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SUMMARY

The purpose of this paper is to construct Lyapunov functions to prove the key fundamental results of
linear system theory, namely, the small gain (bounded real), positivity (positive real), circle, and Popov
theorems. For each result a suitable Riccati-like matrix equation is used to explicitly construct a
Lyapunov function that guarantees asymptotic stability of the feedback interconnection of a linear time-
invariant system and a memoryless nonlinearity. Lyapunov functions for the small gain and positivity
results are also constructed for the interconnection of two transfer functions. A multivariable version of
the circle criterion, which yields the bounded real and positive real results as limiting cases, is also
derived. For a multivariable extension of the Popov criterion, a Lure-Postnikov Lyapunov function
involving both a quadratic term and an integral of the nonlinearity, is constructed. Each result is
specialized to the case of linear u.nccnamty for the problem of robust stability. In the case of the Popov
criterion, the Lyapunov function is a parameter-dependent quadratic Lyapunov function.

KEY WORDS Parameter-dependent Lyapunov functions Small gain Circle theorem Popov criterion

1. INTRODUCTION

One of the most basic issues in system theory is stability of feedback interconnections. Two
of the most fundamental results concerning stability of feedback systems are the small-gain
theorem and the positivity theorem.’ ~'* Here we focus (in Sections 3 and 4) on the sufficiency
aspect of these results. The small gain theorem implies that if G and G. are asymptotically
stable bounded-gain transfer functions such that ||G|l.|| G:|l« <1, then the feedback
interconnection of G and G. is asymptotically stable. Furthermore, the positivity theorem
states that if G and G. are (square) positive real transfer functions, one of which is strictly
positive real, then the negative feedback interconnection of G and G is asymptotically stable.

This paper was recommended jfor publication by editor A. Isidori

1049-8923/93/040313-27518.50 Received 25 November 1991
© 1993 by John Wiley & Sons, Ltd. Revised 16 September 1992



314 W. M. HADDAD AND D. S. BERNSTEIN

For robust stability, if G. represents an uncertain perturbation, then it follows from the
small gain theorem that an He-norm bound on G implies robust stability in the presence of
an He-norm bound on G.. Similarly, if the system uncertainty G. can be cast as a positive real
transfer function and G is strictly positive real, then the positivity theorem implies robust
stability. Although the small gain theorem and positivity theorem are equivalent via the
bilinear transformation,* positive real modelling of system uncertainty can be significantly less
conservative than small gain modelling of system uncertainty.'* This improvement is due to
the fact that the small gain theorem is a norm-based result which captures gain uncertainty but
ignores phase information. Since positive real transfer functions are phase bounded, the
positivity theorem can exploit phase characteristics within a feedback interconnection.

Although the predominant approach to stability theory is Lyapunov’s method,*!:16 -2
most of the available proofs of the small gain and positivity theorems are based upon
input—output properties and function-analytic methods.!~%:%711226.27 I this paper we
explicitly construct quadratic Lyapunov functions to prove sufficiency in special cases of these
results. Specifically, sufficient conditions for asymptotic stability are obtained for a proper, but
not necessarily strictly proper, bounded real (respectively, strongly positive real) transfer
function in a positive feedback (respectively, negative feedback) configuration with a bounded
real (respectively, positive real) time-varying memoryless nonlinearity. Specialization of these
results to robust stability with /inear time-varying bounded real and positive real (but otherwise
unknown) plant uncertainty is also discussed.

Having addressed the small gain and positivity theorems, we then turn our attention (in
Section $) to the well-known circle criterion or circle theorem. ®:11:23:28-32 1p 3 multivariable
setting this result applies to sector-bounded nonlinearities and thus, upon appropriate
specialization, generalizes (and includes as limiting cases) both the small gain and positivity
results. Thus, for practical purposes, the circle theorem provides the means for incorporating
both gain and phase aspects. The proof of the circle theorem given here is completely
consistent with the proofs of the small gain and positivity results, thus providing a unified
treatment of all these classical results.

Next we focus (in Section 6) on the Popov stability criterion. ** ~4? Although often discussed
in juxtaposition with the circle criterion, the Popov criterion is fundamentally distinct from
the circle criterion with regard to its Lyapunov function foundation. Whereas the small gain,
positivity, and circle results are based upon fixed quadratic Lyapunov functions, the Popov
result is based upon a quadratic Lyapunov function that is a function of the sector-bounded
nonlinearity. Thus, in effect, the Popov result guarantees stability by means of a family of
Lyapunov functions. For robust stability, this situation corresponds to the construction of a
parameter-dependent quadratic Lyapunov function as proposed in References 43 and 44. A
key aspect of the Popov result is the fact that it does nor apply to arbitrary time-varying
uncertainties, which renders it less conservative than fixed quadratic Lyapunov function results
(such as the small gain, positivity, and circle results) in the presence of real, constant parameter
uncertainty.

Our proof of the Popov criterion is given in a form that is similar to the proofs of the small
gain, positivity, and circle theorems. This unified presentation is intended to clarify
relationships among these results. In Section 7 we return to the small gain and positivity
theorems and consider the interconnection of two strictly proper dynamic systems. In each case
a Lyapunov function is constructed to guarantee stability of the closed-loop system.

There are two main reasons for seeking Lyapunov-function proofs of the small gain,
positivity, circle, and Popov theorems. First, these proofs help to build stronger ties between
state-space and frequency-domain approaches to feedback system theory. And, second, these
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quadratic Lyapunov functions provide an algebraic basis in terms of matrix Riccati equations
for the synthesis of robust feedback controllers.* ~34

Although a general and unifying stability theory of nonlinear feedback interconnections
using the concepts of passivity, dissipativeness, and non-expansivity is available (see
References 55-62 for an excellent exposition of this subject), our aim is to construct explicit
Lyapunov functions in terms of single algebraic Riccati equations that can be used for the
synthesis of robust controllers. A reinterpretation of our results in terms of quadratic
Lyapunov bounds consistent with the framework provided in Reference 50 is given in Section
8. This allows us to make explicit connections of these classical results with robust stability and
H: performance analysis for state-space systems via quadratic fixed and parameter-dependent
Lyapunov bounds in the spirit of Reference 50. It should be noted that the stability results
presented in the present paper could be derived an special cases of energy storage functions
of dissipative dynamical systems.** =% In fact Hill and Moylan*’ give a characterization of
passivity for a broad class of nonlinear systems of the form

Xx= F(x)+ G(x)u,
y=H(x)+ J(x)u.

However, no connections between the dissipative dynamical systems input—output approach
and robust stability and H, performance for state-space systems are made in the above
references. In this paper we provide such connections, give explicit uncertainty structure
characterizations for the state-space models, and provide explicit uncertainty bounds in terms
of single Riccati equations that can effectively be used for robust controller synthesis.

Although the results of this paper are confined to continuous-time systems, analogous results
for discrete-time systems are given in Reference 54.

2. PRELIMINARIES

In this section we establish definitions and notation. Let R and C denote the real and complex
numbers, let ()7 denote transpose, and let I, or I denote the nxn identity matrix.
Furthermore, we write ||-||2 for Euclidean norm, oma () for the maximum singular value, and
M >0 (M>0) to denote the fact that the Hermitian matrix M is nonnegative (positive)
definite. In this paper a real-rational matrix function is a matrix whose elements are rational
functions with real coefficients. Furthermore, a transfer function is a real-rational matrix
function each of whose elements is proper, i.c., finite at s=co. A strictly proper transfer
Junction is a transfer function that is zero at infinity. Finally, an asymptotically stable transfer
Junction is a transfer function each of whose poles is in the open left half-plane. The space
of asymptotically stable transfer functions is denoted by RH., i.e., the real-rational subset of
Ho.' Let
A|B
G(s) [ c D ]

denote a state-space realization of a transfer function G(s), that is, G(s) = C(s/ - A)~ !B+ D.
The notation ‘™" is used to denote a minimal realization. In addition, the parahermitian
conjugate G~(s) of G(s) has the realization

_aT | T
6"~ [Z5ri5r]
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A transfer function G(s) is bounded real®*® if (1) G(s) is asymptotically stable and (2)
I- G*(jw)G(jw) is nonnegative definite for all real w. Equivalently, (2) can be replaced by
(Reference 64, p. 307)(2') I - G*(s)G(s) is nonnegative definite for Re[s] > 0. Alternatively,
a transfer function G(s) is bounded real if and only if G(s) is asymptotically stable and
Il G(5) |l € 1. Furthermore, G(s) is called strictly bonded real if (1) G(s) is asymptotically
stable and (2) /- G*(jw)G(jw) is positive definite for all real w. Finally, note that if G(s) is
strictly bounded real (i.e., || G(s) |lo < 1) then 7— D™D > 0, where D & G(x).

A square transfer function G(s) is called positive real (Reference 64, p. 216) if(1) all poles
of G(s) are in the closed left half-plane and (2) G(s)+ G*(s) is nonnegative definite for
Re[s] > 0. A square transfer function G(s) is called strictly positive real®*'® if (1) G(s) is
asymptotically stable and (2) G(jw) + G*(jw) is positive definite for all real w. Finally, a
square transfer function G(s) is strongly positive real if it is strictly positive real and
D+ DT > 0, where D £ G(e). Rerall that the minimal realization of a positive real transfer
function is stable in the sense of Lyapunov.®’ Furthermore, strongly positive real implies
strictly positive real, which further implies positive real.

For notational convenience in the paper, G will denote an / x m transfer function with input
u€R™, output y€R’, and internal state x€ R". Next we give two key lemmas concerning
bounded real and positive real matrices.

Lemma 2.1
Let MeC'*™ and NeC™*' be such that omax(M) <1 and omax(N) < 1. Then
det[]; - MN] = 0.

Proof. Since omax(M) €1 and omux(N) <1 it follows that p(MN) < omax(MN) <
Omax(M)omax(N) < 1, where p(:) denotes spectral radius. Hence det[/; — MN] = 0. O

Lemma 2.2
Let M, NeC™*™ be such that M+ M* >0 and N+ N* > 0. Then det(/» + MN) # 0.
Proof. First we show that Nis invertible. Let x€ C™, x # 0, and ) € C be such that Nx = \x
and hence x°N*=Ax* Then x*(N+ N*)x> 0 implies that Re A\ > 0. Hence det N = 0.

Now define S& N™!+ M. Since N"'+ N~ *=N"Y(N+ N*)N~*it follows that S+ S* > 0.
Thus det S # 0. Consequently, det(/m + MN) =det NS = (det N)(det S) # 0. O

3. THE SMALL GAIN THEOREM

In this section we construct quadratic Lyapunov functions to prove sufficiency in the small gain
theorem for the interconnection of a dynamic system and a static feedback gain. First, recall
the bounded real lemma.*

Lemma 3.1 (Bounded real lemma)

o= 4(2]

is bounded real if and only if there exist real matrices P, L, and W with P positive definite
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such that
0=ATP+PA+C'C+L7L, ()
0=B"P+D'C+ W'L, (b))
0=I-D'D-W™W. A3)
Proof. Sufficiency follows from algebraic manipulation of (1)~(3) while necessity follows
from spectral factorization theory. For details see Reference 64. O
Remark 3.1

If (1) is replaced by
0=ATP+PA+C'C+LTL+R, 1y’

where R > 0, then (1)'—(3) imply that G(s) is bounded real.
Suppose in Lemma 3.1 that omax(D) < 1. Then since 7— D™D > 0 and

W'W=1-D'D, @
it follows that WTW is nonsingular. Furthermore, (2) is equivalent to
WTL=-(B"P+D'C). &)

Using (5) and noting that W(WTW)~!W7 is an orthogonal projection so that 7 > W(WTW)~!
WT and hence LTL > LTW(W™W)~'WTL, if follows from (1) that

0> ATP+ PA+(BP+D*C)"(W'W) '(B"P+D'C)+ C'C 6)
or, since (W'W)™'=(I-D'D)"",
0> AP+ PA+BTP+D'C)'(U-D'D)"'(BTP+D'C)+ C™C. W)

Thus, in this case conditions (1)—(3) are equivalent to the single Riccati inequality (7). The
following result characterizes the bounded real property in terms of a Riccati equation.

Lemma 3.2
Let

G(s)‘i"[%li].

Then the following statements are equivalent:

(i) A is asymptotically stable and G(s) is strictly bounded real;
(i) 7- D™D > 0 and there exist positive-definite matrices P and R such that

0=ATP+ PA+(B"P+D'C)'(I-D'D)"*(B"P+D'C)+ C'C+ R. (8)

Proof. (i) = (ii): Using Proposition 3.2 of Reference 52 (i) implies that 7~ D™D > 0 and
I-B'T(-jwl- A)TC'TC'(jul - A)™'B'>0, weER, ®
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where
A'¢ A+BD™™"'C, (10)
B' & BN~ a11)
C'& M~V3C, (12)
M%& I1-DDT", (13)
N&I1-D'D. (14)

Next, let £ > 0 be such that
I-B'T(-jwl- A)T(C'TC' + eI)(jwI- A)'B'>0, weR. (15)

Since A' = B'N~'2DTC= A (note MD = DN) and A is asymptotically stable, it follows that
(A', B') is stabilizable. Since also (A4', C'TC' + €I) is observable, it follows from Lemma $ of
Reference 68 that there exists a real symmetric matrix P such that

0=A'"P+ PA' + PB'B'TP+C'"C’' +¢l, (16)
or, equivalently, using (10)—(14)
0=A"P+ PA+(B"P+D'C)"U-D'™D)""(BTP+D"C)+ C'C+e¢l. a7

Now, since A is assumed to be asymptotically stable and (B*P+ D'C) (I-D'D)"!
(BTP+D™C)+ CTC+ eI > 0, it follows from Lyapunov theory that P > 0, which establishes
the existence of a positive definite matrix P satisfying (8).

(ii) = (i): Suppose (ii) holds. Note that

-AT C'c Cc™D
I-G~(5)G(s) ~ 0 A B (18)
B* -D'c|I1-D'D
Next, it follows from (8) that there exists a positive definite matrix R such that
0=A"P+ PA+B"P+D'C)"(I-D'D)"*(BTP+D'C)+ C'C+R. (19)
Applying the state-space transformation
I P
= 20
- 7 o

to (18) yields

AT ATP+ PA+CTC|(BTP+DTO)
I-G~(s)G(s)~| © A B
BT -@B'P+D'C) | I1-D™D

or, equivalently, using (19),

I-G~(s)G(s)
-AT -B"P+D'C)'(JI-D'D)"'(B*P+D'C)-R | (BTP+DTC)T
~ 0 A B
BT -(BTP+DC) | - (J=D*D

= N~(s)N(s)+ (/- D'D)- (B"P+ DTC)E-*(B"P+ D™C)’,
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where
Eg [(BTP+DTC)T(I_DTD)(BTP+DTC)+ R]I/z S0

and

_[A] B
N(s) [ El-E B P+DC) ]

Noting that (/- D'D)-(BTP+ DTC)E-*(BTP+DTC)" > 0 it follows that /- G*(jw)
G(jw) > 0, w€ R. Next, note that since P> 0 and (B"P+ DTC)"(/- D'D)"'(B*P+ D'C)
+CTC+ R > 0 it follows from (19) that A is asymptotically stable. O

Now we prove sufficiency of the small gain theorem for the feedback interconnection of a
strictly bounded real transfer function and a norm-bounded memoryless time-varying
nonlinearity. For convenience define the set

8 (O:R'XR*=R™: 6, D2 < Iyl YER,
a.a. 120, and ¢(», *) is Lebesgue measurable for all y ¢ R’}.

Theorem 3.1

Suppose

G(s)=" %'—g—]

is strictly bounded real. Then there exist positive-definite matrices P and R satisfying
0=ATP+ PA+B"P+D'C)'(I-D"D)"'(BTP+D'C)+C"C+R. (v3))

Furthermore, for all ¢ € ®y,, the function ¥(x)= xTPx is a Lyapunov function for the feed-
back interconnection of G(s) and ¢. Consequently, the feedback interconnection of G(s) and
¢ is asymptotically stable for all ¢ € y.

Proof. First note that the feedback interconnection of G(s) and ¢ corresponds to the state-
space representation

X(1) = Ax(t) + Bo (3, 1), 22
Y(0) = Cx(t) + Do (y,1). (23)

Since G(s) is strongly bounded real it follows from Lemma 3.2 that there exist positive-definite
matrices P and R such that (21) is satisfied. Next, we use the Lyapunov candidate
V(x) = xT Px to show that the feedback interconnection (22), (23) is asymptotically stable. The
corresponding Lyapunov derivative is given by

V(x)=xT(ATP+ PA)x+ ¢"B"Px+ xTPB¢ (24)

or, equivalently, using (21)
V(x)= -xTRx- xT(BTP+DTC)"(/- D'D)"'(BTP+ D"C)x

- xTCTCx+ ¢"BTPx + xTPB¢. @5
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Next, add and subtract ¢"¢, 2x*C"D¢, and ¢ TD"D¢ to and from (25) so that
V(x)= - x"Rx- x"(BTP+ D'C)"(I- D'D)"*(B"P+ D"C)x - x"C"Cx
+¢"B"Px+ x"PBp + ¢ - ¢ ¢+ x"C'D¢ + ¢ 'D'Cx (26)
e XTCTD¢ = ¢TDTCX+ ¢TDTD¢ _ ¢TDTD¢
or, equivalently,

V(x)= -x"Rx- xT(BTP+ D'C)"(I- D'D) ' (B"P+ D"C)x
+xT(BTP+D"C)"¢ + ¢"(B"P+D"C)x-¢"(I-D"D)¢ 27
+¢T¢ - xTC*Cx-¢"D"D¢ — x"C'D¢ — ¢ 'D'Cx.

Grouping the appropriate terms in (27) yields
V(x)= —xTRx-2"z+¢T¢ - yTy, (28)
where
z2 (I-D™D)"*(B"P+ D'C)x - (I1- D'D)"%¢.

Since R is positive definite and ¢¢ — yTy < 0 for all ¢ € &y, it follows that V(x) is negative
definite. Hence V(x) is a Lyapunov function for the feedback interconnection of G(s)
and ¢. O
Next, we specialize Theorem 3.1 to the feedback interconnection of a strictly bounded real
transfer function and a linear bounded real gain. Hence consider the set %, defined by

For 2 (F:R* = R"*!: F(-) is Lebesgue measurable and omax(F(?)) < 1, a.a. ¢ > 0.

That is, %, includes those ¢ in &y, of the form ¢(y, t) = F(t)y. The following corollary of
Theorem 3.1 is thus immediate.

Corollary 3.1
If

min| A | B
vt o [—c‘}ﬂ
is strictly bounded real, then the feedback interconnection of G(s) and F(-) is asymptotically
stable for all F(-) € Fy,.
Corollary 3.1 implies that A4 + BF(-)(I = DF(*))~'C is asymptotically stable in the sense that
the zero solution of the linear time-varying system
x(t)= (A + BF(t)(I- DF(t))"'C)x(t) (29)

is asymptotically stable. Recall from Lemma 2.1 that (/- DF(t))”' exists a.a. ¢ > 0 since
Omax(D) < 1 and omax(F(¢)) € 1, a.a. ¢ 2 0. This result thus implies robust stability with time-
varying bounded real (but otherwise unknown) uncertainty. To make connections with robust
stability consider the system

x()=(A+2A)x(), (30)
where AA(°) € ¥ and . is the uncertainty set
WUw 2 (AA():AA(t) = BF(t)(I- DF(t))"'C, F(*) € $u:).
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Then it follows from Corollary 3.1 and (29) that the zero solution to (30) is asymptotically
stable for all AA (") € %,. The set @, is a generalization of the uncertainty sets appearing
in References 45, 46, 49 and 50 for robust controller analysis and synthesis. These uncertainty
structures can be recovered by setting D=0 in @,. The case D 0 has not been treated
previously. Finally, if we restrict our attention to constant matrices, then Corollary 3.1 implies
that if G(s) is strictly bounded real, then 4 + BF(J - DF)~!C is asymptotically stable for all
F satisfying omex(F) < 1.

4. THE POSITIVITY THEOREM
In this section we construct quadratic Lyapunov functions to prove the positivity theorem for

the system interconnection considered in Section 3.

Lemma 4.1 (Positive real lemma)®’

ol 4f2]

is positive real if and only if there exist matrices P, L, and W with P positive such that

0=A"P+PA+L"L, 31
0=B"P-C+ W'L, 32)
0=D+D"-WTW. (33)

Proof. As in the bounded real lemma, sufficiency follows from algebraic manipulations of
(31)—(33) while necessity is a direct consequence of spectral factorization theory. For details
see References 64 and 67. O

Remark 4.1

If (31) is replaced by
0=ATP+ PA+LTL+R, @31’

where R > 0, then (31)'—(33) imply that G(s) is positive real.
Suppose that D+ DT > 0. Then, since

W'w=D+D7, (34)
WTW is nonsingular, and (32) implies
WTL= - (BTP-C). 35)

Using (35) and noting as in Section 3 that LTL > LTW(WTW)~'WTL, it follows from (31)
that

0> ATP+ PA+(BTP-C)'(W'W) '(BTP-C) (36)
or, since, (WTW) '=(D+D")"!,
0>ATP+ PA+(B™P-C)'0+D")"'(BTP- ). 37

Using the Riccati equation version of (37) to characterize positive realness, we have the
following result.
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Lemma 4.2.
Let

G(s)™ %*—g—].

Then the following statements are equivalent:

(i) A is asymptotically stable and G(s) is strongly positive real;
(i) D+ DT > 0 and there exist positive-definite matrices P and R such that

0=ATP+ PA+B"P-C)'(D+D")"'(B"TP-C)+R. (38)
Proof. (i) = (ii): Using the dual forms of Theorems 3.1 and 3.2, and Propositions 3.2 and

3.3 of Reference 52 it follows that the strongly positive real condition in (i) can be written as
a strictly bounded real condition for a modified plant as

I-B"(-jwl+A) TC'C(jwI-A)"'B>0, weR, (39)

where
A& A-B(U+D)'C+B(U+D)'DU-DD")"'(I1+D)"'C, (40)
B2 2B(I+ D) '(I1-DD™)"?, 41
¢t p(-DbD")""*(I1+D)"'C, (42)
DeD-1D+I)7". (43)

Note that since (A4, B, €) is bounded real, it follows that A and A — B(J+ D)™ !C are
asymptotically stable (see Theorem 3.2 and Remark 3.1 of Reference 52 for details). Next, let
€ > 0 be such that

I-B"(-juI-A) " (C"C+elNjwI-A)'B>0, weR. (44)

Since A -} B(I- D'D)"'?*D"C=A-B(I+D)"'C, and A - B(I + D)~ 'C is asymptotically
stable, it follows that (4, B) is stabilizable. Since also, (4, CTC + €I) is observable it follows
from Lemma 5 of Reference 68 that there exists a real symmetric matrix P such that

0=ATP+ PA+ PBB"P+C"C+e¢l, (45)
or, equivalently, using the dual of Proposition 3.3 of Reference 52
0=ATP+PA+(B™P-C)'D+D")"'(BTP-C) +e¢l. (46)

Now, since A4 is assumed to be asymptotically stable and (BTP-C)"(D+D")"!.
(BTP-C)+¢€eI>0, it follows from Lyapunov theory that P> 0 so that existence of a
positive-definite matrix P satisfying (38) is established.
(ii) = (i):Suppose (ii) holds and note that
-AT 0| -CT
G(s)+ G (s) ~ [ 0 A B ]
B c|D+D'

S

From (38) it follows that there exists a positive-definite matrix R such that
0=A"P+ PA+B"P-C)'D+D")"'(BTP-C)+R. (48)
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Applying the state-space transformation

s=[; 7]

to (47) we obtain

-AT AP+ PA|(B'P-C)
G(s)+G~(s) ~ 0 A I B
B' -B'P-C)| D+D'

or, equivalently, using (48),

-AT -B'P-C)'(D+D")"'(B"P-C)-R I (B"™P-O)
G(s)+ G (s) ~ 0 A B 49)
B! -(B'P~C) | D+D'
= N~(s)N(s)+D+D"-(B"P-C)E-*(B"P-C)",
where
EL[(B™P-CO)'D+D") 'B™P-C)+ R)V*>0
and

(50)

_ A4 B
Nes) [ E|l-E'B™P-C) ]
Noting that D+ DT —(B"P—-C)E~*BTP- C)" > 0 it follows from (49) that G(jw) + G*(jw) >0,
« € R. Next, note that since P> 0 and (BTP-C)'(D+D")"'(BTP-C)+ R > 0 it follows
from (48) that A4 is asymptotically stable. O
We now prove the positivity theorem for the negative feedback interconnection of a strongly
positive real transfer function and a memoryless time-varying nonlinearity. For the statement
of the next result we define the set

$,: 2 (0:R"XR* > R™:¢T(»,)y20, yeR™ aa. 130,
and ¢(y,") is Lebesgue measurable for all y€ R™]}.

Theorem 4.1
Suppose
mn|] A | B
G(s) [ clD ]
is strongly positive real. Then there exist positive-definite matrices P and R satisfying

0=A"P+ PA+B*P-C)'"(D+D")"'(B"P-C)+R. (51)

Furthermore, for all ¢ € ®;,, the function ¥(x) = xT Px is a Lyapunov function for the negative
feedback interconnection of G(s) and ¢. Consequently, the negative feedback interconnection
of G(s) and ¢ is asymptotically stable for all ¢ € ®p,.

Proof. First note that the negative feedback interconnection of G(s) and ¢(-, ) has the
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state-space representation
x(t)= Ax(t) - B$ (1, 1), (52)
y()=Cx(t)- Do (y,1). (53)

Now it follows from Lemma 4.2 that if G(s) is strongly positive real then there exist positive-
definite matrices P and R such that (51) is satisfied. Next, we use the Lyapunov candidate
V(x) = xT Px to show that the feedback interconnection (52), (53) is asymptotically stable. The
corresponding Lyapunov derivative is given by

V(x)=xT(ATP+ PA)x- ¢"B"Px - x"PB¢. (54)
Now add and subtract 2¢"Cx and 2¢ "D¢ to and from (54) so that
V(x)= —x"Rx- x"(BTP- C)'(D+D™)"*(BTP-C)x
-¢"B"Px- x"PB¢ + 2¢"D¢ — "D — ¢'D"¢ (55)
-2TCx+¢'Cx+ xTC"¢
or, equivalently,
V(x)= -x"Rx- x"(BTP-C)'(D+D") " '(B"P- C)x

-¢"(BTP-C)'¢-¢"(BTP-C)x-¢"(D+D")¢ (56)
-2¢7(Cx - D¢).
Grouping the appropriate terms in (56) yields
V(x)= —x"Rx-2z"z-2¢"y, (57)

where
28 -(D+D")"*(BTP-C)x- (D +D")"%.

Since R is positive definite and ¢”(y,7)y > 0 for all ¢ € ¥y, it follows that V(x) is nega-
tive definite. Hence V(x) is a Lyapunov function for the feedback interconnection of G(s)
and ¢. O

Next, we specialize Theorem 4.1 to the feedback interconnection of a strongly positive real
transfer function and a linear gain F(r) satisfying F(t) + F'(t) > 0. Hence define

Fpd [F:R* = R™*™: F() is Lebesgue measurable
and F(t)+ FT(t) 20, a.a. t>0).

Corollary 4.1
If
min| A| B
G(s) [—-I——C D]

is strongly positive real, then the negative feedback interconnection of G(s) and F() is
asymptotically stable for all F(-) € &p:.
As in the bounded real case, Corollary 4.1 guarantees robust stability for the system

x()=(A+AAN)x(), (58)
where AA(°) € %, and %, is the uncertainty set
¥Up 8 ([AA():AA(t)= —BF(t)(I+ DF(1))"'C, F(*) € Fpr).
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Note that it follows from Lemma 2.2 that (/+ DF(-))"! exists, a.a. ¢ 2 0, since D+ DT> 0
and F(t)+ FT(r) 30, a.a. 1 3 0. The key feature of the uncertainty set @, is the fact that
BF(t)(I+ DF(t))"'C also involves a positive real condition. To see this note that if
D+ D> 0and F(t)+ F*(t) 30, then
F(t)(I+ DF(@)~' + [F(t)(I+ DF@t)) 1"
=(I+DF(t))"T[F(t) + F*(t)+ FXt)(D+ D" )F(t)) I+ DF(1))"* 2 0.

As shown in References 51 and 52, a natural characterization of uncertainty that can be
captured by 4, arises in lightly damped structures with uncertain modal data.

Finally, if we restrict our attention to constant matrices F, then Corollary 4.1 implies that

if G(s) is strongly positive real, then A — BF(I + DF)~!C is asymptotically stable for all F
satisfying F+ F' 2 0.

5. THE CIRCLE CRITERION

In this section we construct quadratic Lyapunov functions to prove a multivariable
generalization of the circle criterion. Application of this result to robust stability with respect
to sector-bounded time-varying uncertainty is also discussed. Although proofs of the circle
criterion based upon quadratic Lyapunov functions appear in the literature, >+*! these proofs
are confined to strictly proper systems with a single loop nonlinearity. Notable exceptions
include References 23, 32 and 61 which provide multiloop extensions for strictly proper plants.
However, the nonlinearities considered in these references are confined to scalar sector
boundaries k;, k2. We remove these constraints and address the multivariable case for proper
systems. To begin, we define the set ®. of sector-bounded time-varying memoryless
nonlinearities. Let K, K> € R™*/ be given matrices and define
@& (9:R'XR* = R™: [$(r,1) - Kiy]" [0 (. 1) - K2)] €0,
y€R™, a.a. 120, and ¢(), *) is Lebesgue measurable for all y€ R™).

Note that for the scalar case m = /=1, the sector condition characterizing $. is equivalent to
the more familiar condition

Ky’ <o,y <Kiy?, ye€R, aa.120. (59

Theorem 5.1
Suppose [I + K2G(s)) [I+ K1G(s)] ~! is strongly positive real, where

G(.s')"'i'l [%1—%—] .

Then there exist positive-definite matrices P and R satisfying
0= [A4-B(I+K\D)"'K:.C1"P+ P[A - B(I + K\D)™'K\C]
+ [(K: - K1)+ DK,)~'C - (I+ K\D)""B*P)T
x [2I+ (K2 - K1)(I+ DK1)"'D+ D" (I + DK;) " (K2 - K1)™) ™!
x [(K2— K1)(I+ DK,)"'C-(I+ K\D)""BTP] + R.
Furthermore, for all ¢ € &, the function ¥(x) = xT Px is a Lyapunov function for the negative

feedback interconnection of G(s) and ¢. Consequently, the negative feedback interconnection
of G(s) and ¢ in asymptotically stable for all ¢ € &..

(60)
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Proof. First note that the negative feedback interconnection of G(s) and ¢(-, ) has the
state-space representation (52) and (53). It thus follows that

1+ K:G(8)] 1+ KiG(s)) ~' = I+ (K2 - K1) [ I+ G($)K1] ~'G(s). (61)

Now, noting that [I+ G(s)K1) ~'G(s) corresponds to a plant G(s) with feedback gain K;, it
follows from feedback interconnection manipulations that a minimal realization for
I+ (K2— K1) [I+ G(s)K1] ~'G(s) is given by

A-B(I+K\D) 'K,C | B(I+K\D)"!
K- K))(I+DK,))"'C| I+ (K. - K))(I+DK,)"'D |’

Note that (/+ K;D) " exists since by assumption [I+ K2G(s)] [+ Ki1G(s)] ~! is positive
real and D = G(). Now it follows from Lemma 4.2 that since [/ + K2G(s)] [ + K1G(s)] ~!
is strongly positive real there exist positive-definite matrices P and R such that (60) is satisfied.
Next define the Lyapunov candidate V(x)= xTPx and let ¢ € .. Then we obtain

V(x)=xT(ATP+ PA)x- ¢"B"Px- x"PB¢ (62)

or, equivalently, using (60),
V(x)= - x"Rx - x*Qx+ x"C'K{ (I + K,D) "B Px
+ xTPB(I + K\D) 'K:Cx - ¢"B"Px — xTPB¢, (63)
where

Q4 [(K:-Ki1)(I+DKy)"'C-(I+K,D) "B"P|T
x [2I+ (K2 - K1)(I+ DK,)"'D + DY(I + DK;) " T(K> - K1)"] ~!
x [(K2— K1)(I+ DK,)"'C- (I+ K\D)""B™P].

Next, add and subtract

2[(I + K\D)¢ - K.CX]"[ (I + Ki\D)é — K1 Cx],
2((I + K\D)¢ - K,Cx)T (K2 — Ky )(I + DK1) ™ Cx,
2[(I+ K\D)¢ - K,:Cx]" (K2 - K1)(I + DK1)~'D[(I + K\D)¢ — K1Cx]

to and from (63) so that (after some algebraic manipulation)

V(x)= - xTRx- x"QOx
+ [(K: - K1)(I + DKy) " 'Cx - (I + K\D) "B Px]" (1 + K\D)¢ — K1Cx]
+ [(I + K1D)¢ — K1Cx)T (K2 — K1)(I + DK)~'Cx - (I + K\D) ""B" Px]
- [(I+ K:\D)¢ - K1Cx)T
x [21+ (K2 — K1)(I + DK,)™'D + D"(I + DK,) "' (K2 - K1)") (64)
x [(I + K1D)¢ — K1Cx)
+2[(I+ Ki\D)¢ - K:Cx]T (I + K1\D)¢ — K1Cx — (K2 — K1)(I + DK1) ~'Cx
+ (K2 - K1)(I + DK;) " 'D[(I + K\D)¢ — K1Cx]}.

Grouping the appropriate terms in (64) yields
V(x)= - xRx - 2"z + ¢ - K1)" (¢ - K2), (69)
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where

z%& [2I+ (K2 - K))(I + DK,)"'D + D"(I + DK,) " T(K2 - K,)T] =12
x [(K2- Ky))(I+ DK,)™'C- (I + K.D)""B"P) x
- [21+ (K2 - K1)(I + DK,)™'D + D*(I + DK,) " (K2 - K1) V2
x [(I + K\D)¢ - K,Cx].
Since R is positive definite and (¢ - K1¥)"(¢ — K2y) € 0,0 € &, it follows that V(x) is

negative definite. Hence V(x) is a Lyapunov function for the negative feedback
interconnection of G(s) and ¢. O

Remark 5.1

Note that the condition [+ K2G(s)] [J + K1G(s)] ~* strongly positive real in the statement
of Theorem 5.1 is equivalent to Re[/ + K2G(jw)] [7+ K1G(jw)] ~! > 0 for w € R which is the
classical representation of the circle criterion.'!"** Furthermore, if K; and K: are diagonal,
then the conditions of Theorem 5.1 can be verified by using the multivariable Nyquist criterion.
Specifically, by examining the number of counterclockwise encirclements of the zero point of
the image of the clockwise Nyquist contour under the mapping det [/ + K,G(s)], the stability
of the closed-loop system can be related to the number of unstable poles of G(s). For further
details (in the SISO case) see Reference 13.

Remark 5.2

Considerable simplification can be achieved in (60) by setting D = 0 which corresponds to
a strictly proper G(s). In this case, (60) becomes

0=(A - BK\C)*'P+ P(A - BKi:C)+} (K2~ K;)C - BTP]"[(K2 - K1)C - BTP] + R, (66)
or, equivalently,
0=ATP+ PA+}[(Ki+K:)C—-B P|"[(K: + K2)C - BT P) - CY(K7K, + KTK2)C + R.
(67)

Note that if k7K, + KTK: €0, then it follows from (67) that a necessary condition for
absolute stability of the negative feedback interconnection of G(s) and ¢ is that 4 be Hurwitz.
In the scalar case this simply corresponds to K; < 0 < K3 in which case ¢ = 0 is an admissible
nonlinearity.

Next, as in Sections 3 and 4, we specialize the results of Theorem 5.1 to robust stability of
a linear time-invariant plant with a linear time-varying uncertainty. To this end we have the
following immediate result. Define

F.2 [F:R* - R"*!: F(-) is Lebesgue measurable and
[F()- K1 TIF(0)- K21 €0, a.a. 120}
and consider the system
x(1)=(A+AA@)x(1), (68)
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where AA (") € @4 and the uncertainty set @4 is defined by
@& [AA("): AA(t)= -BF(t)(I+DF())"'C,F(-) € %}.

Then it follows from Theorem 5.1, with ¢(y, 1) = F(t)y, that the zero solution to (68) is
asymptotically stable for all AA(-) € @. Note that a simpler uncertainty structure is obtained
by setting D=0in @. As shown in Remark 5.2 this results in considerable simplification of
(60). Finally, it is useful to note that if X; = — K and K> = I, then @ = %, while if K; =0
and K; = o, then %% = ¥,.

6. THE POPOV CRITERION

In this section we construct Lyapunov functions to prove the Popov criterion for a
multivariable plant containing an arbitrary number of memoryless time-invariant
nonlinearities. Specialization of this result to robust stability with respect to time-invariant
linear plant uncertainty is also considered. To begin we define the set ®p characterizing a class
of sector-bounded time-invariant memoryless nonlinearities. Let K€ R™*™ be a given
positive-definite matrix and define

®pl (0:R"=R™:0T(M) (K '$(»)-»]1 €0, yeR"
and ¢(y) = [61()1), 62(32), ..., Em(¥m)] 7).

In the special case that K =diag[ki, k2,....,km], ki >0, i=1,...,m, it follows that each
component ¢;(y:) of ¢ satisfies

0< i)y <kiyl, yi€R, i=12,...m. (69)
Note that the components of ¢ are assumed to be decoupled.

Theorem 6.1
Suppose there exists a nonnegative-definite diagonal matrix N such that K~! + (I + Ns)G(s)

is strongly positive real, where
min A|B
s [?H

Then there exist positive-definite matrices P and R satisfying
0=ATP+ PA+(C+ NCA-B"P)
X [(K~'+ NCB) + (K~'+ NCB)'] "} (C+ NCA-BTP)+ R. (70)
Furthermore, for all ¢ € $p, the function
Ld Yi
V(x)=xTPx+2 3 S $i(0)N; do 1)
i=1 0
is a Lyapunov function for the negative feedback interconnection of G(s) and ¢.
Consequently, the negative feedback interconnection of G(s) and ¢ is asymptotically stable for
all ¢ € Pp.

Proof. First note that the negative feedback interconnection of G(s) and ¢ () has the state-
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space representation
x(1) = Ax(t) - B (»), (72)
y=Cx(1). (73)
Next, since sG(s) has a realization

Al B
06 - [Zrtag]

it follows that K~'+ (/+ Ns)G(s) has minimal realization (using cascade state-space
manipulstions)

x-'+(1+Ns)c;(s)‘-‘-"[ — W - ]

C+NCA | NCB+K™!

Now it follows from Lemma 4.2 that since X ~! + (I + Ns)G(s) is strongly positive real there
exist positive-definite matrices P and R such that (70) is satisfied. Next, for ¢ € ®p define the
Lyapunov candidate

V(x)=xTPx+2 ‘)"'_‘,1 S: éi(0)N; da.

Note that since P is positive definite and ¢ € $p, V(x) is positive definite for all nonzero x.
Thus, the corresponding Lyapunov derivative is given by

o "
V(x)=xT(ATP+ PA)x—¢"B"Px—- x"PB¢ + 2 ;Z &:i(y:)Nijyi
=]

or, equivalently, using (70)
V(x)= — xTRx- xT(C+ NCA - BTP)'[(K~' + NCB) + (K~' + NCB)"] ~!
X (C+ NCA - B"P)x - x"PB¢ — ¢ "B Px + 20T (y)Ny. (14)
Next, since y = Cx = CAx - CB¢, (74) becomes
V(x)= — x"Rx - xT(C+ NCA - BTP)*[(K~' + NCB) + (K~' + NCB)") ~!
X (C+ NCA - B"P)x — x*(B*P— NCA)"¢ — ¢~
X (BTP~ NCA)x - ¢"(NCB+ B'CTN)¢. (75)
Adding and subtracting 2¢ TCx and 2¢ X ~'¢ to and from (75) yields
V(x)= - x"Rx- xT(C+ NCA-B"P)"[(K~'+ NCB) + (K~' + NCB)"!
X (C+ NCA - BTP)x-¢T[B"P~(C+ NCA)] x- xT[B*P - (C+ NCA)] "¢
-¢T[(K~'+ NCB)+(K~'+ NCB)" ¢ +26T(K~'¢ — Cx) (76)
or, equivalently,
V(x)= -x"Rx-2"2+ 2T [K "¢ - ], an
where
z& [(K~'+ NCB)+(K~'+ NCB)') “V*(C+ NCA - B"P)x
~[(K~'+ NCB)+(K~'+ NCB)"}?¢.
Since R is positive definite and ¢T[K~'¢ ~ y] € 0 it follows that V(x) is negative definite.
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Hence V(x) is a Lyapunov function for the negative feedback interconnection of G(s)
and ¢. O

Remark 6.1

A similar proof of the generalized Popov criterion is given in Reference 36 using the three
equation form of the positive real lemma.

Note that because of the integral term in (71), the Lyapunov function V(x) is not generally
quadratic. However, we now specialize to linear parameter uncertainty in which case V(x) is
quadratic. To see this, define the set

&8 (FeR" ™™ F=diag|[Fy,..., Fm),0< Fi< ki,i=1,...,m)

of constant diagonal matrices F where &, ..., km are positive constants. Next consider the
system

x(t)=(A+AA)x(1), (78)
where the constant matrix AA satisfies AA € % and where @p is defined by
%p L (AA: AA= -BFC, Fe %)

with B and C given matrices denoting the structure of the uncertainty. It now follows from
Theorem 6.1 by setting ¢(y)= Fy= FCx that A+ AA is asymptotically stable for all
AA € ¥p. Note that if k; »> 0, i=1,...,m, then %p becomes

Up=(AA: AA= -BFC, F=diag[Fy,..., Fm], Fi 20,i=1,...,m}.

The main difference between the results of this section and the previous sections is that the
elements of the set @4 are constant rather than time varying. This is due to the Lyapunov
function that establishes robust stability, i.e.,

m Yi
V(x)=xTPx+2 D, S FigNido, yi=Cix,
i=1 JO

or, equivalently,

m
V(x)= x"Px+ xTCTFNCx= x"Px + '2 FiNix"CICix,
=]
where C; denotes the ith row of C.

Note that this quadratic Lyapunov function is parameter-dependent, that is, it is a function
of the uncertain parameters. Consequently the uncertain parameters are not allowed to be
arbitrarily time-varying. Such Lyapunov functions are generally less conservative than
constant Lyapunov functions****¢ when the uncertain parameters are known to be constant.
In contrast, the results of the previous sections are established by parameter-independent
quadratic Lyapunov functions that guarantee robust stability with respect to time-varying
parameter variations.

7. DYNAMIC FEEDBACK INTERCONNECTIONS

In this section we consider the feedback interconnection of dynamic systems. Specifically, we
give explicit constructions of quadratic Lyapunov functions for the small gain and positivity
theorems. For simplicity of exposition we shall only consider strictly proper transfer functions.
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The interpretation of the following results could correspond to a dynamic plant under
feedback with a dynamic compensator. First we consider the feedback interconnection of two
dynamic bounded real transfer functions.

Theorem 7.1
Let
G(s)'i'[—{-—é = ] and G(s)'-';-i”[-—-{——‘é: %‘]

be asymptotically stable transfer functions. If G(s) and G.(s) are bounded real, then the
feedback interconnection of G(s) and G.(s) is stable in the sense of Lyapunov, that is, the
linear system with dynamics matrix

i [ A 8C¢]

B.C A

is stable in the sense of Lyapunov. If, in addition, G.(s) is strictly bounded real, then Ais
asymptotically stable.

Proof. It follows from the bounded real lemma that there exist positive-definite matrices
P, P. and matrices L, W, L., and W, such that

0=ATP+PA+C'C+L"L, (79)
0=B"P+ WL, (80)
0=1-W'W, 81)
0=AJP.+ P.A.+CIC.+ LIL., 82)
0=BIP.+ WIL., (83)
0=1I1-WIW.. (84)
Next, we prove the stability of . )
£(t) = A%(t)
by constructing a Lyapunov equation of the form
0=ATP+ PA+R, (85)
where, conformally with A, the matrices P and R are partitioned as
S A I ®
Expanding (85) with P and R given by (86) yields
0=ATP,+C'BIPL;+ PLA+ P3B.C+ Ry, @87
0= ATPy;; + C'BI P + P1zAc+ P\BC. + R1z, (88)
0=AYP,+CIB"Py3+ P;Ac + PLBC. + R. : (89)

Setting
Ri=LTL+C'C, Ru=L"WC.+C™WIL, R,=LJIL.+CIC,
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(87)—(89) are satisfied by
P1=P’ P12=0n P2=PC' (%)
To see that (88) is satisfied note that (80) and (82) imply that

C™BYP,+ P\BC.+ Ri2=C"BIP.+ PBC.+ L"WC.+ C"WJL.
=-C"WJIL.- L"WC.+ L"WC.+ C"WIL.

=0.
With (90) P is given by
- [P O
P= [0 Pc] > 0. 1)
It now follows that with V(%) ¢ T Px,
V)= -%TR¥<0 %2)

since
= [ L'L+C'C LTWCC+CTW3L¢]=[LT

C'w!
_ 7 >0.
Relctwri+Liwe  LiL+cic ] Bl [ LE]] LCel D

cIw
(93)
Hence A is stable in the sense of Lyapunov. Since by assumption (C, 4) and (C., Ac) are

observable, it follows from the PBH test that (R, A) is observable. Now it follows from
Lemma 12.2 of Reference 69 that A4 is asymptotically stable. O

Remark 7.1

Note that the Lyapunov function guaranteeing stability of the feedback interconnection of
G(s) and G.(s) has a particular internal structure that is inherited from the Lyapunov
functions for G(s) and G.(s).

Finally, we consider the feedback interconnection of two dynamic positive real transfer
functions. The Lyapunov function proof given below provides an alternative approach to
hyperstability concepts which yields the same results. !°

Theorem 7.2
Let

G(s)= —}——‘2, g] and Gc(s)"-i-‘[—-*—g° f;]

be asymptotically stable transfer functions. If G(s) and G.(s) are positive real, then the
negative feedback interconnection of G(s) and G.(s) is stable in the sense of Lyapunov, that
is, the linear system with dynamics matrix

= A -BC
-y (4
aelye %]

is stable in the sense of Lyapunov. If, in addition, G.(s) is strictly positive real, then Ais
asymptotically stable.
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Proof. It follows from Lemma 4.1 that there exist positive-definite matrices P, P. and
matrices L and L. such that

0=A"P+PA+LTL, (94)
0=B"P-C, 95)
0=AIP.+ P.Ac+ LIL., (96)
0=BlP.-C.. o7
Once again, we prove stability of
2(1) = AxX() (98)
by constructing a Lyapunov equation of the form
0=A"P+ PA+R, %9)
where
= ml o *-[s R a0
Expanding (99) yields
0=A"P,+ C'BIPL; + PLA+ PB.C+ R, (101)
0=ATP,+ C'BIPY + P2A. - P\BC. + R12, (102)
0=AP, - CIP;2+ P,A.— PLBC: + R.. (103)
Setting
Ri=L"L, Ruz=0, R=L[L, (104)
(101)—(103) are satisfied by
Pi=P, P3=0, P;=P. (105)

To see that (102) is satisfied note that (95) and (97) imply
C'BIP, - P,BC.=C"BIP. - PBC.

=CTC.- C'C,
i =0.
Hence, with (105), P is given by
- [P o
P= [0 P‘] > 0. (106)
It now follows that with V()= £TP%,
VE)= -sTRZ <0 (107)
since
- [L™L o
R [ 0 3L¢]>° (108)

and thus A is stable in the sense of Lyapunov. If G.(s) is strictly positive real, then the
invariant set theorem™ can be used to prove asymptotic stability. 0
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8. CONNECTIONS BETWEEN THE CLASSICAL SYSTEM-THEORETIC CRITERIA
AND ROBUST STABILITY AND PERFORMANCE FOR STATE-SPACE SYSTEMS

In this paper we have constructed Lyapunov functions for the small gain (bounded real),
positivity (positive real), circle, and Popov theorems. Each result was applied to the
interconnection of a linear time-invariant transfer function and a memoryless nonlinearity.
Lyapunov functions for the small gain and positivity results were also constructed for the
interconnection of two transfer functions. Each result was then specialized to the problem of
robust stability involving linear uncertainty resulting in robustness tests in terms of single
Riccati equations that bound the respective uncertainty structures considered. Even though not
explicitly discussed in the previous sections, the results of this paper also apply to the problem
of robust H, performance over the class of plant variations. To see this we consider a simple
reinterpretation of the results of this paper using the framework of Reference S0.
Consider the asymptotically stable linear system

x(t)= Ax(t) (109)
with quadratic Lyapunov function
Vix)=x"Px, (110)
where the positive-definite matrix P is given by the Lyapunov equation
0=ATP+ PA+R, (111)
where R is positive definite. In order to address additive disturbances for a system of the form
x(t)= Ax(t) + w(?), (112)
we shall utilize the dual equation
0=AQ+QAT+V (113)

in which A is replaced by AT and where V is interpreted as the intensity of the disturbance
w. In (113), the matrix Q can be viewed as a controllability Gramian or covariance matrix with
associated quadratic (H2) performance measure

J=tr QR =tr PV. (114)
Now suppose A is uncertain so that (109) is replaced by
x(t)=(A+AA)x(1), (115)

AA€ ¥, a set of perturbations. To determine whether A + AA remains stable, one may
replace (111) by

0=ATP+ PA+Q(P)+R, (116)
where Q(-) satisfies
AATP+ PAA<Q(P), forall A€ %, 17
and for all positive-definite P. It then follows by rewriting (116) as
0=(A+AA)"P+ P(A+AA)+Q(P)-(AATP+ PAA)+ R (118)

that 4 + AA is stable and that
Psa € P, AAc 4, (119)
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where Pa4 satisfies
0=(A+AA) Paa+ Psa(A+AA)+ R. (120

Thus tr PV provides a worst case bound for the actual H, performance tr Pa4V.

Since the ordering induced by the cone of nonnegative-definite matrices is only a partial
ordering, there does not exist an operator Q(-) satisfying (117) that is a least upper bound.
Indeed, there are many alternative definitions for the bound 2(-).*° In fact by reinterpreting
the results of this paper one can deduce three such @-bounds. To illustrate this, assume for
convenience that AA is of the form

AA=BFC, omnx(F) €1, (121)

where Fis an uncertain real matrix and B, C are known matrices denoting the structure of the
uncertainty. Using the results of Corollary 3.1 it follows that

Q(P)=C'C+ PBB"P (122)

satisfies (117) with & = %4, (for the case D =0). Thus, we can see that well-known system-
theoretic criteria such as the bounded real, positivity, and circle theorems apply to the problem
of robust stability and performance for the special case of linear uncertainty. In fact, using
(116) with A4 and Q(P) given by (121) and (122) respectively forms the basis of robust He
analysis for state-space systems.*’

Although not immediately evident, a serious defect of this -bound approach is the fact that
stability is guaranteed even if A4 is a function of 7, as was seen throughout the paper. This
observation follows from the fact that the Lyapunov derivative V(x) = V:((t))(4 + AA(2))x(t)
need only be negative pointwise. This of course leads to conservatism when AA is actually
constant.'**” This is simply because time-varying parameter variations can destabilize a system
even when the parameter variations are confined to a region in which constant variations are
nondestabilizing. Hence, a robustness theory that accounts for time-varying uncertainty will
be conservative when the uncertain parameters are actually constant.

A closer comparison between the bounded real uncertainty structure %4, and the positive
real uncertainty structure 4/; shows that @, simply involves a magnitude constraint on the
uncertainty while 4 involves a magnitude and phase constraint on the uncertainty.*?
Specifically, even though the -bound corresponding to positive-real theory guarantees robust
stability with respect to time-varying uncertainty F the definiteness property of F places a
bound on the phase variation of the uncertainty of +90°. Hence, the O-bound for positivity
theory can be viewed or a refined 0-bound since it takes phase information into account and
thereby will most likely be less conservative than the 0-bound for bounded real theory (Hs)
for constant real parameter uncertainty.

Since, as discussed above, it is crucial to severely restrict the allowable time-variations of the
uncertainty to address the constant plant uncertainty problem, an alternative approach to the
phase information/real parameter uncertainty problem is to construct refined Lyapunov
functions that are functions of the uncertain parameters. This brings us to the Popov criterion
which was shown only applies to time-invariant nonlinearities. Recall that in the linear
uncertainty case stability was established via a parameter-dependent Lyapunov function.

To demonstrate parameter-dependent Lyapunov functions in a manner consistent with the
above discussion of O-bounds, we consider the Lyapunov function

V(x, AA) = xT(P+ Po(AA))x, (123)
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where the (parameter-independent) matrix P satisfies
0=ATP+PA+0Qo(P)+ R (124)

and Po(AA) is a specified function such that P+ Po(AA) is positive definite for all AA4 € 4.
In contrast with the O-bound in (116), however, Qo(P) is not assumed to satisfy (117), but
rather the more involved condition

AATP+ P AA € Qo (P)
~ [ATPy(AA)+ Po(AA)A + AATPy(AA) + Po(AA) AA), for all Ade ¥, (125)

and all nonnegative-definite P. Note that if Po(AA) is identically zero, then (125)
specializes to (117). The idea behind (125) is that aithough Qo (P) alone is insufficient to bound
AATP+ P AA, the additional terms ‘assist’ in forming a bound. To see this, let Q(P, AA)
denote the right-hand side of (125), which can be viewed as a parameter-dependent Q-bound.
Then (124) can be written as

0=(A+AA)(P+ Po(AA)) +(P+ Po(AA))(A+AA)+Q(P,AA)- (AATP+ PAA)+R,
(126)

which implies that A + AA is stable for all A4 € 4. Furthermore, subtracting (120) from (126)
shows that Ps4 € P+ Po(AA) for all AA € & and thus tr[(P + Po) V] provides a worst case
bound for the actual H; performance tr PasV where Po > Po(AA) for AA € 4.

For practical purposes the form of the parameter-dependent Lyapunov function V(x, AA4)
is critical since the presence of a AA severely restricts the allowable time-varying uncertain
parameters. That is, if AA(f) were permitted, then terms involving A A (7) might subvert the
negative definiteness of ¥(x, AA). Hence, it can be seen that the generalized form of the
classical Popov criterion can be reinterpreted to the problem of robust stability and
performance by simply using a more refined 0-bound framework.

Using the unified 8-bound framework which provides an algebraic formulation in terms of
matrix Riccati equations one can synthesize robust feedback controllers using the fixed-
structure parameter optimization approach. ’? Control design applications for the bounded real
structure are given in References 45, 46 and 49 while the positivity, Popov, and circle structure
are considered in References 52-54 respectively.

9. FUTURE EXTENSIONS
We conclude by mentioning several extensions and open problems for future research.

1. It may be possible to weaken the strictly bounded real and strongly positive real
assumptions of Theorems 3.1 and 4.1 by replacing &, and $,, with smaller sets. It
appears possible to do this by adopting the uncertainty characterization used in
References 52 and 73.

2. It would be of interest to generalize the Popov criterion to coupled multivariable
nonlinearities. ****® Furthermore, although we assumed that ¢ € ®p is time-invariant it
remains to characterize the allowable time variation of the nonlinearity ¢.

3. It appears possible to derive a single result that generalizes both the circle and Popov
m. 74,78

4. It is possible to restrict the allowable class of sector bounded nonlinearities to monotonic
and odd monotonic classes resulting in less conservative robust stability tests when

specialized to the linear constant uncertainty case.”® ="’
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5. It is reasonable to conjecture that a Lyapunov function can be constructed to prove
Kharitonov’s theorem.®® The required Lyapunov function would most likely be
parameter-dependent and thus extend Kharitonov’s theorem to the case of sector-
bounded time-invariant nonlinearities.
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