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The analysis of this algorithm is very difficult and is beyond the 
scope of this paper. Extensive simulations conducted show very good 
results, some of which are presented here. 

IV. SIMULATION RESULTS 

Extensive simulations have been conducted, some to verify the 
analysis of Section II and some to test the algorithm for the problem 
in Section III. In all our simulations, the following first-order system 
has been used 

1.5e-1.5s 
(4.1) 

In Fig. 1, we see the result of using the algorithm with a unit step 
input and employed as in Theorem 2.1. The convergence is fast and 
seems to be exponential, as predicted by the proof of Theorem 2.1. 
In Figs. 2 4 ,  we repeated the experiment, each time with a different 
modification proposed in Remark 2.2. In each case, the convergence 
is quite similar to the one in Fig. 1, as predicted in Remark 2.2. To 
test for robustness, we have tried to use the algorithm without any 
modification when bl # b,  and the algorithm diverged. In Fig. 5, 
we see the behavior of the algorithm when we use a square wave 
as the input. Again, the behavior verifies our discussion and (2.25). 
In Fig. 5(a), we take bl < b,  and in Fig. 5(b), bl  > b,  both with 
similar results. 

Finally, we have used the algorithm proposed in (3.5) for the case 
when a and b are unknown, with a square wave input. The results 
are very encouraging and are given in Fig. 6. We see that all three 
parameters converge to the correct values. 

G ( s )  = ~ 

s + l  . 

V. CONCLUSION 
An algorithm for direct identification of an unknown time delay in 

an LTI system was presented. It is based on the commonly used RLS 
algorithm. The convergence of the proposed algorithm for minimal 
phase and stable systems, where only the time delay is unknown, is 
analyzed and proven. The robustness of the proposed algorithm to 
the knowledge of other parameters is also discussed. It is shown that, 
with an oscillating input such as the square wave or with integrators 
resetting, the algorithm is robust to inaccuracies in system parameters. 

The algorithm is extended to the case where all parameters of the 
system are unknown. For this, there is no analytical support; the 
simulations conducted ,however, show very encouraging results. 
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Dissipative H2/Hoo Controller Synthesis 

Wassim M. Haddad, Dennis S. Bemstein, and Y. William Wang 

Absfmct-In certain applications, such as the colocated control of 
flexible structures, the plant is known to be positive real. Hence, closed- 
loop stability is unconditionally guaranteed as long as the controller is 
also positive real. One approach to designing positive real controllers 
is the LQG-based positive real synthesis technique of Lozano-Leal and 
Joshi. The contribution of this paper is the extension of this positive real 
synthesis technique to include an Hm-norm constraint on closed-loop 
performance. 

I. INTRODUCTION 
In certain applications, such as the control of flexible structures, 

the plant transfer function is known to be positive real. This property 
arises if the sensor and actuator are colocated and also dual, for 
example, force actuator and velocity sensor or torque actuator and 
angular rate sensor. In practice, the prospects for controlling such 
systems is quite good since, if sensor and actuator dynamics are 
negligible, stability is unconditionally guaranteed as long as the 
controller is strictly positive real [1]-[3]. Although there is no general 
theory yet available for designing positive real controllers, a variety 
of techniques have been proposed based on HZ theory [4]-[ 101 and 
H ,  theory [ l l ] ,  [12]. 

In this paper, we focus on the Hz-based positive real controller 
synthesis method of Lozano-Leal and Joshi [7]. In [7], it is shown 
that if the plant is positive real and if the error and disturbance 
matrices satisfy certain constraints, then the LQG controller is also 
positive real. This approach is appealing in practice since it requires 
only standard LQG synthesis techniques. Our goal in this note is to 
extend the synthesis technique of [7] to include an ET,-norm bound 
on the closed-loop transfer function [13]. This extension thus provides 
the control designer with more flexibility in specifying closed-loop 
system performance. 

11. PRELIMINARIES 
In this section, we establish definitions and notation. Let R and 

C denote the real and complex numbers, let ( )T and ( )* denote 
transpose and complex conjugate transpose, respectively, and let 
I, or I denote the n x n identity matrix. Furthermore, we write 
1 1  112 for the Euclidean norm, ( 1  . I I F  for the Frobenius matrix norm, 
U(.) for the maximum singular value, tr for the trace operator, and 
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M 2 0 (M > 0) to denote the fact that the Hermitian matrix M 
is nonnegative (positive) definite. In this paper a real-rational matrix 
function is a matrix whose elements are rational functions with real 
coefficients. Furthermore, a transfer function is a real-rational matrix 
function each of whose elements is proper, i.e., finite at s = CO. A 
strictly proper transfer function is a transfer function that is zero at 
infinity. Finally, an asymptotically stable transfer function is a transfer 
function each of whose poles is in the open left-half plane. The space 
of asymptotically stable transfer functions is denoted by RH,, i.e., 
the real-rational subset of H,. Let 

denote a state-space realization of a transfer function G(s) ,  that is, 
G(s) = C(sI  - A)-'B + D .  The notation ''*9' is used to denote 
a minimal realization. The H2 and A, norms of an asymptotically 
stable transfer function G(s)  are defined as 

A square transfer function G ( s )  is called positive real [ 14, p. 2161 
if: 1) all poles of G(s)  are in the closed left-half plane, and 2) 
G(s)+G*(s) is nonnegative definite for Re [s] > 0. A square transfer 
function G(s)  is called strictlypositive real or dissipative [15], [16] if: 
1) G(s)  is asymptotically stable, and 2) G ( j w )  + G* (jw) is positive 
definite for all real w. Recall that a minimal realization of a positive 
real transfer function is stable in the sense of Lyapunov [17], while 
a strictly positive real transfer function is asymptotically stable [15]. 

For notational convenience in this paper, G will denote an 1 x m 
transfer function with input U E R", output y E R', and internal 
state z E 72". We will omit all matrix dimensions throughout and 
assume that all quantities have compatible dimensions. Note that if 
the plant is positive real, then I = m and the resulting compensator is 
square. Next, we state the well-known positive real lemma [17], [NI.  

Lemma 2.1: The strictly proper transfer function G ( s ) T n  [+] 
is positive real if and only if there exist matrices Q O  and L with QO 
positive definite such that 

AQo + QoAT = -LLT (3) 

This form of the positive real lemma is the dual of that given in 
[17], and the derivation is similarly dual. See [18] for further details 
on the dual positive real lemma. 

The dual version of Lemma 2.1 can be obtained by replacing A 
by AT and B by C T .  In this case, G ( s )  is positive real if and only 
if there exist matrices PO and L with PO positive definite such that 

( 5 )  ATPo + PoA = -LTL, 

Recall that in the- case in which G(s)  is strictly positive real, 
it follows that ( A ,  L )  is observable [15]. Finally, we give a key 
definition and a lemma involving self-dual realizations. 

Dejnition 2.1: Let G(s)Yn . [+$I be a positive real transfer 

function. Then [+I is a self-dual realization of G(s)  if A+ AT 5 
O a n d B = C .  

Self-dual realizations are convenient since conditions (3)-(6) are 
satisfied by QO = PO = I and LLT = LTL = - ( A  + A T ) .  
The next result due to [7] shows that positive real transfer functions 
always have self-dual realizations. 

be positive real, and let positive- Lemma 2.2: Let G(s)* 
L I J  

definite QO and L satisfy (3), (4). Then 

a self-dual realization of G( s )  . 

111. PROBLEM STATEMENT AND MAIN RESULTS 

In this section, we begin by obtaining Hz dynamic output-feedback 
controllers with constrained H ,  disturbance attenuation. We then 
use this result to derive dissipative H 2 / H ,  controllers for a given 
positive real plant. 

H z / H m  Control Problem: Given the n-th order stabilizable and 
detectable plant 

i ( t )  = A z ( t )  + B u ( ~ )  + D l w ( t ) ,  (7) 

y ( t )  = Cz( t )  + D z w ( t )  (8) 

determine an n-th order dynamic compensator G,(s) N [ *] 
of the form 

U ( t )  = C,zc(t) (10) 

that satisfies the following design criteria: 

asymptotically stable, 
1) the closed-loop system (7)--(10) given by A e [Btc 571 is 

2) the closed-loop transfer function G ( s )  N I$$-] from the 

disturbance w ( t )  to the performance variables z t) = E l s ( t )  + 
E2 U (t) satisfies the constraint 

where y > 0 is a given constant, b e [Bfb2], and 

& 2 [El E2Cc], and 
3) the HZ performance measure 

[zT(s)R1z(s)  + u T ( s ) R z u ( s ) ] d s  

A A 
is minimized, where R I  = EFE1, Rz = ETE2 > 0, and ETE2 = 0. 

The basis for our approach is the mixed-norm H z /  H ,  framework 
developed in [13]. For the case of equalized H 2 / H ,  weights, a 
full-order dynamic compensator satisfying design constraints l),  2), 
and providing a bound for 3) is given by the following theorem. For 
convenience, define VI = D I D : .  VZ 2 D2DT > 0 ,  and assume A 

D ~ D ;  = 0. 
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Theorem 3.1: Suppose there exist n x n nonnegative-definite 
matrices Q and P satisfying 

o = A& + Q A ~  + vi + -,-'QR]Q - QC~T/;'CQ (14) 

0 = ( A  + ~ - ' Q R I ) ~ P  + P ( A  + 7-'QRi) + RI  

- P B R G ~ B ~ P  + y - 2 ~ ~ ~ T ~ ; 1 ~ ~ ~  (15) 

and let (A,, B,, C,) be given by 

A,  = A - QC~V;~C - B R ; ~ B ~ P  + 7 - 2 ~ ~ 1  (16) 

B, = QCTVL1 (17) 

c, = - R ; ~  B ~ P .  (18) 

Then (A, B) is stabilizable if and only if A is asymptotically stable. 
In this case, the closed-loop transfer function G ( s )  satisfies the 
H, disturbance attenuation constraint (1  1) and the H2 performance 
criterion (13) satisfies the bound 

J(A , ,  B,, C,) I t r [QRi + QCTV;'CQP]. (19) 

Proof: See [13, Proposition 5.61. 0 
Note that using (16)-(18), the dynamic compensator (9). (10) is 

given by 

q t )  = (A - Q C ~ V , - ~ C  - B G - ~ B ~ P  + 7 - 2 ~ ~ l ) ~ c ( t )  

+QCTV;'y(t), (20) 

u ( t )  = -RCiBTPz, ( t ) .  (21) 

We now assume that the plant (7), (8) is positive real and 
seek a strictly positive real controller within a negative feedback 
configuration. 

Dissipative HzIH, Control Problem: Given the n-th order min- 
imal positive real plant (7), (8), determine an n-th order compensator 

G,(s) - [ *] that satisfies the design criteria 2) and 3) with 

the additional property that -G,(s) - -Ac, is strictly positive 

Note that in this case, since the plant is positive real and the 
negative feedback compensator is strictly positive real, condition 1) 
is automatically satisfied [l]. We now present our main result, which 
shows that if the design weights are chosen in a specific manner, then 
the controller is positive real. This choice of design weights is a direct 
generalization to the H2/H, problem of the HZ design weights that 
were originally proposed in [7]. 

Theorem 3.2: Assume G(s):* . [ *] is positive real, and let QO 

and L satisfy (3), (4), where QO is positive definite. Furthermore, 
assume that there exist n x n nonnegative-definite matrices Q and P 
satisfying (14), (15), where R I ,  Rz,  Vi, VZ satisfy 

Vi = LLT + BRFIBT - y-'QoRiQo > 0, 

real. [+I 

(22) 

Vz = Rz, (23) 

RI > C T R F i C .  (24) 

Then the negative feedback dynamic compensator -G,(s) - p+] given by (16)-(18) is strictly positive real and satisfies 

e design criteria l ) ,  2). Furthermore, the H Z  performance criterion 
satisfies the bound 

J(Ac ,  B,, Cc) 5 tr[QRi + QCTV;lCQP]. (25) 

Proof: The HZ performance bound (25) and the closed-loop 
H, disturbance attenuation constraint are direct consequences of 

Theorem 3.1. Next, we show that -G,(s) N is strictly 

positive real. Using (22), (14) can be written as 

0 = AQ + QAT + LLT + B R T i B T  - y - 2 Q ~ R i Q ~  

-Ac, [+I 
+ ~ - ' Q R ~ Q  - QC~V;'CQ. (26) 

Since the open-loop plant is positive real, it follows from Lemma 2.1 
that LLT = -(A&o + QoAT) and C = BTQ;'. Hence, Q = QO 
is a solution to (26). Next, adding and subtracting P B R T I B T Q i l ,  
QTIBR, 'BTP,  P B R T I B T P  to and from (15) yields 

o = ( A  - Q~C~V;'C - B R T ' B ~ P  + 7 - 2 ~ ~ 1 ) T ~  
+ P ( A  - QoCTV;'C - BR;'BTP + f Z Q R 1 )  

+ R~ - Q ; ~ B R ; ~ B ~ Q ; ~  + (Q;' + P )  
. BR;~B~(Q;' + P )  + y - 2 ~ ~ ~ - i ~ T ~ .  (27) 

Using (16), (27) can be written as 

A T P  + PA, = -[R' - Q;~BR;~B~Q;' + (Q;' + P )  
.BR;'BT(QTi + P )  + y-2PBRa1BTP] (28) 

or, equivalently, since by (4) and (24) RI  - Q; iBR; lBTQ~i  > 0, 

A:P+ PA, = - L : L ~  = -L? < o (29) 

where L ,  is the positive-definite square root of the positive-definite 
matrix on the right-hand side of (28). Furthermore, using (17), (18), 
(23), and BT = QC, it follows that P B ,  = -CT. Finally, since 
G(s) is positive real and -G,(s) is strictly positive real, it follows 

0 
Remark3.1: Inequality (24) assures that A T P  + PA, < 0. 

Nevertheless, if (24) does not hold, but rather the weaker condition 

from [3, Theorem 7.21 that A is asymptotically stable. 

R~ - Q;'BR;'B~Q;' + (Q;' + P)BR;'B~(Q;' + P )  

+ y - 2 ~ ~ ~ ; i ~ T ~  > o (30) 

is satisfied, then A: P+ PA, < 0. Thus, when (24) fails, one can use 
(30) to guarantee that the controller is positive real. Note, however, 
that (30) cannot be verified a priori since it involves the matrix P 
which satisfies (15). 

Remark 3.2: Note that if the H, disturbance attenuation con- 
straint is sufficiently relaxed, i.e., 7 + CO, then (14) and (15) 
approach the standard LQG observer and regulator Riccati equations. 
In this case, Theorem 3.2 can be applied with (22) replaced by 

vi = L L ~  + B R ; ~ B ~  (31) 

to yield dissipative LQG controllers. If the plant realization is self- 
dual, then the dissipative LQG controller given by (20), (21) is 
equivalent to the dissipative controller obtained in [7]. 

To apply Theorems 3.1 and 3.2, it is necessary to satisfy the 
positive real conditions (3), (4). For the case of a flexible structure 
with m force inputs and m velocity measurements, the colocated 
admittance, or driving point mobility, is characterized by 

M i + C q + K q = B o u  (32) 

y = BFq (33) 

where M ,  C,  and K are mass, damping, and stiffness matrices, 
respectively, and BO is determined by the sensor/actuator locations. 
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Fig. 1. Comparison of llG(.s)!lm for HZ positive real (solid line) and 
H z /  H, positive real (dashed line) controllers. 
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Fig. 2. Frequency response of the H2/Hm positive real controller 

Choosing a realization for the system (32), (33) by 

it follows that (3) ,  (4) are satisfied by 

while (9, (6) hold with 

K 0 
Po = [ 0 .i], e = [O J?c’/”. 

Similar expressions appear in [S I .  

IV. ILLUSTRATIVE NUMERICAL EXAMPLE 
For illustrative purposes, consider a simply supported Eu- 

ler-Bernouli beam. The partial differential equation for the transverse 

deflection w(x, t )  is given by 

with boundary conditions 

4 x 7  t)lz=o,L = 0,  EI- 

where m(z )  is the mass per unit length and E I ( z )  is the flexural 
rigidity, with E denoting Young’s modulus of elasticity and I ( x )  
denoting the cross-sectional area moment of inertia about an axis 
normal to the plane of vibration and passing through the center of 
the cross-sectional area. Finally, f(z,  t )  is the force distribution due 
to a single control actuator. Assuming uniform beam properties with 
m = m(z) ,  the modal decomposition of this system has the form 

r=l 

T = 1, 2 , . . .  (41) 

where, assuming uniform proportional damping, the modal coordi- 
nates 4,. satisfy 

For simplicity, assume L = T and m = E I  = 2 / ~  so that 
,/“ = 1. Furthermore, assume that f(z, t j  arises from a point 
force actuator and a velocity sensor both located at x = 0.55L. 
Finally, modeling the first five modes and defining the plant state as 
z = [q1 41 45 and defining the performance of the beam 
in terms of the velocity at z = 0.7L, the resulting state space model 
and problem data are 

w z  = 2, i = 1,. . . ,5, < = 0.01, 

B = CT 
= [0 0.09877 0 -0.309 0 -0.891 0 0.5878 0 0.7071IT 

0 0.809 0 -0.951 0 0.309 0 0.5878 0 -1 
E1=[0 0 0 0 0 0 0 0 0 0 1  

Ez = [0 1.9IT, RI = ET&, 
D~ = [B oloXl1, D~ = 10 1.91 

v2 = R~ = D~ 0,’ = E$ E~ = 3.61. 

Note that with the above data, conditions (22) and (24) are not 
satisfied with strict inequality. Nevertheless, for y = CO, the H Z  
controller was found to be positive real and yielded a closed-loop 
H ,  performance of 14.13 dB (Le, 14.13 dB above unity gain). 
Furthermore, for y = 12.02 dB, the H 2 / H ,  positive real controller 
yielded a net H ,  performance improvement of 2.65 dB (see Fig. 1). 
This result is consistent with [ 19, Theorem 1 J, which implies that the 
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maximum ratio of the H ,  performance of the optimal Hn controller 
to the H ,  performance of the optimal H ,  controller can be no 
more than twice the number of right-half plane transmission zeros 
for the transfer function between disturbances and measurements, and 
between control signals and performance variables. For the present 
problem with one nonminimum phase zero for the second transfer 
function, this bound corresponds to a factor of 2 (i.e., 6 dB). Finally, 
Fig. 2 shows the gain and phase plots of the H 2 / H ,  positive real 
controller. 

V. CONCLUSION 
In this note, we extended the positive real synthesis technique 

of Lozano-Leal and Joshi to include an H, constraint on closed- 
loop performance. The result involves constraining the allowable 
H 2 / H ,  weights to guarantee that the controller is positive real. 
Current research is focusing on more general choices of the design 
weights as well as applications to passive absorber synthesis. 
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An Algorithm for Robust Pole 
Assignment Via Polynomial Approach 

JosC L. Figueroa and JosC A. Romagnoli 

Abstract- A computational method for designing controllers which 
attempt to place the roots of the characteristic polynomial of an uncertain 
system inside some prescribed regions is presented. The analysis is based 
on transfer functions of characteristic polynomials, and the problem 
is formulated as one of semi-inlinite programming. An example of an 
application is given to illustrate this approach. 

I. INTRODUCTION 
In the selection of a suitable control scheme and associated con- 

troller parameters, the designer must decide what can be considered 
as an acceptable closed-loop response. When the plant parameters 
are liable to vary, the designer is faced with the question of whether 
the closed-loop system will remain stable, and if so, whether the 
perturbed closed-loop dynamics will continue to resemble the nominal 
response. From the point of view of robust performance subject 
to plant parameter variations, it is desirable that the closed-loop 
transfer function poles remain constrained within certain closed 
regions surrounding their nominal locations. 

Pole assignment is a common approach for designing closed- 
loop controllers in order to meet desired control specifications (see, 
for instance, KuEera [l] or Astrom and Wittenmark [2]). However, 
this problem has received some criticism due to the assumption 
of complete state observation in earlier works, and the implicit 
assumption that the models used in design are accurate. It has been 
shown that if the condition of complete state observation is relaxed, 
then a dynamic output compensator can assign almost arbitrary poles 
for the closed-loop system. 

In a previous work, Soh et al. [3], the objective of assigning 
closed-loop poles was replaced by that of assigning Characteristic 
polynomials, and a solution was given for transfer functions with 
coefficients varying on an interval region; after characterizing the set 
of admissible controllers, either the distance from a nominal controller 
or a robustness measure is optimized (see also Soh [4j). Rotstein et 
al. [ 5 ] ,  [6] considered a more general plant uncertainty description, 
but the control objective is still that of assigning characteristic 
polynomials. This substitution (assigning characteristic polynomials 
instead assigning closed-loop poles), which is certainly not trivial, 
constitute the main drawback of those approaches. This limitation 
is overcome in the present paper by reformulating the problem, 
incorporating additional constraints. These constraints relate the pole 
position in the open left-half plane to the real variation of the 
coefficients in the characteristic polynomial, thus defining a region in 
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