 2

x + Γ 2
y ) ≤ 0. (24)

Thus, V̇ is negative semidefinite and hence, each solution remains
in the compact invariant set K = {(ωx,ωy,Γ) ∈ R2

× S2 :

V(ωx,ωy,Γ) ≤ C}, where C = V(ωx(0),ωy(0),Γ(0)).
Since V̇ is negative semidefinite and Φ is monotonic with

Φ′(x) 6= 0 if x 6= 0, we obtain that, (Γz − 1)Γy → 0, (Γz − 1)Γx → 0,
ωx → ψx(0) = 0 and ωy → ψy(0) = 0 as t → ∞. Furthermore,
by LaSalle’s invariant set theorem, each solution converges to the
largest invariant set in S , {(ωx,ωy,Γ) ∈ K : ωx = ωy =

0, (Γz −1)Γy = 0, (Γz −1)Γx = 0}. Since, any closed-loop solution
of (8)–(12) in S satisfies ωx ≡ ωy ≡ 0, we obtain that the solution
also satisfies Γz = constant.

Next, (Γz − 1)Γy ≡ (Γz − 1)Γx ≡ 0 yields either Γz = 1,
in which case Γ = Γh, or it yields Γx = 0 and Γy = 0, and
hence, Γ = Γh or Γ = Γi. However, since V(ωx(t),ωy(t),Γ(t)) ≤

V(ωx(0),ωy(0),Γ(0)), therefore Γ(t) 6= Γi for all t > 0. Thus,
Γi 6∈ S. Hence, Γ = Γh. Thus, the only invariant solution of the
closed loop contained in the set S is ωx = ωy = 0 and Γ = Γh. �

Theorem 3 provides conditions under which the hanging
equilibrium of the Lagrange top is made asymptotically stable
by feedback of the angular velocity and feedback of the reduced
attitude of the top. Any controller of the form (22) and (23)
requires knowledge of the axial and transverse principal moments
of inertia, mass, location of the center of mass, and spin rate of
the Lagrange top. The controller (22), (23) is globally defined and
smooth except at the inverted attitude. The hanging equilibrium
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of the top is guaranteed to have an almost-global domain of
attraction.

These results on stabilization of the hanging equilibrium of a
Lagrange top are apparently new.We find no references to this case
in the published literature.We include this case for its independent
interest and also because it naturally leads to the more familiar
problem of stabilization of the inverted equilibrium of a Lagrange
top.

4. Stabilization of the inverted equilibrium of the Lagrange top

As in the previous section, we assume that the constant c 6= 0,
so that the 3D axially symmetric pendulum described by Eqs. (8)–
(12) is effectively a Lagrange top; hence that terminology is also
used in this section. We now propose the feedback controllers that
asymptotically stabilize the inverted equilibrium of the reduced
equations (8)–(12). The domain of attraction of the inverted equi-
librium is shown to be almost global.

Theorem 4. Consider the 3D axially symmetric pendulum given by
Eqs. (8)–(12) with c 6= 0. Let Φ : [0, 1) → R be a C1 monotonically
increasing function such that Φ(0) = 0, Φ′(x) > 0 if x 6= 0, and
Φ(x) → ∞ as x → 1. Furthermore, let (ψx,ψy) be smooth functions
satisfying the inequality given in (18). Choose

τx = −ωx +ψx

(
(1 − Γ T

i Γ)Γy

)
− c(Jt − Ja)ωy

− Jt(Γ
T
i Γ − 1)(−cΓx + Γzωx)ψ

′

x

(
(1 − Γ T

i Γ)Γy

)
− (Γ T

i Γ − 1)ΓyΦ
′

(1
4
(Γ T

i Γ − 1)2
)

+ mgρsΓy, (25)

τy = −ωy +ψy

(
(Γ T

i Γ − 1)Γx

)
− c(Ja − Jt)ωx

− Jt(Γ
T
i Γ − 1)(cΓy − Γzωy)ψ

′

y

(
(Γ T

i Γ − 1)Γx

)
+ (Γ T

i Γ − 1)ΓxΦ
′

(1
4
(Γ T

i Γ − 1)2
)

− mgρsΓx. (26)

Then (ωx,ωx,Γ) = (0, 0,Γi) is an equilibrium of the closed loop
given by (8)–(12) and (25) and (26) that is asymptotically stable with
R2

×
(
S2 \ {Γh}

)
as a domain of attraction.

Proof. Consider the system represented by (8)–(12) and (25) and
(26). We propose the following candidate Lyapunov function.

V(ωx,ωy,Γ) =
Jt
2

[
ωx −ψx

(
−(Γ T

i Γ − 1)Γy

)]2
+

Jt
2

[
ωy −ψy

(
(Γ T

i Γ − 1)Γx

)]2
+ 2Φ

(1
4
(Γ T

i Γ − 1)2
)

. (27)

Note that the above Lyapunov function is positive definite and
proper on R2

× S2 with V(0, 0,Γi) = 0.
Suppose that (ωx(0),ωy(0),Γ(0)) 6= (0, 0,Γh). Computing the

derivative of the Lyapunov function along a solution of the closed
loop, we obtain

V̇(ωx,ωy,Γ) = −

[
ωx −ψx

(
−(Γ T

i Γ − 1)Γy

)]2
−

[
ωy −ψy

(
(Γ T

i Γ − 1)Γx

)]2
− Φ′

(1
4
(Γ T

i Γ − 1)2
)

×

[
(1 − Γ T

i Γ)Γy

]
ψx

(
(1 − Γ T

i Γ)Γy

)
−Φ′

(1
4
(Γ T

i Γ − 1)2
) [

(Γ T
i Γ − 1)Γx

]
ψy

(
(Γ T

i Γ − 1)Γx

)
,

≤ −

[
ωx −ψx

(
−(Γ T

i Γ − 1)Γy

)]2
−

[
ωy −ψy

(
(Γ T

i Γ − 1)Γx

)]2
− ε1Φ

′

(1
4
(Γ T

i Γ − 1)2
)

(Γ T
i Γ − 1)2(Γ 2

x + Γ 2
y ) ≤ 0. (28)

Thus, V̇ is negative semidefinite and hence, each solution remains
in the compact invariant set K = {(ωx,ωy,Γ) ∈ R2

× S2 :

V(ωx,ωy,Γ) ≤ C}, where C = V(ωx(0),ωy(0),Γ(0)).
The remainder of the proof follows exactly the arguments used

in Theorem 3. The only solution of the closed-loop system of (8)–
(12) and (25) and (26) such that (Γ T

i Γ−1)Γy → 0, (Γ T
i Γ−1)Γx → 0,

ωx → ψx(0) = 0 and ωy → ψy(0) = 0 as t → ∞ is the inverted
equilibrium (ωx,ωy,Γ) = (0, 0,Γi). �

Theorem 4 provides conditions under which the inverted
equilibrium of the Lagrange top is made asymptotically stable
by feedback of the angular velocity and feedback of the reduced
attitude of the top. Any controller of the form (25) and (26)
requires knowledge of the axial and transverse principal moments
of inertia, mass, location of the center of mass, and spin rate of the
Lagrange top. The controllers (25), (26) are globally defined and
smooth except at the hanging attitude. The inverted equilibrium
of the top is guaranteed to have an almost-global domain of
attraction.

The above stabilization results can be compared with the
extensive literature on stabilization of Lagrange tops; see for
example Lum, Bernstein, and Coppola (1995), and Wan et al.
(1995). The results in Theorem 4 are substantially different from
any of these cited results on stabilization of a Lagrange top.

5. Stabilization of the inverted equilibrium of the spherical
pendulum

In this section we assume that the angular velocity ωz is a
constant c = 0. In this case, the 3D axially symmetric pendulum
described by Eqs. (8)–(12) is effectively a spherical pendulum;
hence that terminology is used in this section. We propose
feedback controllers that asymptotically stabilize the inverted
equilibrium of the reducedmodel described by Eqs. (8)–(12). Since
ωz = c = 0 it corresponds to an equilibrium manifold of the
complete model (1)–(6). The domain of attraction of the closed-
loop equilibrium is shown to be almost global.

Theorem 5. Consider the 3D axially symmetric pendulum given by
Eqs. (8)–(12) with c = 0. Let Φ : [0, 1) → R be a C1 monotonically
increasing function such that Φ(0) = 0, Φ′(x) > 0 if x 6= 0, and
Φ(x) → ∞ as x → 1. Furthermore, let (ψx,ψy) be smooth functions
satisfying the inequality given in (18). Assume that ωz(0) = c = 0,
and denote

y1 , (1 + Γz)Γy, (29)

y2 , (1 + Γz)Γx. (30)

Choose

τx = mgρsΓy + Jtψ
′

x(y1)ẏ1 − (ωx −ψx(y1))

+ y1Φ
′

(1
4
(Γ T

i Γ − 1)2
)

, (31)

τy = −mgρsΓx + Jtψ
′

y(y2)ẏ2 − (ωy −ψy(y2))

+ y2Φ
′

(1
4
(Γ T

i Γ − 1)2
)

, (32)

where ẏ1 and ẏ2 are obtained by differentiating (29) and (30) and
substituting from (10)–(12). Then (0, 0,Γi) is an equilibrium of the
closed loop given by (8)–(12) and (31) and (32) that is asymptotically
stable with R2

×
(
S2 \ {Γh}

)
as a domain of attraction.
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Proof. Consider the system given by (8)–(12) and (31) and (32).
We propose the following candidate Lyapunov function.

V(ω,Γ) =
Jt
2

[ωx −ψx(y1)]
2
+

Jt
2

[ωy −ψy(y2)]
2

+ 2Φ
(1
4
(Γ T

i Γ − 1)2
)

. (33)

Note that the above Lyapunov function is positive definite on R2
×

S2 and V(0,Γi) = 0. Furthermore, V(ωx,ωy,Γ) is a proper function
onR2

×S2. Next, computing the derivative of the Lyapunov function
along a solution of the closed loop, we obtain

V̇(ω,Γ) = −[ωx −ψx(y1)]
2
− [ωy −ψy(y2)]

2

−Φ′

(1
4
(Γ T

i Γ − 1)2
)

[y1ψx(y1) + y2ψy(y2)],

≤ −(ωx −ψx(y1))
2
− (ωy −ψy(y2))

2

− ε1Φ
′

(1
4
(Γ T

i Γ − 1)2
)

(y21 + y22) ≤ 0. (34)

Thus, V̇ is negative semidefinite and hence, each solution
remains in the compact invariant set K = {(ωx,ωy,Γ) ∈ R2

× S2 :

V(ωx,ωy,Γ) ≤ C} where C = V(ωx(0),ωy(0),Γ(0)). Next, since
V̇ is negative semidefinite and from properties of Φ(·), we obtain
that, y1 → 0, y2 → 0, ωx → ψx(0) = 0 and ωy → ψy(0) = 0 as
t → ∞.

Furthermore, by LaSalle’s invariant set theorem, the solution
converges to the largest invariant set in S , {(ωx,ωy,Γ) ∈ K :

ωx = ωy = 0, y1 = 0, y2 = 0}. Since, any closed-loop solution in S
satisfies ωx ≡ ωy ≡ 0, we obtain that the solution also satisfies
Γ = constant. Next, y1 ≡ y2 ≡ 0 yields either Γz = −1, in
which case Γ = Γi, or it yields Γx = 0 and Γy = 0 which implies
that Γ = Γi or Γ = Γh. However, since V(ωx(t),ωy(t),Γ(t)) ≤

V(ωx(0),ωy(0),Γ(0)), therefore Γ(t) 6= Γh for all t ≥ 0. Thus,
(0, 0,Γh) 6∈ S. Hence, Γ = Γi. Thus, the only invariant solution
of the closed loop contained in the set S, is ωx = ωy = 0 and
Γ = Γi. �

Theorem 5 provides conditions under which the inverted
equilibrium of the spherical pendulum is made asymptotically
stable by feedback of the angular velocity and feedback of the
reduced attitude of the spherical pendulum. Any controller of the
form (31) and (32) requires knowledge of the transverse (but
not the axial) principal moment of inertia, the mass, and the
location of the center of mass of the spherical pendulum. The
controllers (31), (32) are globally defined and smooth except at the
hanging attitude. Theorem 5 provides a means for stabilizing the
inverted equilibrium of the spherical pendulum with an almost-
global domain of attraction.

This is a new result for stabilization of the spherical pendulum.
The results in Theorem 5 are substantially different from similar
results on stabilization of spherical pendulums that have appeared
in prior literature (Shirieav, Ludvigsen, & Egeland, 1999; Shiriaev
et al., 2004; Shirieav, Pogromsky, Ludvigsen, & Egeland, 2000). Our
results provide an almost-globally stabilizing controller that avoids
the need to construct a swing-up controller, a locally stabilizing
controller, and a switching strategy between the two. In this
comparative sense, our results are direct and simple.

6. Simulation results

In this section, we present simulation results for specific
controllers that stabilize the inverted equilibrium of the Lagrange
top and the spherical pendulum. Consider the model (8)–(12),
where m = 140 kg, ρ = (0, 0, 0.5)T m and J = diag(40,
40, 50) kg m2. We choose Φ(x) = −k ln(1 − x), and ψx(u) = pxu,
Fig. 2. Evolution of the angular velocity of the Lagrange top in the body frame.

Fig. 3. Evolution of the components of the direction of gravity Γ in the body frame
for the Lagrange top.

and ψy(u) = pyu, where k, px and py are positive numbers in the
controller (25) and (26).

Consider a Lagrange top with spin rate about its axis of
symmetry c = 1 rad/s. Choose gains as k = 5 and px = py = 3.
The following figures describe the evolution of the closed loop.
The initial conditions are ω(0) = (1, 3, 1)T rad/s and Γ(0) =

(0.1, 0.5916, 0.8)T. Simulation results in Figs. 2 and 3 show that
ωx(t) → 0, ωy(t) → 0 and Γ(t) → Γi as t → ∞. Figs. 4 and
5 illustrate the motion of the Lagrange top in the inertial frame
and the magnitude of the applied control input along each axis,
respectively.

Now consider a spherical pendulum with controller given by
(31) and (32) with the above specifications, so that it stabilizes the
inverted equilibrium. The functions Φ(·) and (ψx,ψy) are chosen
as before. The following figures describe the evolution of the closed
loop. The initial conditions are ω(0) = (1, 3, 0)T rad/s and Γ(0) =

(0.1, 0.5916, 0.8)T. Simulation results in Figs. 6 and 7 show that
ωx(t) → 0, ωy(t) → 0 and Γ(t) → Γi as t → ∞. Figs. 8 and
9 illustrate the motion of the spherical pendulum in the inertial
frame and the magnitude of the applied control input along each
axis, respectively.
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Fig. 4. Motion of the vector between the pivot and the center of mass of the
Lagrange top in the inertial frame.

Fig. 5. Magnitude of the applied control moment along each axis.

Fig. 6. Evolution of the angular velocity of the spherical pendulum in the body
frame.
Fig. 7. Evolution of the components of the direction of gravity Γ in the body frame
for the spherical pendulum.

Fig. 8. Motion of the vector between the pivot and the center of mass of the
spherical pendulum in the inertial frame.

Fig. 9. Magnitude of the applied control moment along each axis.



N.A. Chaturvedi et al. / Automatica 44 (2008) 2258–2265 2265
7. Conclusions

This paper has treated stabilization problems for a 3D
pendulum that has a single axis of symmetry. The control action
is assumed to provide no external moment about the axis of
symmetry. In this case the 3D pendulum has a constant angular
velocity about its axis of symmetry. If this angular velocity is
nonzero, the 3D pendulum is equivalent to a Lagrange top; if
this angular velocity is zero, the 3D pendulum is equivalent to a
spherical pendulum. Stabilization results are presented and proved
for the Lagrange top and for the spherical pendulum. All of these
results are substantially stronger than the results that have been
previously presented in the published literature. In addition, the
perspective provided by the 3D pendulum provides a unifying
framework for all of these developments.
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