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T he final value theorem is an extremely handy result in
Laplace transform theory. In many cases, such as in
the analysis of proportional-integral-derivative (PID)

controllers, it is necessary to determine the asymptotic value
of a signal. The final value theorem provides an easy-to-use
technique for determining this value without having to first
invert the Laplace transform to determine the time signal.

The standard assumptions for the final value theorem
[1, p. 34] require that the Laplace transform have all of its
poles either in the open-left-half plane (OLHP) or at the
origin, with at most a single pole at the origin. In this case,
the time function has a finite limit.

Although no limit exists when the Laplace transform
has a nonzero pole on the imaginary axis, some textbooks
note that the final value theorem can be used when the
limit is infinite. For example, in [2, p. 104], (1) given below
is used to obtain infinite limits of the closed-loop transfer
function for type-0 and type-1 systems with ramp com-
mands as well as for type-1 systems with parabolic com-
mands. Furthermore, [3, p. 96] states that, for poles at the
origin, (1) “gives the final value f (∞) = ∞” for a time
function f (t). In addition, [4, p. 567], allows poles in the
OLHP or at the origin.

The goal of this note is to publicize and prove the “infi-
nite-limit” version of the final value theorem. The version
we provide is a slight refinement of the classical literature
in that we require that s approach zero through the right-
half plane to obtain the correct sign of the infinite limit. We
first consider the case of rational Laplace transforms and
then state a version that applies to irrational functions.

FINITE-LIMIT CASE
Let y(t) be a signal on [0,∞), let ŷ(s) be its Laplace trans-
form, and define

y(∞) � lim
t→∞ y(t)

whenever this limit exists. By “exists” we mean that y(∞)

is a real number and y(t) − y(∞) → 0 as t → ∞. We stress
that ∞ and −∞ are not real numbers. For now, we assume
that ŷ(s) is a proper rational function.

Standard Final Value Theorem
Assume that every pole of ŷ(s) is either in the OLHP or at
the origin, and assume that ŷ(s) has at most a single pole at
the origin. Then y(∞) exists and is given by

y(∞) = lim
s→0

sŷ(s). (1)

Note the “reversal” between t and s in that t → ∞ cor-
responds to s → 0. Note also the factor of s that precedes
ŷ(s). A similar reversal occurs in the initial value theorem,
which includes a factor of s as well.

As an example, let ŷ(s) = (3s + 2)/(s(s + 1)). It thus fol-
lows from (1) that y(∞) = 2. Indeed, y(t) = 2 + e−t.

To see how this result can fail when its hypotheses are
not satisfied, consider y(t) = sin ω0 t, where ω0 > 0, so that
ŷ(s) = ω0/(s2 + ω2

0). Since the poles of ŷ(s) are not in the
OLHP or at the origin, the final value theorem cannot be
applied. Although lims→0 sŷ(s) exists for this example, the
limiting value 0 is useless since y(∞) does not exist.

INFINITE-LIMIT CASE
We wish to extend the applicability of (1) beyond the
stated conditions on ŷ(s). To do this, suppose that
y(∞) does not exist, but assume that limt→∞ y(t) = ∞
or limt→∞ y(t) = −∞ .  Let  y(∞) denote ±∞ in  these
cases. For convenience we say that y(∞) does not exist
but is infinite.

Note that this definition does not apply to signals such
as y(t) = et sin t. Alternatively, consider y(t) = et, so that
y(∞) = ∞ . Since ŷ(s) = 1/(s − 1) it follows that
lims→0 sŷ(s) = 0, and thus (1) is not satisfied. However, the
following result encompasses infinite limits arising from
multiple poles at the origin. In the following statement, the
notation “s ↓ 0” means that s approaches 0 through the
positive numbers.

Note that the limit s ↓ 0 is consistent with the fact
that ŷ(s) has poles only in the CLHP and is analytic in
the ORHP. Hence, the Laplace transform converges in
the ORHP and the limit can be taken along the positive
real axis, whereas the limit may not exist when taken
from the CLHP.
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Extended Final Value Theorem
Assume that every pole of ŷ(s) is either in the OLHP or at
the origin. Then y(∞) exists and is given by

y(∞) = lim
s↓0

sŷ(s). (2)

In particular, if s = 0 is a multiple pole of ŷ(s), then y(∞)

does not exist but is infinite.

Proof
Write ŷ(s) = ŷ0(s) + ŷAS(s) , where ŷ0(s) is nonzero and
has all of its poles at the origin and ŷAS(s) has all of its
poles in the OLHP. Note that sŷAS(s) → 0 as s → 0. Next,
write ŷ0(s) = (an/sn) + · · · + (a2/s2) + (a1/s) , where n is a
positive integer and an is nonzero. Hence
sŷ0(s) = (an/sn−1) + · · · + (a2/s) + a1 . If n = 1, then
lims→0 sŷ(s) = a1, which is the finite-limit case.

If n ≥ 2, then lims↓0 sŷ(s) = sign(an)∞ . Taking the
inverse Laplace transform, it follows that
y(t) = y0(t) + yAS(t) , where y0(t) = [antn−1/(n − 1)!]
+ · · · + a2 t + a1 and yAS(t), which is the inverse Laplace
transform of ŷAS(s), satisfies yAS(t) → 0 as t → ∞. Since
limt→∞ y0(t) = sign(an)∞, it follows that (2) is satisfied. �

To illustrate this result, let ŷ(s) = (s2 − 2s − 4)/(s2(s + 2)),
which has a pole at s = −2 and a double pole at s = 0. Then it
follows from (2) that y(∞) = −∞. Indeed, y(t) = −2t + e−2t.
Note that the limiting value y(∞) given by (1) has the wrong
sign if s approaches 0 through the negative numbers.

The extended final value theorem gives the correct
finite or infinite limit when the poles of the Laplace trans-
form are in the OLHP or at the origin. The extended final
value theorem does not apply, however, when the Laplace
transform has imaginary-but-nonzero poles since, in this
case, the limit of the time response does not exist. The
extended final value theorem also does not hold for poles
in the open-right-half plane, where the limit is infinite.

GENERALIZATION TO IRRATIONAL FUNCTIONS
The standard final value theorem applies when ŷ(s) has
only poles (that is, isolated singularities) in the OLHP and
possibly a simple pole at the origin. Indeed, in this case,
ŷ(s) can be written as

ŷ(s) = x̂(s)
s

,

where x̂(s) has only isolated singularities in the OLHP. The
corresponding function in the time domain then satisfies

y(t) =
∫ t

0
x(τ)dτ.

The function x(t) can be obtained by using the standard
method to evaluate the residue of x̂(s)est in the OLHP,

which, for t > 0, is dominated by exponential functions,
and therefore x(·) is absolutely integrable. It follows that

y(∞) =
∫ ∞

0
x(τ)dτ = x̂(0) = lim

s→0
sŷ(s),

that is, the standard final value theorem holds. Conse-
quently, the standard final value theorem need not be
restricted to rational functions only.

Consider, for example, y(t) = (1/2)erf(2
√

t), where erf is
the error function

erf(x) = 2√
π

∫ x

0
e−τ 2

dτ.

Note that erf(∞) = 1, and hence y(∞) = 1/2. By a variable
substitution, we can write y(t) as

y(t) = 1√
π

∫ t

0

e−4τ

√
τ

dτ,

which shows that the integrand is dominated by the expo-
nential function e−4t. The Laplace transform of y(t) can be
found as

ŷ(s) = 1
s
√

s + 4
.

Application of the standard final value theorem to y(·)
yields

y(∞) = lim
s→0

sŷ(s) = lim
s→0

1√
s + 4

= 1
2
,

as expected.
To allow infinite limits, we now state a generalization of

the extended final value theorem that applies to irrational
Laplace transforms. This result is adapted from [5, p. 91].

Generalized Final Value Theorem
Let y(t) be Laplace transformable, let λ > −1, and assume
that limt→∞ y(t)/ tλ and lims↓0 sλ+1 ŷ(s) exist. Then

lim
t→∞

y(t)
tλ

= 1
�(λ + 1)

lim
s↓0

sλ+1 ŷ(s). (3)

In the above result, �(x) denotes the gamma function
defined for x > 0 as

�(x) =
∫ ∞

0
e−ttx−1dt.

If n is a positive integer, then �(n + 1) = n!, �(1/2) = √
π ,

and �(n + (1/2)) = [1 · 3 · · · (2n − 1)]
√

π/2n .
If λ = 0, then the generalized final value theorem

reduces to the standard final value theorem. Furthermore,



that explains the importance and
historical context of the paper.
For instance, the U.S. Patent
Office took nine years to
approve Black’s patent for the
feedback amplifier because they
did not believe it would work.
The papers in this volume illus-
trate the difficulties and routes
to fundamental results in con-
trol. Kirsten Morris, University of
Waterloo, Canada

THOSE WITH NO FAVORITE BOOK
Many people who were surveyed said
they could not think of a favorite book
or were too busy to write up their
thoughts. A few people explained
why they have no favorite book:

» I have no favorite classical con-
trol book. I feel that we need a
fresh approach to teaching clas-
sical control that, for either the
institution or the instructor,
provides a broader view of the
field, reaches out to other disci-
plines such as biology and
physics, incorporates more key

ideas developed in the last
15–20 years on robustness, non-
linear control, and discrete
event or hybrid systems, and
includes a broader range of
applications to demonstrate the
richness and broad applicabili-
ty of the concepts. Kevin Passi-
no, Ohio State University

» To satisfy my teenage daugh-
ter’s curiosity, I showed her
my favorite textbook on classi-
cal control. Afterwards, she
told her friends that I am a
mathematician. To help me
out, my physician wife ex-
plained to her the fine differ-
ence: a mathematician solves
equations, but your dad cre-
ates his own equations. So, I
need another favorite control
book. It must be short and can
be read during breakfast and
on the train, by teenagers and
physicians. It tells people that
control is interesting and
important, and we create sys-
tems, in addition to equations.

It  is a daunting task but
achievable. Leyi Wang, Wayne
State University, Michigan

» I’m sorry, but I didn’t reply
because I don’t have a favorite.
In fact, I don’t have any that I
particularly like. Pablo Iglesias,
John Hopkins University, Balti-
more, Maryland

THE FINAL WORD
We close with one of our favorite
responses to the survey:

» I don’t want to be quoted for
this, but I have never read a
book on classical control. The
first book I ever read was Linear
Multivariable Control by Murray
Wonham, which was for years
a bible for me. You can, howev-
er, not be further from the truth
than claiming that this book is a
book on classical control. Later,
I realized the need to know
about classical control, which I
handled by sitting in on a lec-
ture series. An anonymous con-
trol engineer
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whenever the limit on the right hand side of (3) is finite,
y(t) approaches infinity in the order of

y(t) ∼
(

1
�(λ + 1)

lim
s↓0

sλ+1 ŷ(s)
)

tλ.

Since �(x) is positive, whether y(t) approaches ∞ or −∞ is
determined by lims↓0 sλ+1 ŷ(s).

The generalized final value theorem generalizes the
extended final value theorem since ŷ(s) need not be a ratio-
nal function. To illustrate, consider y(t) = √

t, which has
the Laplace transform

ŷ(s) = 1
2s

√
π

s
.

The function y(t)t−1/2 approaches 1 as t → ∞, which is
consistent with the calculation

lim
t→∞

y(t)√
t

= 1
�(3/2)

lim
s↓0

s3/2 ŷ(s) = 1
�(3/2)

√
π

2
= 1.

CONCLUSIONS
For rational Laplace transforms with poles in the OLHP or
at the origin, the extended final value theorem provides
the correct infinite limit. For irrational Laplace transforms,
the generalized final value theorem provides the analo-
gous result.

Finally, we point to a detailed analysis of the final value
theorem for piecewise continuous functions given in [6,
chap. 12].

REFERENCES
[1] K. Ogata, Modern Control Engineering. Englewood Cliffs, NJ: Prentice-
Hall, 1970.
[2] J. Van de Vegte, Feedback Control Systems, 3rd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1986.
[3] J.J. D’Azzo and C.H. Houpis, Linear Control System Analysis and Design:
Conventional and Modern, 4rth ed. New York: McGraw-Hill, 1995.
[4] R.H. Cannon, Jr., Dynamics of Physical Systems. New York: McGraw-Hill,
1967 (reprinted by Dover, 2003).
[5] P.B. Guest, Laplace Transforms and an Introduction to Distributions. New
York: Ellis Horwood, 1991.
[6] W.R. LePage, Complex Variables and the Laplace Transform for Engineers.
New York: McGraw-Hill, 1961 (reprinted by Dover, 1980).

» E D U C A T I O N (continued from page 94)


