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The Optimal Projection Equations for Reduced-Order,
Discrete- Time Modeling, Estimation, and Control

Dennis S. Bernstein,. LawrenceD. Davis,t and David C. Hyland:!:
Harris Corporation,Melbourne,Florida

The optimal projection equations derived previously for reduced-order, continuous-time modeling, estimation,
and control are developed for the discret~time case. The d~ign equations are presented in a concise, unified
manner to facilitate their accessibility for the development of numerical algorithms for practical applications. As in
the continuous-time case, the standard Kalman filter and linear-quadratic-Gaussian results are immediately
obtained as special cases of the estimation and control results.

Nomenclature

A, B, C = n X n, n X m, tx n matrices
Am' Bm'Cm = nm X nm, nmX m, tx nm matrices
A., B., C., D. = n. X n., n. X t, P X n., P X t matrices
A,., B,.,C;.,D,.= n,.X n., n. X t, m X n., m X t matrices
Ej = matrix with unity in the (i, i) position

and zeros elsewhere
E = expected value
I, = r X r identity matrix
k = discrete-time index 1,2,3,. . .
L = P X n matrix
n, m, t, nnr'

ne, n,o,p
R,N,R2
RI
R12

R

trZ

u,Y,Y.
V

VI
V2
V12
W'Wt'W2

= positive integers, 1 ~ nm, n., n. ~ n
= tx t, P xp, m X m positive-definitematrices
= n X n nonnegative-definitemal.rix
= n X m matrix such that RI - R12R2IRi2

is nonnegative definite

=
[

re;1n~~:rs

]

, r X s real matrices

Ri2 R2
= trace of square matrix Z
= m-, t-, p-dimensional vectors
= m X m positive-definite covariance of W
= n X n nonnegative-definite covariance of WI
= t X t positive-definite covariance of W2
= n X t cross-covariance of WI' W2
= m-, no, ?dimensional zero-mean discrete-time

white noise processes
= no, nm-, n.-, n.-dimensional vectors
= (i, j) element of matrix Z
= transpose of vector or matrix Z
= (ZT)-I or (Z-If
= 'l'Ej'l'-1 (unit-rank eigenprojection47)
= rank of matrix Z
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I. Introduction

IN a recent series of papersl'l1 it has been shown that the
first-order necessary conditions for quadratically optimal,

continuous-time, reduced-order modeling, estimation, and
control can be transformed into coupled systems of two, three,
and four matrix equations, respectively.This coupling, due to
the presence of an oblique projection (idempotent matrix),
arises as a rigorous consequence of optimality, hence suggest-
ing the name optimal projection. For the estimation and
control problems, this formulation provides a direct generali-
zation of classical steady-state Kalman filter and linear-
quadratic-Gaussian (LQG) control theory. In the full-order
case the projection becomes the identity matrix, the additional
two modified Lyapunov equations drop out, and the remain-
ing modified Riccati equations become.theusual Riccati equa-
tions. .

Coupling via the optimal projection supports the view that
sequential reduced-order design procedures consistingof either
1) model reduction followed by estimator (controller) design
or 2) estimator (controller) design followedby estimator (con-
troller) reduction are generally not optimal. Furthermore, for
the control problem the coupled structure of the equations
yields the further insight that in the reduced-order case there
is no longer separation between the operations of state estima-
tion and state-estimate feedback, i.e., the certainty equivalence
principle breaks down.

For practical applications, the optimal projection equations
permit the development of alternative nUinerical algorithms
that operate through successive iteration of the optimal pro-
jection4.6 rather than by gradient search techniquesP By
recognizing that each local extremalcorrespondsto n, possible
choices out of n rank-1 eigenprojections of the product of a
pair of pseudogramians, it is possible to efficientlyidentify the

global minimum.lo This idea is fhi1osophioa1lysimilar to
Skelton's component-cost analysis.I .15

The purpose of the present paper is to develop the optimal
projection equations for reduced-order modeling, estimation,
and control in the discrete-time case. Since the underlying
theory has been discussed previously,I'll the presentation
herein is geared toward a clear and concise statement of the
main results to facilitate numerical developments and practi-
cal application. For example, by expressing the optimal pro-
jection in terms of eigenprojections, a variety of novel al-
gorithms are immediately suggested. For illustrative purposes
we apply the results on reduced-order state estimation to a
third-order problem to obtain reduced-order estimators and
the results on reduced-order dynamic compensation to a
tenth-order problem to obtain reduced-order controllers.
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Because of the discrete-time setting it is now possible to
permit static feedthrough gains in the estimator and controller
designs. As previously noted,? nonsingular control weighting
and measurement noise in the continuous-time case permit
only a purely dYnamic (strictly proper) controller. Note that
this is precisely the case in continuous-time LQG theory,
which always yields a strictly proper feedback controller. The
static gains in the discrete-time estimator problem permit
simultaneous, unified treatment of nondynamic least-squares
estimation along with dynamic (Kalman filter-type) estima-
tion.

The refe~ences inc~udea representative samplinBof paperson quadratIcally optImal reduced-order modeling,l .25estima-
tion,25.33 and controt,34-46along with closely related ap-
proaches. For emphasis on the discrete-time problem, see
Refs. 18, 30, 41, 42, 44, and 45.

II. Problem Statement and Main Results
We now state the reduced-order modeling, estimation, and

control problems. The object of the model-reduction problem
is to determine a model of reduced state-space dimension
whose steady-state response to white noise inputs (or, equiv-
alently, impulse response) best approximates, in a quadratic
(least-squares) sense, the response of a given high-order sys-
tem. In the reduction process the order of the reduced model
is fixed and the optimization is performed over the model
parameters.

Reduced-Order Modeling Problem
Given the model

x( k + 1) = Ax( k) + Bw( k)

y(k) = Cx(k)

design a reduced-order model

xm(k+ 1) =Amxm(k) + Bmw(k)

Ym(k) = Cmx(k)

which minimizes the model-reduction criterion

The goal of the reduced-order state-estimation problem is to
design an estimator of given order which yields quadratically
optimal (least squares) estimates of specified linear combina-
tions Lx of states x. In practice, the order of the estimator
may be determined by implementation constraints, such as
real-time computing capability. Note that the feedthrough
term De permits the utilization of. a static least-squares esti-
mator in conjunction with the dynamic estimator (Ae, Be,Ce).

Reduced-Order State-Estimation Problem

Given the observed system

x( k + n = Ax( k) + wl( k) (6)

y( k) = Cx(k) + w2(k) (7)

design a reduced-order state estimator

xe(k+ 1) =Aexe(k) + Bey(k) (8)

Ye(k) = Cexe(k) + Dey(k) (9)

which minimizes the state-estimation criterion

Je( Ae' Be' Ce, De)

£ lim E[Ye(k) - Lx(k)VN[Ye(k) - Lx(k)] (10)k-oo

For the fixed-order dynamic-compensation problem, a static
feed through term is included, i.e., the controller may be non-
strictly proper.

Reduced-Order Dynamic-CompensationProblem

Given the controlled system

x( k + 1) =Ax(k) + Bu(k) + wl(k) (11)

y( k) = Cx(k) + w2(k) (12)

design a reduced-order dynamic compensator

xc( k + 1) = Aexe( k) + BeY( k) (13)

u(k) = Cexe(k) + Dey(k) (14)

which minimizes the dynamic-compensation criterion

J.( A,., B,.,CeoDe) £ 1im E[ x( k) TRlx( k)k-oo

+2x( k) TR12u(k) + u(k) TR2u(k)] (15)

To guarantee that Jm, Je, and Je are finite and independent
of initial conditions, consideration is restricted to the follow-
ing (open) sets. [1\ tpple (A, B, C) is minimal if (A, B) is
controllable and (A, C) is observable.]

(1)

(2)

Am is stable and (Am' JJm,Cm) is minimal}

.9'; £ {( Ae, B.. Ce, De):

A e is stable and ( A e' Be, Ce) is minimal}

(3)

(4)

(5)

Let nr generically denote nm, ne, and ne' The following
factorization lemma will be needed for the main results.

Lemma2.}. Let TeRnxn. Then

(16)

(17)

if, and only if, there exist G, r eRn,Xn such that

(18)

(19).
Furthermore, G and r are unique to a change of basis in Rn,.

Proof. Sufficiencyis obvious. To prove' necessity, first note
that due to Eq. (16) the eigenvalues of T are either 0 or 1.
Further, it is easy to see that T has a diagonal Iordan
canonical form. Hence, the result followsfrom

where G=(f/l O]ST,r=(cf>-1 O]S-I, and cf>eRn,xn,. .
For convenience, call G and r satisfying Eqs. (18) and (19)

a projective factorization of T. Furthermore, for n X n non-
negative-definite matrices (i.e., symmetric matrices with non-
negative eigenvalues) 9 and !1', define the set of contragredi-
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ently diagonalizing transformations

fl)(!l,9')

~ {it E Rn~n: it-l!lit-T and itT9'it are diagonal}

It follows from Ref. 48, p. 123, Theorem 6.2.5, that fl)(!l,9')
is always nonempty. This set does not, however,have a unique
element since basis rearrangements and sign transpositions
may be incorporated into it. Further nonuniqueness arises if
!l9' has repeated eigenvalues.

Theorem 2.1. Suppose A is stable and (Am' Bm'c;,,) E9'm
solves the reduced-order modeling p~oblem.}hen there exist
n X n nonnegative-definite matrices Q and P such that Am'
B"" and C'" are given by

Am= rAGT

Bm= rB

Cm= CGT

and such that Q and P satisfy

Q = A'TQ'TTAT+ BVBT

(20)

(21)

(22)

(23)

(24)

where

n..
'T£ L lli(it)i-I (25)

for some it E fl)(Q, P) such that (it-1QPit).!.!..i)"&0, i =
1,...,n"" and some projective factorization G,!' of 'T.Fur-
thermore, the minimal cost is given by

where Jv,.is the unique (nonnegative-definite)solution of

For convenience in stating the estimator result, define the
notation

"
( T ) - l { T )

T

~Q = AQC + V12 V2 AQC + Vl2

~p ~ (L- D.C)TN(L- D.C)
"

(
T

) - I
AQ=A - AQC + J)2 V2 C

- " T
V;= V2+ CQC

Theorem 2.2. Suppose A is stable and (A., B., C., D.) E9;
solves the reduced-order state-estimation probl~. Thl:!!there
exist n X n nonnegative-definite matrices Q, Q, and P such
that A., B., C., and D. are given by

(27)

(28)

(29)

(30)

and such that Q, Q, and P satisfy

Q = AQAT - (AQCT + J)2) ji;l{ AQCT + J)2f

+ J) + 'T.LQ'TI

Q = A'TQ'TTAT+ IQ

A T r;
P = AQ'T P'TAQ+ Ip

(31)

(32)

(33)

where

(34)

for some itEfl)(Q,P) such that (it-1QP1/t)(i.i)"&0, i=
1,. . . , n., and someprojectivefactorizationG,r of 'T. Further-
more, the minimal cost is given by

For the control result, define the additional notation

"
( T -)- l { T -)

T
IQ = AQC + V12+ BDeV; V2 AQC + V12+ BDeV2

I " ( T T -
)
T- -l { T T - )Ip = B PA + R12+ R2DeC R2 B PA + R12+ R2DeC

Ap ~ A - BRil{ BTpA + R[2)
-" T
R2=R2+B PB

Theorem 2.3. Suppose (Ae, Be,Ce,Dc)E9; solves the re-
duced-order dynamic-compensation probl~. ThenAthere exist
n X n nonnegative-definite matrices Q, P, Q, and P such that
A,o, Be' Ce, and Dc are given by

Ae =r[ A - (AQCT + V12)ji;lc

- BRil{ BTpA + R[2) - BDeC] GT (36)

B.=r[{AQCT + V12)ji;I+BDe] (37)

C.= -[Ril{BTPA +R[2) + DeC]GT (38)

D.= -Ri1{BTpAQCT +R[2QCT+BTpV12)ji;1 (39)

and such that Q, P, Q, and P satisfy

Q =AQAT - (AQCT + V12)ji;l{ AQCT + Vl2f
A T+ VI + 'T.LQ'T.L

P = ATpA - (BTpA + R[2) TRil{ BTPA + R[2)

(40)

TA
+ RI + 'T.LP'T.L

Q" Ap'TQ'TTA~ + ~Q

(41)

(42)

(43)P = A~'Trp'TAQ + Ip

where

(44)

for some it Efl)(Q,P) such that (it-1QPit)(i.i)"&0, i=
1,..., n., and someprojectivefactorizationG,r of 'T.Further-
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more, the minimal cost is given by

Remark 2.1. To specialize the estimation and control results
to the strictly proper (no-feedthrough) case, merely ignore
Eqs. (30) and (39) and set D~= 0 and Dc= 0 whereverthey
appear.

Remark 2.2. In the full-order cases n~= n and ne = n in
Theorems 2.2 and 2.3, the projection T becomes the identity
and Eqs. (32), (33), (42), and (43) play no role. In this case G
and r are also the identity. Specializing further to the purely
dynamic case D~= 0, Dc= 0 as in the previousremarkyields
the standard Kalman filter and LQG results.

Remark 2.3. As previously noted/.lo.n the indeterminacy in
specifying the projective factorization G, r satisfyingEqs. (18)
and (19) corresponds to nothing more than an arbitrary choice
of internal state-space basis for the design systems
(Am' Bn.. Cm), (A., B~;...C~), aIld (Ae, Be' Ce).

Remark 2.4. Since Il A an,!i P are balanced by mi=~ of the
transformation '¥AE PJ(Q, P), it follows that y-IQPY is di-
agonal. Hence, QP i~ ~emisimpleand thus II;(Y) is a rank-l
eigenprojection of QP. (A semisimple matrix possesses a
diagonal Jordan form.47.48)Although the optimal projection T

is characterized in Eqs. (2?) (34), and (44) as the sum of
rank-1A eigenprojections of di>, because of the nonuniqueness
in PJ(Q, P), the theorems do not specify which eigenprojec-
tions actually comprise T. From analytical exampleslo it can

be seen that each of the (:,) possible projections may corre-
spond to a local extremal in the optimization problem.

Remark 2.5. The proofs of Theorems 2.1-2.3 are similar to
the continuous-time results and, hence, have been omitted. To
help the reader reconstruct the lengthy manipulations, the key
details differing from the continuous-time case are 'pointed
out. For the control problem, an (n + ne) X (n + ne) discrete-
time algebraic Lyapunov equation is obtained for the steady-
state covariance of the closed-loop system. Regarding this
equation as a side constraint, the Lagrange multiplier tech-
nique is used to compute stationarity conditions that yield
explicit expressions for Ae' Be, Ce, and Dc' The projection
arises when these expressions are substituted into the original

1.0

J~

x
B.5

x x
x x x x x x x

B.I!
5 1B

"c

Fig. I Root-mean-square perfonnance vs controller order for five-mode
beam example.

augmented Lyapunov equation and its dual. The interesting
aspect is that the explicit gain expressions and the definition
of the optimal projection arise in the reverse order as com-
pared to the continuous-time derivation. Similarremarks apply
to the reduced-order modeling and estimation problems.

m Examples
As an application of Theorem 2.2 on reduced-order state

estimation, the stirred-tank example from Ref. 36, pp. 107,
473, and 531, is considered. Ignoring the undisturbed volume
state, the remaining states are the incremental tank concentra-
tion and variations in the feed concentrations. The problem
data are as follows:

[

0.9048 0.06702 0.02262

]
A = 0 0.8825 0

o 0 0.9048

C = (1 0 0], V2= 10-6, V12= 0, N = L = 13

[

5.399 X 10-6 8.015 X 10-5 8.762 X 10-5

]
VI = 8.015 X 10-5 2.212 X 10-3 0

8.762 X 10-5 0 7.251 X 10-3

The standard Kalman filter result is

[

-0.7959
A~ = - 8.205

-10.29

[

1.701

]
B~= 8.205

10.29

0.06702
0.8825
o

g.2262
]0.9048

with performance J~ = 0.0358515.
Permitting nonzero feedthrough D~,yields

[

0.09885
A~ = -0.6851

0.1503

[

-0.006261
C. = 0.5716

0.6822

[

0.9068

]
D~= 9.298

11.37

0.1061 -0.0167

] [

-13.34

]
0.02176 0.09015, B~= -10.08
0.2652 0.8707 2.237

-0.007282 0.0007445

]
-0.0002166 0.007202,
-0.006021 -0.005440

where the (improved) performance is J~= 0.032401049.
For the reduced-order results, an algorithm for solving all

three equations (31-33) is described briefly. Begin by setting
T = In and ~olVingEqs. (31-33)for the "full-<;!rfler"valuesof
Q, Q, and P. Choose n~ eigenprojectionsof QP in diagonal-
izing coordinates and iterate the modific;.dLyap~ov equations
(32) and (33) until convergence of T, Q, and.P ~ obtained.
Return to Eq. (31) and solve for Q with VI+ T.l.QTI as the
new nonhomogeneous term in the Riccati equation. Repeat
the above steps until convergence is reached.

In applying this algorithm to the present example, the
eigenprojections were chosen {or convenience in accordance
with the largest eigenvaluesof QP. The results indicate attain-
ment of the global minimum. For the optimal second-order
filter, the gains are given by

A =
[

0.09898 -0.1137
] B = [

-13.33
]~ 0.6632 -0.02285' ~ 9.762

[

-0.006259 0.007796

] [

0.9068

]
C~= 0.5716 -0.0002737, D~= 9.298

0.6823 0.006121 11.37

- -- -- - - -
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with J, = 0.032401094,and, for the first-order filter,

A, = 0.1498, B, = -14.82

[

-0.001661

] [

0.9749

]
c, = - 0.5748 , D,= 9.489

0.6897 11.65

with J, = 0.03240418. Convergence to this accuracy was ob-
tained with 7 iterations of Eqs. (31-33) for the second-order
filter and 10 iterations for the first-order filter. Note that the
performance degrades only slightly with reduced order, and
the static gain term gives the first-order filter better perfor-
mance than the standard (full-order) Kalman filter.

To illustrate Theorem 2.3 for designing reduced-order dy-
namic compensators, consider a simply supported beam with
two colocated sensor/actuator pairs. Assuming the beam has
length 2 and that the sensor/actuator pairs are placed at
coordinates a=55/172 and b=46/43, a continuous-time
model of the following form is obtained:

where, retaining the first five modes,

A= block-diag
( [

0 Z
-WI

w;=iZ; i=1,...,5, t=0.005

B(i.l) = 0.5(1 + (-1)i)sin(i'ITb/2), i= 1,...,10

Bu.Z)= -0.5(1 + (-1)i)sin(i'ITa/2), i= 1,...,10

C=BT

The intensities VI and Vzof WIand Wzare chosen to be

and it is assumed that wI and Wz are uncorrelated. For the
continuous-time cost

J= 1imE[xTRlx+2xTRlzu+uTRzu]
/-+00

set

RI = bIOCk-diag( [~

To convert to the discrete-time problem with discretization
interval h, let 36.49

The design equations (40-43)for the control problem can be
solved using exactly the same techniques as in the previous
example for the estimation problem. For the strictly proper
case (D, = 0), a series of controllers was designed with nc =
1,2,...,10, where the nc = 10 result is the LQG solution. The

gains for the case nc = 4, for example, are given by

[

0.9317 0.1572 -0.2130

A(, = 0.0137 0.6879 0.25190.3330 -0.0580 0.7713
0.05980 -0.3297 0.3918

[

-0.4920 -0.2166

]

B = 0.6179 -0.5959
c 0.2253 -0.02572

0.07221 -0.4863

C = [ 0.05864 -0.3094 -0.01815
(' -0.1301 0.1463 -0.1945

-0.005038

]

0.4085
-0.2602

0.3005

0.2409 ]-0.07192

Figure 1 summarizes the results for each order, where the
rms controller performance is givenby

These results provide a tradeoff study of performance versus
controller order that can be used to assess processor require-
ments.

IV. Conclusion

Optimality conditions have been obtained for the problems
of least-squares, reduced-order (i.e., fixed-order),discrete-time
modeling, estimation, and control. These conditions comprise
systems of two, three, and four matrix equations, respectively,
coupled by an oblique projection which determines the opti-
mal system gains. When the order of the estimator or con-
troller is equal to the order of the plant, the oblique projection
becomes the identity matrix and the estimation and control
results specialize to the standard discrete-time Kalman filter
and linear-quadratic-Gaussian results. The design results are
applied to two illustrative examples. For a third-order stirred-
tank problem, filters of first and second order are obtained,
and, for a simply supported Euler beam example with five
flexible modes (Le., 10 states), a series of reduced-order con-
trollers with I, 2,...,9 poles is obtained. The latter results
illustrate the tradeoff between control-system performance
and controller order.
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