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Optimal projection equations for discrete-time fixed-order
dynamic compensation of linear systems with multiplicative white noise

DENNIS S. BERNSTEINT and WASSIM M. HADDAD}

The optimal projection equations for discrete-time reduced-order dynamic com-
pensation are generalized to include the eflects of state-, control- and measurement-
dependent noise. In addition, the discrete-time static output feedback problem with
multiplicative disturbances is considered. For both problems, the design equations
are presented in a concise, unified manner to facilitate their accessibility for
developing numerical algorithms for practical applications.

Notation and definitions

R, R, R", E real numbers, r x s real matrices, R"*!, expectation
I,,()" nxnidentity, transpose
® Kronecker product
, I,—1,1eR"™"
asymptotically

stable matrix
non-negative-
semisimple matrix
non-negative-
definite matrix
positive-definite
maltrix
nom,ln.,p

X, X,

u, y

A, A; B, B; C, C;
A, B.,C.D,

k

vi(k)

wi (K), wa (k)

h. v,

Via

Rl ’ RZ

Rz

A, A,

£

matrix with eigenvalues in the open unit disc

semisimple (diagonalizable) matrix with non-negative eigen-

values
symmetric matrix with non-negative eigenvalues

symmetric matrix with positive eigenvalues

positive integers, ] <n < n

n-, n-dimensional vectors

m-, I-dimensional vectors

n X n matrices, n x m matrices, ! x n matrices, i=1,...,p
n, x n,, n.x 1, mxn, mxI matrices

discrete-time index 1, 2, ...

unit variance white noise, i=1,...,p

n-dimensional, [-dimensional white noise processes

n x n covariance of w,, I x [ covariance of w,; ¥, 20, ¥, 20

n x | cross-covariance of w,, w,

state and control weightings; R, =0, R, =0
n x m cross weighting; R, — R,,R; 'R, =0
A+ BD.C, A, +BD.C+BD.C,i=1,..,p

P
w, + BD.w, + .Zl B:.D.w,

Received 23 July 1986.
1 Harris Corporation, Government Aerospace Systems Division, Melbourne, FL 32902,
US.A.

1 Department of Mechanical Engineering, Florida Institute of Technology, Melbourne, FL
32901, USA.



66 D. S. Bernstein and W. M. Haddad

~ P
V l/'l-"— VIZDCTBT+BDCVITZ-'-BDCVZDIBT'*' Z BchVZDIB:r
i=1
R R, + R,;D.C + C*DIRY, + C"DTR,D.C + -i CTDTR,D.C;
&
] fi— Bcc Za‘ Bicc
A’ Ai 3
B.C A, B.C, 0
N W
®
BCWZ
5 v V,,Bl + BD_V,BT
Bc VITI + BcVZD;rBT BCVIBI
% R R,,C.+ C"DIR,C,
CIRT, + CIR,D.C CIR,C,
Zi i (i, ) element of matrix Z
trZ trace of square matrix Z
pZ) rank of matrix Z
E; matrix with unity in the (i, i) position and zeros elsewhere
T, () YE ™! {unit-rank eigenprojection)

For arbitrary n x n Q, P, 0, P, t define:

» 7
Vi, 2 ¥, 4+ CQCT + Y C,0CT, Ry,,2R,+B"PB+ ) B!PB;
i=1 i=1
Il p
2 AQCT+ Vi + ) AQCT, P, BTPA+RI; + ) BIPA;
i=1 i=1
2 [
Qsl é VlZ + '"zl AIQC;T! ‘ Psl é RTZ + 'Zl BTPA‘

a 14 N - [ .
Vi 2V, +CQCT + Y CQ+107")CT, R, 2R, +B'PB+ ) BI{(P+1"P1)B,
i=1 i=1
i - . il -
0,4 40CT+V,, + ¥ AQ +10NCT, P, AB"PA+RI,+ Zl B (P +1"P1)A,
i=1 =

BI P + tTPr)4,

M=

Py P - )
Qa2 Vip+ ) A(Q+0t)C], Py2AR], +
i=1

i=1

1. Introduction

Hyland and Bernstein {1984) showed that the first-order necessary conditions for
quadratically optimal continuocus-time fixed-order dynamic compensation can be
transformed into a coupled system of four matrix equations (two modified Riccati
equations and two modified Lyapunov equations). The coupling is due to the presence
of an obiique projection (idempotent matrix) which arises as a rigorous conseguence
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of optimality. This formulation provides a generalization of classical LQG control
theory, since in the full-order case the projection becomes the identity matrix, the
modified Lyapunov equations drop out, and the modified Riccati equations reduce to
the usual LQG equations. Coupling via the optimal projection implies that sequential
reduced-order design procedures consisting of either model reduction followed by
controller design or controller design followed by controller reduction are generally
suboptimal. Furthermore, the coupled structure of the equations yields the insight
that in the reduced-order case there is no longer separation between the operations of
state estimation and state-estimate feedback, i.e. the certainty equivalence principle
breaks down.

The above developments for the continuous-time problem have, moreover, been
carried out by Bernstein, Davis and Hyland (1986) in a discrete-time setting. As in the
continuous-time case, the optimal reduced-order compensator is characterized by a
pair of modified Riccati equations and a pair of modified Lyapunov equations
coupled by an oblique projection. Furthermore, because of the discrete-time setting it
is now possible to permit static feedthrough gains in both the full- and reduced-order
controller designs. As pointed out by Hyland and Bernstein (1984), non-singular
control weighting and measurement noise in the continuous-time case permit only a
purely dynamic (strictly proper) controller. Note that this is precisely the case in
continuous-time LQG theory, which yields strictly proper feedback controllers.

An immediate application of the discrete-time results is a rigorous treatment of the
linear-quadratic sampled-data reduced-order dynamic-compensation problem (Bern-
stein, Davis and Greeley 1986). By explicitly accounting for real-time computational
delay in the feedback loop, the sampled-data control-design problem can be
transformed into an equivalent discrete-time problem. The dimension of the equiva-
lent discrete-time system, however, is augmented by the available measurements
which are treated as delay states. The optimal projection equations for discrete-time
fixed-order dynamic compensation can thus be used to obtain controliers of tractably
low dimension in spite of dimension augmentation.

Design considerations concerning stability and performance robustness with
respect to unknown parameter variations can also be incorporated into the fixed-
order dynamic-compensation design process. This can be accomplished by introduc-
ing white noise into the plant via the imperfectly known parameters (Bernstein and
Hyland 1985, Bernstein and Greeley 1986 a). Intuitively speaking, the quadratically
optimal feedback controller designed in the presence of such disturbances is
automatically desensitized to actual parameter variations. As shown by Bernstein and
Greeley (1986 b), the modification of the closed-loop covariance equation due to
multiplicative noise can be used to guarantee robust stability and performance by
means of a Lyapunov function and a performance bound.

An interesting aspect of the design equations for the muitiplicative noise model is
the breakdown of the separation principle even in the full-order case. That is, even
when coupling due to the oblique projection is absent, coupling due to stochastic
effects remains. This is a graphic portrayal of observations made previously, e.g. by
Gustafson and Speyer (1975). An alternative, apparently suboptimal approach
involving certainty equivalent controllers for guarantecing stochastic stability was
developed by Yaz (1986). .

The purpose of the present paper is to extend the optimal projection equations for
fixed-order discrete-time dynamic compensation given by Bernstein, Davis and
Hyland (1986) to include the effects of state-, controi- and measurement-dependent
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white noise. The main result (Theorem 3.1) presents the necessary conditions for
optimality as a system of four matrix equations {two modified discrete-time Riccati
equations and two modified discrete-time Lyapunov equations) coupled by both the
optimal projection and stochastic effects. For the sake of completeness, the optimality
conditions for discrete-time static output feedback are given by Theorem 2.1.

2. Static output feedback
2.1. Discrete-time static output-feedback problem
Given the controlied system

xk+1)= (A + ¥ vi(k)A,-)x(k) + (B + 3 v,-(k)B,-)u(k) +w, (k) (1)
i =1

i=1

P
k)= (C + __Zl v.-(k)Ca)x(k) + wa (k) 2
where k=1, 2, ..., determine D_ such that the static output feedback law
u(k) = D, y(k) (3)
minimizes the performance criterion
J 2 lim E[xT(k)R,x(k) + 2xT(K)R , ju(k) + u" (k)R,u(k)] 4)

k= m

Using the notation given at the beginning of this paper, the closed-loop system
(1)-(3) can be written as

xtk+1)= (ﬁ + .-; ui(k)ﬁi)x(k) + (k) (5)
Define the second-moment matrix
Q(k) = E[x(k)x" (k)] (6)
satisfying
Ok + 1) = AQU)AT + i_fl AQU)AT + 7 )

To consider the steady state, we restrict our consideration to the set of second-moment
stabilizing gains

- o 2. ~
s {Dc A A+ ) A,® A4 is asymptotically stable}
i=1

The requirement D, € S implies the existence of the steady-state closed-loop state

covariance Q£ lim Q(k). Furthermore, Q and its non-negative-definite dual P are
k-

unique solutions of the modified discrete-time Lyapunov equations

0=A0i"+ § 4047 +7 ®)

i=

~ LA ~ .
P=ATPA+ ) ATPA, +R ©)
i=1
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An additicnal technical requirement is that D_ be confined to the set
S"2{D.eS: V,;>0 and R,;>0}

In order to obtain closed-form expressions for extremal values of the closed-loop
control gains, the static- and dynamic-compensation problems require the technical
assumption

[B;#0=C;=0], i=1,..,p (10)

ie foreach ie {l,..., p}, B; and C, are not both non-zero. Essentially, (10) expresses
the condition that the control-dependent and measurement-dependent noises are
independent. There are no constraints, however, on correlation with the state-
dependent noise. By optimizing (4) with respect to D, and manipulating (8) and (9), we
obtain the following result.

Theorem 2.1
Suppose D, e 8% solves the discrete-time static output-feedback problem. Then
there exist n x n Q, P 2 0 such that

D.= —Ry'[B"PAQCT + P,,QCT + BTPQ,, 1V;,! (n
and such that Q and P satisfy

P
Q=AQAT+ Vi + ) [(4;+ B:D.C)Q(4; + B.D.C)" + B,D V,D! B} ]
i=1

+(QS+BDCV28)V2:1(QS + BDCVZS)T_ QsVZSQsT (12)
P

P=A"PA+ R, + Y [(A;+ BD.C,)"P(A,+ BD.C))+ C[ DI R,D.C;]
=1

+ (P.s + stDt:C)TRZ_.s1 (P.; + RZsDcC) - PsTRZSPs (]3)

3. Dynamic output feedback .
We now expand the formulation of the static problem to include a dynamic
compensator.

3.1. Discrete-time dynamic output-feedback problem

Given the controlled system (1), (2), determine 4_, B, C,, D, such that the dynamic
output-feedback law

xc(k + 1) = A.x (k) + B, y(k) (14)
ulk) = C.x (k) + D y(k) (15)
minimizes the performance criterion (4).

We restrict our attention to the second-moment-stabilizing controllers

715®71i is asymptotically stable and

N

Sé{(Ac,Bc, C.,D.):A®A +

i=1

(4., B, C,) is minimal}

which implies the existence of J2 lim E[%(k)%"(k)], where %(k)2 [xT(k), xI(k)]".

k—w
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Furthermore, § and its non-negative-definite dual P are the unique solutions to the
modified discrete-time Lyapunov equations

G=30AT+ ¥ AQAT+ 7 (16)

. P o= .= =
P=A"PA+ Y ATPA;+R (17)

An additional technical assumption is that (4., B,, C., D.) be confined to the set
§* 2 {(A.,B,,C.,D)e8 R;;>0 and ¥,,>0}

The following lemma is required.

Lemma 3.1
Let te R"*" Then

=1 (18)
plr)=n, (19)
if and only if there exist G, I" € R**" such that
G'C=r1 (20
rG'=1, 21

Proof
See Bernstein, Davis and Hyland {1986).

For convenience call G and I satisfying (20) and (21) a projective factorization of 7.
Furthermore, for n x n non-negative-definite matrices Q, P, define the set of contragre-
diently diagonalizing transformations (see Rao and Mitra 1971, p. 123)

DO, P)2 {y e R™™ ¢y~ Q¢y~" and TPy are diagonal}

Theorem 3.1
Suppose (A,, B.,C,,D.) e 8* solvc§ t})e discrete-time dynamic output-feedback
problem. Then there exist n x n @, P, ¢, P = 0 such that

A, =TTA—-BR;'P,.— Q. V,;'C— BD.C|GT (22)
B.=T[Q,Vs;" + BD.] (23)
C.= —[R:'P,+D.CIGT (24)
D, = —R;'[B"PAQC™ + P,,QC™ + B*P{,, 1V, (25)

and such that Q, P, Q, P satisfy
~ p -~ - - - -
Q=AQA"+ Vi +7,0t1 + ¥ [(4;— BR3Py Ot"(A,— BR3P
i=1

+(A;+ B.D.C)QA; + BD.C)" + BD V,DE B 1 - Q. V;; " OF (26)
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- P o - P
P=ATPA+R, +1 Pt + Y [(A;— Q.5 C) " Pr(4, — Q0,051 C)
i=1
+(A; + BD.C))" P(4; + BD.C;)+ CTDIR,D.C;]— PIR; P, (27)
0 =(A— BR;,' B)tQ1"(A— BR3P} + (0, + BD .V,,)Vy; ' (0, + BD.V;,)" (28)
IS = (A - Q‘sr/l: ! C)TIT F"T(A - Q‘sl??.: ! C) + (ﬁs + ﬁZSDcC)TR’;sl (Ps + RZSDCC) (29)
where
2 Y Mig)=G'T (30)
i=1
_1 ~

for some W e D(0, P) such that (y
factorization G, I of 1.

Yy #0,i=1,..,n, and some projective

Remark 3.1

To specialize the result to the strictly proper (no feedthrough) case, merely ignore
(25) and set D, =0 wherever it appears.

Remark 3.2

As previously pointed out by Bernstein, Davis and Hyland (1986), the indeter-
minacy in specifying the projective factorization G, I' satisfying (20) and (21}
corresponds to an arbitrary choice of internal state-space basis for the design system
(AC’ BC’ CC)'

Remark 3.3

In the full-order case n, = n, the projection t becomes the identity and (28) and (29}
play no role. In this case G'I'=TG" =1, and thus G and T can be chosen to be the
identity. Deleting all multiplicative white noise terms corresponding to state-, control-
and measurement-dependent disturbances, i.e. A;, B;, C;=0,i= 1, ..., p, and specializ-
ing further to the purely dynamic case (D, =0) yields the standard LQG result.
Alternatively, setting n.<n and deleting the multiplicative noise terms yields the
results of Bernstein, Davis and Hyland (1986).

4. Proof of Theorem 3.1
Partition (n +n.) x (n+n.) @, P into n x n, n x n_, and n, x n, sub-blocks as

a [91 Q1z:|’ 5 [ Py Plz]
0l: @, P, P,
and define the n x n non-negative-definite matrices
QéQl_QIZQZ-1 TZ’ PéPl_P12P;1PT2
020,,05'0T,, PaP,P;'PY,
02 (4~ BR3, P)Q(A — BR5, B)" + (0, + BD V)05 (0, + BD, V)"
PL(A—Q,0710) P4 - 0,057 C)+ (P, + R, ,D.C)T R, (P, + R,.D.C)

where t1@t" and Pt in §,, P,, V,,, and R,, are replaced by é and P, and the n. xn,
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N, X M, and »n, x n matrices

GéQz_l Tz; MéQsz, ra —P;‘P'{z
Define the lagrangian

~ T E = .z = ~\ o~
A, B, C.,D., 0, P, Hdtr I}U(Ac, B.,C.,D.)+ (AQAT + z AQAT +V — Q)P:l
i=1

where the Lagrange multipliers 4> 0 and P € R®* "< *n) gre not both zero. Setting
dL/6@ =0, A=0 implies P =0 since {4,, B., C., D) € §*. Hence, without loss of
generality, set A = 1. Thus the stationarity conditions are given by

g =z o P =~ .= o ~
5%=AQAT+ Y AQA+V-0=0 (31
=
E— P oz ~x = ~
-a—l;-=ATP +ZATPA+R—P=0 (32)
a0 i=1
oL T T T
A =P12A4Q., + P23 BD.CQy, + P, BC.Q, + P,AQ,+ P,B.CQ,, =0 (33)
aL . T A T .
aB =PchV25+P12Qs+PIZBDCV25=O (34)
aL . . .
Pl P01+ Ry C.Q5+ RyD.CQY,;», =0 (35)
oL 5 & T T, p T T pss
55*=R2,DCV25+B PAQC" + P,,QC" + B'PQ,, =0 (36)

Expanding (31) and (32) yields
AQAT + (0, + BD V2 )5, (O, + BD V)" — 0.V, OF

+(A— BR;,'P,)O)(4 — BR;,' P,)"

2 P - . A " ,.
+V,—0-0+ Y [(A;— BR;'P)0(A, — BR3P
i=1

+(A; + BD.C)Q(A; + B.D.C" + BDV,DTBI1=0 (37)
(0, + BD V)V (O, + BD V)" + (A — BR;,) P,)3(A — BR;,' B)' — QIIT =0
(38)

r[(és + BDc st)];'z; 1(Q‘s + BDc + VZS)T
+(A—BR;'P)0(A— BR,' B —QITT=0  (39)
ATPA+ (P, + Rp.D.CO)" R3NP, + R, D.C)— PR3, P,
+(Ad— 0,05 COF B4 - 0,055 C)
2 2 A a 2 A A
+R,—P—-P+ z [(4;— Q. Vs, ' C)TP(A, — Q. V5, 1 C)
i=1
+(A,+ BD,C)"P(A; + BD.C,)+ CTDTR,D.C;]1=0 (40)
[(ps + R‘ZSDCC)TR‘Z—SI (Iss + RZSDCC) + (A - QA3l72:' ! C)Tﬁ(A - Q‘s]?Z; ! C) - ﬁ]GT = 0
(41)
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GL(P, + Ry,D.C) B3, 1 (P, + RyuD.C) + (A — §,V57 O P(a — 0,051 C)— PIGT =0
42)

Using (33)-(36) we obtain (22)-(25). Using (37) + G'I(38)G — (38)G — (38G)" and
G"I'(38)G — (38)G — (38G)" yields (26) and (28). Similarly, using (40)+ I'"G(41)I
—@DHr—@nN' and r'GANC — (@1 — (@417 we obtain (27) and (29). Also,
I'(38) — (39) or G(41)—(42) yields FGT=1,_so that = G'T =2 Finally, (39) and
(42) imply ¢ = 101" and P = 1" Pr. O

Remark 4.1

An interesting difference between the above discrete-time derivation and the
continuous-time derivation of Hyland and Bernstein (1984) is that the explicit gain
expressions and the definition of the optimal projection arise in the reverse order.

5. Directions for further research

The principal application of Theorems 2.1 and 3.1 is the sampled-data problem with
parameter uncertainties. Although generalization of the results of Bernstein et al.
(1986) is possible, there appear to be a number of mathematical issues which
arise. A related development appears in Tiedemann and De Koning (1984). A more
extensive treatment of the results of the present paper can be found in Haddad (1987).
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