
This article was downloaded by:[Rogers, E.]
On: 5 June 2008
Access Details: [subscription number 793777376]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Optimal projection equations for discrete-time
fixed-order dynamic compensation of linear systems
with multiplicative white noise
Dennis S. Bernstein a; Wassim M. Haddad b
a Harris Corporation, Government Aerospace Systems Division, Melbourne, FL,
U.S.A
b Department of Mechanical Engineering, Florida Institute of Technology,
Melbourne, FL, U.S.A

Online Publication Date: 01 July 1987

To cite this Article: Bernstein, Dennis S. and Haddad, Wassim M. (1987) 'Optimal
projection equations for discrete-time fixed-order dynamic compensation of linear

systems with multiplicative white noise', International Journal of Control, 46:1, 65 — 73

To link to this article: DOI: 10.1080/00207178708933884
URL: http://dx.doi.org/10.1080/00207178708933884

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207178708933884
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

09
:2

8 
5 

Ju
ne

 2
00

8 INT. J. CONTROL, 1987, VOL. 46, No.1, 65-73

Optimal projection equations for discrete-time fixed-order
dynamic compensation of linear systems with multiplicative white noise

DENNIS S. BERNSTEINt and WASSIM M. HADDADt

The optimal projection equations for discrete-time reduced-order dynamic com
pensation are generalized to include the effectsof state-, control- and measurement
dependent noise. In addition, the discrete-time static output feedback problem with
multiplicative disturbances is considered. For both problems, the design equations
are presented in a concise, unified manner to facilitate their accessibility for
developing numerical algorithms for practical applications.
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8 66 D. S. Bernstein and W. M. Haddad

V, + V'2D~ BT + BDeV,T2 + BDeV2D~ BT+ f. s», V2D~ BT
i= 1

[
A BCe]

BeC Ae '

Z(i.il
tr Z
p(Z)

£i
ni (",)

[
V V'2B~ + BDeV2BJ]

Be V,T2 + Be V2DJBT Be V2BJt..: RI2Ce+CTDJR2Ce]
CJ R;2 + CJ R2DeC CJ R2Ce

(i, j) element of matrix Z
trace of square matrix Z
rank of matrix Z
matrix with unity in the (i, i) position and zeros elsewhere
"'£i",-1 (unit-rank eigenprojection)

For arbitrary n x n Q, P, Q, fl, r define:

p

V2,g,V2+CQC
T+ L CiQCT,

j= I

p

Q, g,AQCT+ V,2+ L A,QCT,
j= 1

"" lI, T P ,.. T T
V2,= V2 + CQC + L Ci(Q + rQr )Ci,

i=l

p

Q,g,AQCT+v,2+ L A,(Q + rQrT)CT,
j= 1

... lI, P .... T T
Qs'=V, 2 + L A,(Q+rQr )Ci'

i= 1

R 2,g,R2+B
TPB+ f. BTpB,

i= 1

p

P,g,BTpA+R;2+ L BTpA i
i= 1

p

P"g,R;2+ L BTpA,
i= 1

... lI, T f ...R2,= R2 + B PB + L. BJ(P + rTPr)B,
i= 1

.. .& T T P T T ....
P,=B PA+R , 2+ L B;(P+r Pr)A,

i= 1

... .6. T P T T ....
P,,=R'2+ L Bi(P+r Pr)Ai

i= 1

\, Introduction
Hyland and Bernstein (1984) showed that the first-order necessary conditions for

quadratically optimal continuous-time fixed-order dynamic compensation can be
transformed into a coupled system of four matrix equations (two modified Riccati
equations and two modified Lyapunov equations). The coupling is due to the presence
of an oblique projection (idempotent matrix) which arises as a rigorous consequence
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8 Optimal projection equations for dynamic compensation 67

of optimality. This formulation provides a generalization of classical LQG control
theory, since in the full-order case the projection becomes the identity matrix, the
modified Lyapunov equations drop out, and the modified Riccati equations reduce to
the usual LQG equations. Coupling via the optimal projection implies that sequential
reduced-order design procedures consisting of either model reduction followed by
controller design or controller design followed by controller reduction are generally
suboptimal. Furthermore, the coupled structure of the equations yields the insight
that in the reduced-order case there is no longer separation between the operations of
state estimation and state-estimate feedback, i.e. the certainty equivalence principle
breaks down.

The above developments for the continuous-time problem have, moreover, been
carried out by Bernstein, Davis and Hyland (1986) in a discrete-time setting. As in the
continuous-time case, the optimal reduced-order compensator is characterized by a
pair of modified Riccati equations and a pair of modified Lyapunov equations
coupled by an oblique projection. Furthermore, because of the discrete-time setting it
is now possible to permit static feedthrough gains in both the full- and reduced-order
controller designs. As pointed out by Hyland and Bernstein (1984), non-singular
control weighting and measurement noise in the continuous-time case permit only a
purely dynamic (strictly proper) controller. Note that this is precisely the case in
continuous-time LQG theory, which yields strictly proper feedback controllers.

An immediate application of the discrete-time results is a rigorous treatment of the
linear-quadratic sampled-data reduced-order dynamic-compensation problem (Bern
stein, Davis and Greeley 1986). By explicitly accounting for real-time computational
delay in the feedback loop, the sampled-data control-design problem can be
transformed into an equivalent discrete-time problem. The dimension of the equiva
lent discrete-time system, however, is augmented by the available measurements
which are treated as delay states. The optimal projection equations for discrete-time
fixed-order dynamic compensation can thus be used to obtain controllers of tractably
low dimension in spite of dimension augmentation.

Design considerations concerning stability and performance robustness with
respect to unknown parameter variations can also be incorporated into the fixed
order dynamic-compensation design process. This can be accomplished by introduc
ing white noise into the plant via the imperfectly known parameters (Bernstein and
Hyland 1985, Bernstein and Greeley 1986 a). Intuitively speaking, the quadratically
optimal feedback controller designed in the presence of such disturbances is
automatically desensitized to actual parameter variations. As shown by Bernstein and
Greeley (1986 b), the modification of the closed-loop covariance equation due to
multiplicative noise can be used to guarantee robust stability and performance by
means of a Lyapunov function and a performance bound.

An interesting aspect of the design equations for the multiplicative noise model is
the breakdown of the separation principle even in the full-order case. That is, even
when coupling due to the oblique projection is absent, coupling due to stochastic
effects remains. This is a graphic portrayal of observations made previously, e.g. by
Gustafson and Speyer (1975). An alternative, apparently suboptimal approach
involving certainty equivalent controllers for guaranteeing stochastic stability was
developed by Yaz (1986).

The purpose of the present paper is to extend the optimal projection equations for
fixed-order discrete-time dynamic compensation given by Bernstein, Davis and
Hyland (1986) to include the effects of state-, control- and measurement-dependent
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8 68 D. S. Bernstein and W. M. Haddad

white noise. The main result (Theorem 3.1) presents the necessary conditions for
optimality as a system of four matrix equations (two modified discrete-time Riccati
equations and two modified discrete-time Lyapunov equations) coupled by both the
optimal projection and stochastic effects. For the sake of completeness, the optimality
conditions for discrete-time static output feedback are given by Theorem 2.1.

2. Static output feedback

2.1. Discrete-time static output-feedback problem

Given the controlled system

x(k + 1)= (A + t V;(k)Ai)X(k) + (B + .tl V;(k)Bi)U(k) + WI (k) (1)

y(k) = ( C + .tl Vi(k)Ci)X(k) + w2(k) (2)

where k = 1,2, ... , determine D, such that the static output feedback law

u(k) = Dcy(k)

minimizes the performance criterion

J £ lim E[xT(k)R1x(k) + 2xT(k)R
I 2u(k) + uT(k)R

2u(k)]
k- 00

(3)

(4)

Using the notation given at the beginning of this paper, the closed-loop system
(I )-(3) can be written as

x(k + 1)= (A + itVi(k)Ai)X(k) + w(k)

Define the second-moment matrix

Q(k) = E[x(k)xT(k)]

satisfying

Q(k + I) = AQ(k)AT+ f AiQ(k)AT + V
i= 1

(5)

(6)

(7)

To consider the steady state, we restrict our consideration to the set of second-moment
stabilizing gains

S £ {Dc: A ® A + it Ai ® Ai is asymptotically stable}

The requirement Dc E 5 implies the existence or the steady-state closed-loop state
covariance Q £ lim Q(k). Furthermore, Q and its non-negative-definite dual Pare

k-oo

unique solutions of the modified discrete-time Lyapunov equations

p

Q=AQAT + L AiQAT + V
j= 1

P=ATPA+ f ATPAi+R
t» 1

(8)

(9)
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8 Optimal projection equations for dynamic compensation 69

An additional technical requirement is that D, be confined to the set

S+~{DeES: V2s>0 and R2s>0}

In order to obtain closed-form expressions for extremal values of the closed-loop
control gains, the static- and dynamic-compensation problems require the technical
assumption

[Bi#O=Ci=O], i=I, ... ,p (10)

i.e. for each i E {I, ... , p}, Bi and C, are not both non-zero. Essentially, (10) expresses
the condition that the control-dependent and measurement-dependent noises are
independent. There are no constraints, however, on correlation with the state
dependent noise. By optimizing (4) with respect to Dcand manipulating (8)and (9), we
obtain the following result.

Theorem 2.1
Suppose Dc E S + solves the discrete-time static output-feedback problem. Then

there exist n x n Q, P ;;, 0 such that

De = -Ri/[BTPAQCT +PsIQCT+BTPQSI]V2~1 (II)

and such that Qand P satisfy

p

Q = AQAT+ VI + L [(Ai + B;DeC)Q(Ai + B;DeC)T + B;De V2DJBTJ
i= 1

(12)

p

P = ATPA + R I + L [(Ai + BDeCil P(Ai + BDeC;)+ cT DJ R2DeC,]
i= 1

(13)

3. Dynamic output feedback
We now expand the formulation of the static problem to include a dynamic

compensator.

3.1. Discrete-time dynamic output-feedback problem

Given the controlled system (I), (2), determine Ae, Be, Ce , Dcsuch that the dynamic
output-feedback law

xe(k + I) = Aexe(k) + Bey(k)

u(k) = Cexe(k) + Dey(k)

(14)

(15)

minimizes the performance criterion (4).
We restrict our attention to the second-moment-stabilizing controllers

S~ {(A e, Be, Ce , De):A®A + itl Ai®Ai is asymptotically stable and

(Ae, Be' Ce ) is minimal}

which implies the existence of Q~ lim E[x(k)xT(k)], where x(k) ~ [xT(k), xJ(kW.
'-00
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8 70 D. S. Bernstein and W. M. Haddad

Furthermore, Qand its non-negative-definite dual Pare the unique solutions to the
modified discrete-time Lyapunov equations

Q= AQA T + f AiQAT + V
i= I

- - p - - -P= ;P PA + L Aj
T PA, + R

i= 1

(16)

(17)

An additional technical assumption is that (Ae , B" Ce , Dc) be confined to the set

'" + " { "'. -., = (Ae, Be' Ce , Del E.,. R2 , > 0 and

The following lemma is required.

Lemma 3.1

Let r E Rn x". Then

p(r) = ne

if and only if there exist G, r E Rnc x n such that

GTr=r

rGT = Inc

Proof

Sec Bernstein, Davis and Hyland (1986).

(18)

(\ 9)

(20)

(21)

For convenience call G and r satisfying (20) and (21) a projective factorization of r.
Furthermore, for n x n non-negative-definite matrices Q, P, define the set of contragre
diently diagonalizing transformations (see Rao and Mitra 1971, p. 123)

O(Q, P)~ {ifJ ERn xm: ifJ- 1QrT and ifJTPifJ are diagonal}

Theorem 3.1
Suppose (A e, Be, Ce , Dc) E S+ solves the discrete-time dynamic output-feedback

problem. Then there exist n x n Q, P, Q, P;;'0 such that

Ae= rcA - BR,;,' P, - Q'V2~ 1 C - BDeCJGT

Be= r[Q,V2~ 1 + BDeJ

.... -1 ... T
C, = - [R 2, P, + DeC]G

o, = - R,;,' [BTPAQCT+ P'I QCT + BTPQ'l JV2~ I

and such that Q, P, Q, Psatisfy

p

Q = AQAT+ VI + r.lQrI+ L [(Ai - BiR,;,l P,)rQrT(A j - BiR,;,' P,)T
i= I

(22)

(23)

(24)

(25)
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8 Optimal projection equations for dynamic compensation

p

P = AT PA + R 1+ rIPr l + L [(Ai - Q,Vz~ 1 C;)TrT Pr(Ai - Q,Vz~ 1 C;)
i= 1

71

+ (Ai + BD,C;)T P(A i + BD,C;) + cTD~RzD,C;] - P~Ri/ P, (27)

Q= (A - BR.i,l P,)rQrT (A - BR.i/ p,)T + (Q, + BD, Vz,) VZ~ 1(Q, + BD, Vz,)T (28)

P = (A - Q,Vz~ 1 C)TrT Pr(A - Q,Vz~ 1 C) + (P, + R.zAC)T R.i/(P, + R.z,D,C) (29)

where

r~ I n;{l//)=GTr
i= 1

(30)

• • 1 ••
for some t/J E D(Q, P) such that (t/J- QPt/J)Ii.i) '" 0, i = I, ... , n" and some projective
factorization G, r of r.

Remark 3.1

To specialize the result to the strictly proper (no feedthrough) case, merely ignore
(25) and set D, = 0 wherever it appears.

Remark 3.2

As previously pointed out by Bernstein, Davis and Hyland (1986), the indeter
minacy in specifying the projective factorization G, r satisfying (20) and (21)
corresponds to an arbitrary choice of internal state-space basis for the design system
(A" B" Co),

Remark 3.3

In the full-order case n, = n, the projection r becomes the identity and (28) and (29)
play no role. In this case GTr = rGT= 1. and thus G and r can be chosen to be the
identity. Deleting all multiplicative white noise terms corresponding to state-, control
and measurement-dependent disturbances, i.e. Ai' B;, Ci = 0, i = I, ... , p, and specializ
ing further to the purely dynamic case (D, = 0) yields the standard LQG result.
Alternatively, setting n, < n and deleting the multiplicative noise terms yields the
results of Bernstein, Davis and Hyland (1986).

4. Proof of Theorem 3.1
Partition (n + nJ x (n + no) (1, Pinto n x n, n x n" and n, x n, sub-blocks as

and define the n x n non-negative-delinite matrices

Q~QI-QlzQilQiz, P~PI-PIZPilPiz

~.6. -IT ~.1. -iT
Q=QIZQZ QIZ' P=P1ZPZ P1Z

".. Ii "'-1"'::: "'-I ,.. T'" ...... -1 ... ... T
Q = (A - BRz, P,)Q(A - BR z, P,) + (Q, + BD, Vz,)Vz, (Q, + BD, Vz,)

P ~ (A - Q, Vz~ 1 cl PiA - Q, V2~ 1 C) + (P, + R.z,D,c)T R.i/ (P, + R.zAc)

where rQrT and rTPr in Q" P" Vz" and R.z, are replaced by Qand P, and the n, x n,
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8 72 D. S. Bernstein and W. M. Haddad

ne x ne , and lie X n rna trices
G£Qi"IQi2' M£Q2P2, f£-pi" lpi2

Define the lagrangian

£.lA, Be' Ce , o.. 12, P, Je)4 tr [U(Ae , Be' c, Dc) + ( AQAT+ t AiQA! + V - Q)p]

where the Lagrange multipliers Je ~ 0 and PE R(n+ndx(n+nd are not both zero. Setting
aL/aQ = 0, Je = 0 implies P= 0 since (Ae, Be, C,, Del E S+. Hence, without loss of
generality, set Je = I. Thus the stationarity conditions are given by

~=AQAT+ f AiQA!+V-Q=O (31)
ap i=J

ei. =T -= P - - - -
aQ = A PA + i~J :P pi! + R- P = 0 (32)

aL T T T
aA = PJ2AQ12+ PI2BDeCQ12 + PI2BCeQ2 + P2AeQ2+ P2B,CQI2 =0 (33)

e

aL • • T T' T T-
-=R2,DeV2,+B PAQC +P,JQC +B PQ,J=O (36)oo,

Expanding (31) and (32) yields
T'" ...... - I ... ... T ...... - 1 "T

AQA + (Q, + BDeV2')V2' (Q, + BDY2') - Q, V2, Q,

+ (A - BRi"/ P,)~(A - BRi"/ p,)T

+ VI - Q - ~ + f [(Ai - B,Ri"/ P,)~(A, - BiRi"/ p,)T
i= 1

+ (Ai + B;DeC)Q(Ai + B,DeC)T + B,DeV2D; BD = 0 (37)

[«2. + BDeV2,)V2~ 1(Q, + BDeV2,)T + (A - BRi"/ P,)~(A - BRi"/ P,)T- ~]fT = 0

(38)

f[(Q, + BDeV2,)V2~ I(Q, + BDe+ V2,)T

+ (A - BRi"/ P,)~(A - BRi"/ p,)T - ~]rT = 0 (39)
T ...... T"'-l...... "'T"'-l'"A PA + (P, + R2,DeC) R2, (P, + R2,DeC) - P, R2, P,

+ (A - Q,V2~ I C)TP(A - Q,V2~J C)

• P •

+ R J - P - P+ L [(Ai - Q,V2~J C,)TP(Ai - Q,V2~J C,)
i= 1

+ (A, + BDeCil P(Ai+ BDeCi) + cT D; R2DeC,] = 0 (40)

[(P, + R2,DeClTRi"/ (P, + R2,DeC)+ (A - Q,V2~ I C)TP(A - Q,V2~ J C) - P]GT= 0

(41)
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8 Optimal projection equations for dynamic compensation 73

...... T"'-l...... ... "'-I T~ ... "'-I :::: T
G[(P, + Rz,DcC) Rz, (P, + Rz,DcC) + (A - Q,Vz, C) PtA - Q,Vz, C) - P]G = 0

(42)

Using (33)-(36) we obtain (22)-(25). Using (37)+ GTr(38)G - (38)G - (38Gl and
GTr(38)G - (38)G - (38G)T yields (26) and (28). Similarly, using (40)+ r TG(41)r
- (41)r - (41f)T and r TG(41)r - (41)r - (41 f)T we obtain (27) and (29). Also,
r(38) - (39tor G(41)- (42) yields rGT= Inc so that, = GTr = ,z. Finally, (39) and
(42) imply Q = ,Q,T and P= ,Tf>.. D

Remark 4.1

An interesting difference between the above discrete-time derivation and the
continuous-time derivation of Hyland and Bernstein (1984) is that the explicit gain
expressions and the definition of the optimal projection arise in the reverse order.

5. Directions for further research
The principal application ofTheorems 2.1and 3.1 is the sampled-data problem with

parameter uncertainties. Although generalization of the results of Bernstein et al.
(1986) is possible, there appear to be a number of mathematical issues which
arise. A related development appears in Tiedemann and De Koning (1984). A more
extensive treatment of the results of the present paper can be found in Haddad (1987).
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