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Homotopy methods for solving the optimal projection equations for
the H2 reduced order model problem

DRAGAN ZIGICt, LAYNE T. WATSONt, EMMANUEL G.
COLLINS, JRt and DENNIS S. BERNSTEINt

The optimal projection approach to solving the H 2 reduced order model problem
produces two coupled, highly nonlinear matrix equations with rank conditions as
constraints. Owing to the resemblance of these equations to standard matrix
Lyapunov equations, they are called modified Lyapunov equations. The al­
gorithms proposed herein utilize probability-one homotopy theory as the main
tool. It is shown that there is a family of systems (the homotopy) that makes a
continuous transformation from some initial system to the final system. With a
carefully chosen initial problem, a theorem guarantees that all the systems along
the homotopy path will be asymptotically stable, controllable and observable. One
method, which solves the equations in their original form, requires a decomposi­
tion of the projection matrix using the Drazin inverse of a matrix. It is shown that
the appropriate inverse is a differentiable function. An effective algorithm for
computing the derivative of the projection matrix that involves solving a set of
Sylvester equations is given. Another class of methods considers the equations in
a modified form, using a decomposition of the pseudogramians based on a
contragredient transformation. Some freedom is left in making an exact match
between the number of equations and the number of unknowns, thus effectively
generating a family of methods.

I. Introduction
Hyland and Bernstein (1985) considered the quadratic (H2 ) reduced order

model problem, which is to find a reduced order model for a given continuous time
stationary linear system which minimizes a quadratic model error criterion. The
necessary conditions for the optimal reduced order model are given in the form of
two modified Lyapunov equations, matrix equations which resemble the (linear)
matrix Lyapunov equations, but are highly nonlinear and mutually coupled.

Among many different approaches for finding reduced order models are compo­
nent cost analysis (Skelton 1980, Skelton and Hughes 1980, Skelton and Yousuff
1983), balancing (Moore 1981, Pernebo and Silverman 1982), Hankel-norm ap­
proximation (Kung and Lin 1981 a, b), aggregation (Aoki 1968, Kwong 1982),
non-minimal partial realization (Hickin and Sinha 1980), projection methods (De
Villemagne and Skelton 1987) and the optimal reduction method of Wilson (1970).
Some other applications of the optimal projection approach include the H2 / H00

model reduction problem (Haddad and Bernstein 1989), the fixed order dynamic
compensation problem (Hyland and Bernstein 1984) and the reduced order state
estimation problem (Bernstein and Hyland 1985). A homotopy based algorithm for
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174 D. Zigii: et al.

solving the fixed order dynamic compensation problem is given by Richter and
Collins (1989). Unlike that algorithm, the algorithm proposed here calculates the
jacobian matrix of the homotopy map explicitly, resulting in more numerically
robust and efficient homotopy path tracking.

The complete statement of the reduced order model problem is given in § 2; § 3
explains the basics of probability-one homotopy theory. Section 4 gives a way for
constructing an initial problem. Section 5 gives an algorithm for computing a
contragredient transformation. The method based on the Drazin inverse is pre­
sented in § 6. Methods based on decompositions of pseudogramians are given in § 7.
Numerical results obtained by solving a number of model reduction problems are
given in § 8; § 9 gives a conclusion.

2. Statement of the problem
Given the controllable and observable time invariant continuous time system

.\'(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(I)

(2)

where A EIl;l''''', 8EIl;l""", CEll;l/x", the goal is to find, for given nm<n, a
reduced order model

Xm(t) = Amxm(t) + Bmu(t)

Ym(t) = Cmxm(t)

where Am E Il;l"rn x "rn, 8 m E Il;l"rn "", Cm E Il;ll x "rn, which rmmrmzcs the quadratic
model-reduction criterion

J(A m, 8m, Cm) == lim E[(y - Ym)'R(y - Ym)J
,_ 00

where the input u(t) is white noise with positive definite intensity V and R is a
positive definite weighting matrix.

It is assumed that A is asymptotically stable and diagonalizable, and a solution
(An" 8 m, Cm) is sought in the set

A+ = {(Am' Bm, Cm): Am is stable, (Am, Bm) is controllable

and (Am, Cm) is observable}.

Definition I: Given symmetric posiuve semidefinite matrices Q, P E Il;l" X" such
that rank (Q) = rank (P) = rank (QP) = nm , matrices G, r E Il;l"rn X" and positive
semisimple M E Il;l"rn x "rn are called a (G, M, rj-factorization (projective factoriza­
tion) of QP if

QP=G1Mr

rG1=I
"rn

Positive semisimple means similar to a symmetric positive definite matrix. 0

The following theorem from Hyland and Bernstein (1985) gives necessary
conditions for the optimal solution to the reduced order model problem.
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H2 reduced order model problem 175

(6)

(7)

(8)

(3)

(4)

(5)

Theorem 1: Suppose (Am, Bm, Cm) E A+ solves the optimal model-reduction prob­
lem. Then there exist symmetric positive semidefinite matrices Q, P E ~n x n such that
for some projective factorization of QP, Am' Bm and Cm are given by

Am =rAG'

Bm=rB

Cm = CG'

and such that, with, == G'r the following conditions are satisfied:
0= ,[AQ + QA' + BVB']

0= [A'P + PA + C'RC],

rank (Q) = rank (p) = rank (QP) = nm

The equations (6) -(7) can be written in an equivalent form:

AQ + QA' + ,BVB' + BVB',' - ,BVBI,' = 0

A 'f> + f>A + ,'C'RC + C'RC, - ,'C'RC, = 0

The matrices Q and P are called the controllability and obseruability pseudo­
gramians, respectively, since they are analogous to the Gramians Ge and Go which
satisfy the dual Lyapunov equations

AGe + GeA I+ BVB' = 0

AIGo+ GoA + C'RC= 0

r is an oblique projection (idempotent) operator since ,2 = r. The projection matrix
r can be expressed as

r = (QP)(QP) *
where (QP) * is the Drazin inverse defined in § 6.

3. Probability-one homotopy methods
Homotopies are a traditional part of topology, and have found significant

application in nonlinear functional analysis and differential geometry (Watson
1986). Homotopy methods are globally convergent, which distinguishes them from
most iterative methods, which are only locally convergent. The general idea of
homotopy methods is to make a continuous tranformation from an initial problem,
which can be solved trivially, to the target problem.

Following Watson (1989), the theoretical foundation of all probability-one
globally convergent homotopy methods is given in the following differential theorem.

Definition 2: Let U c ~m and V c W be open sets, and let p: VIO, I) x V -> W be
a C2 map. p is said to be transversal to zero if the jacobian matrix Dp has full rank
on p-'(O).

Theorem 2: If p(a, A., x) is transversal to zero, then for almost all a E U the map

pAA., x) = p(a, A., x)

is also transversal to zero; i.e. with probability one the jacobian matrix DPa(A., x) has
full rank on p,;'(O).
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176 D. Zigic et al.

This recipe for constructing a globally convergent homotopy algorithm to solve
the nonlinear system of equations

f(x) = 0

where f: !W -+ ~p is a C 2 map, is as follows: for an open set U C ~m construct a C2

homotopy map p: [0, I) x W -+ W such that

(I) p(a, A, x) is transversal to zero;
(2) p.,(O, x) = p(a, 0, x) = 0 is trivial to solve and has a unique solution Xo;

(3) p.,( I, x) =f(x);

(4) p,;'(O) is bounded.

Then for almost all a E U there exists a smooth zero curve y of Pa (I-manifold
of points where p., = 0), along which the jacobian matrix Dp., has rank p, emanat­
ing from (0, xo) and reaching a zero x of f at A = I. This zero curve y does not
intersect itself, is disjoint from any other zeros of Pa, and has finite arc length in
every compact subset of [0, I) x W. Furthermore, if Df(.\:) is non-singular, then y
has finite arc length. The general idea of the algorithm is to follow the zero curve
yemanating from (0, x o) until a zero x of f(x) is reached (at A = I).

The zero curve y is tracked by the normal flow algorithm (Watson et al., 1987),
a predictor-corrector scheme. In the predictor phase, the next point is produced
using Hermite cubic interpolation. Starting at the predicted point, the corrector
iteration involves computing (implicitly) the Moore-Penrose pseudo-inverse of the
jacobian matrix at each point. The most complex part of the homotopy algorithm
is the computation of the tangent vectors to y, which involves the computation of
the kernel of the p x (p' + I) jacobian matrix Dp.,. The kernel is found by
computing the QR factorization of Dp." and then using back substitution. This
strategy is implemented in the mathematical software package HOMPACK (Wat­
son et al. 1987), which was used for the curve tracking here.

Two different homotopy maps are used for solving the optimal projection
equations. When the initial problem, g(x; a) = 0, can be solved, then the homotopy
map is (Watson 1990)

p.,(A, x) = F(a, A, x) == Af(x) + (I - A)g(X;a) (9)

where f(x) = 0 is the final problem, and a is a parameter vector used in defining the
function g. In general p., need not be a simple convex combination of two functions
f and g, so it is not always the case that p.,(O, x) = g(x; a).

When the initial problem is not solved exactly, i.e. g(xo; b) *0, then the map is
a Newton homotopy (Smale 1976)

p.,()" x) = F(b, A, x) - (I - A)F(b, 0, x o) ( 10)

where the parameter vector a = (b, x o) is now different from the parameter
vector a in (9). For A = 0, p.,(O, xo) = F(b, 0, xo) = 0, and for ), = I,
p.,( I, x) = F(b, I, x) =f(x) = O.

For the homotopies considered here, the theoretical verification of properties ( I)
and (4) is highly technical and was not attempted. Examples of such proofs for
other classes of problems are to be found in Watson (1986), Watson (1989) and
Watson (1990); property (I) is generically true, but verifying property (4) for
homotopies like (9) and (10) would be rather difficult.
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H2 reduced order model problem 177

4. Defining an initial system
While with homotopy algorithms in general an initial problem can be chosen

practically at random, this problem has some special limitations. The reason
is that Theorem I provides necessary conditions on a solution only under
certain assumptions. In other words, every intermediate problem solution satisfies
these equations only if the system is asymptotically stable, controllable and ob­
servable. While the absence of these features does not automatically mean that the
intermediate problem solution will not satisfy the equations, it is clearly better to
define a homotopy path in such a way that each problem along it corresponds to
an asymptotically stable, controllable and observable system. Existence of a solu­
tion to the H 2 reduced order problem follows from the work of Spanos et al.
(1990). Theorem 3 defines a class of initial systems such that these conditions are
satisfied.

Theorem 3: For the given system ( I) -(2), let A = XA X-I, with A diagonal. Define
D = XQX- I for any diagonal matrix Q = diag (w" ..., wn ) , such that all Wi' for
i = I, 2, ... , n, are in the open left half-plane. Then for almost all such D every convex
combination (A(DC), B, C) of the systems (D, B, C) and (A, B, C) will be asymptoti­
cally stable, controllable and observable.

Proof:
Stability. Since

A(DC) = DCA + (I - DC)D = DCXAX- I+ (I - DC)XQX- I

=X[DCA +(I-A)Q]X- I =XA(DC)X- I

and A(DC) is diagonal with all diagonal elements in the open left half-plane for
DC E [0, I], the matrix A(DC) is asymptotically stable for DC E [0, I].

Controllability. Let B = XB. Consider the controllability matrices in the coordi­
nate system obtained by the change of coordinates defined by the matrix X. In that
coordinate system the controllability matrix is

for DC E [0, 1]. For almost all choices of Q the eigenvalues of the diagonal matrix
A(DC) will be distinct for DC E [0, I). That rank B,(DC) = n follows from the results in
Brogan (1985). A direct argument follows. Let AI, ..., An be the (distinct) eigenvalues
of A(DC) for some DC, and

r6"

fi12 ...

S'"';B = fi~1
fi22 ... fi2m

fin' fin2 6""1

Since the system is controllable for DC = I, it follows that each row of B has at least
one non-zero element, because otherwise Be(l) would have a zero row.

Reorder the rows and columns of Be in the following way: for each row of
B that has a non-zero element in the first column (suppose there are PI of
them), exchange rows so that the selected PI rows are at the top. Next, exchange
columns in such a way that columns I, m + I, ..., (PI - I)m + I become the first PI
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178 D. Zigic et al.

columns. This produces a submatrix in the upper left corner which can be expressed
as

A)'+' ]
A~'-'

API ~ 'PI

Since 6" ...,6p were chosen to be non-zero, and the Ai are distinct, the Vander-I _

monde matrix is non-singular, and hence B, is also non-singular.
Repeating this procedure for the remaining rows gives a block upper triangular

transformation of Bc(a), with diagonal blocks B" ..., B" for some r,;;; n. That
means that rank Bc(a) = n and the system is controllable.

Observability. The analogous construction for the observability matrices proves
that the system is observable. 0

Theorem 3 holds if A is not diagonalizable, but that proof is considerably more
complicated and provides no more insight than the above proof. While the random
construction of the matrix D given in Theorem 3 is theoretically plausible, in
practice it may not be wise. The reason is that the matrix X is complex in general,
which for many choices of Q leads to a complex matrix D, which is undesirable.
Hence. it is better to construct a matrix D directly such that Q satisfies the
conditions given in Theorem 3.

One simple choice for D is

(II)

where c, > 0 and e, are small random numbers that correspond to the parameter a
in the theory. In this case Q is a small perturbation of -c, I.

Also, the matrix D can be defined as

(12)

for c" c2 > O. In this case Q = - c, I + c2 A .
The following strategy can be applied to find a good approximation to a

solution of the initial system. Since the matrix D is asymptotically stable, the
Lyapunov equation

DQ + QD' + BVB' =0

has a unique solution Q. Let Q = TET', where T is orthogonal and

E =diag {a" ..., an}

Next, define

(13)

E, == diag {a" ..., an"" 0, ..., O}, Qo == TEl T'

If Qo is substituted for Q in (13), the equation will not be satisfied, but in general,
if a, are sufficiently small, it will not be very different from zero. A similar
procedure can be applied to compute Po that will 'almost' satisfy the equation

D'P+PD+C'RC=O
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Hz reduced order model problem 179

The point X o = (Qo, Po) chosen in this way may lead to small values of the initial
system g(xo, a). Also, this X o can be used as the initial guess for a quasi-Newton
algorithm which may find a solution to the initial problem

r[DQ + QD I+ BVB I] = 0

[DIP + PD + C'RClr = 0

5. Contragredient transformation
The following lemma from Hyland and Bernstein (1985), which is a special case

of a result in Glover (1984), gives an algorithm for simultaneous reduction of
pseudogramians to diagonal forms using a contragredient transformation. The
constructive proof given here is different from that in Hyland and Bernstein (1985),
and the construction provides both insight and an outline for the numerical
computation of the contragredient transformation.

Lemma 1 (Hyland and Bernstein 1985): Let symmetric positive semidefinite Q,
P E [R"X" satisfy

rank (Q) = rank (P) = rank (QP) = n.; (14)

where nm .;; n. Then, there exists a non-singular WE [R" X" (contragredient transfor­
mation) and positive definite diagonal 1:, Q E [R"m X"m such that

Q = W [1: OJ IV' P = W- l [Q OJ W-'° 0' ° 0
Proof: Since P is positive semidefinite and symmetric there exists orthogonal
V E [R"X" such that

where D, E [R"m <n« is diagonal and positive definite. Let

Then

r: PT = [I"m OJ and
I , 0 0

where Q. E [R"m x "«. Since rank (QP) = rank (P) implies that Q is one-to-one
on the eigenspace of P corresponding to positive eigenvalues, and the quadratic
form xlQ, x corresponds to the quadratic form ylQy restricted to this eigenspace,
and ylQy = 0 implies Qy = 0 for symmetric positive semidefinite Q, it follows
that Q, is also symmetric positive definite. Therefore, there exists a positive
definite diagonal Dz E [R"m X"m and orthogonal V E [R"m X"m such that Q. = VD z VI.

Let

T =[ V 0 J
z- Q\zVD 2' -I
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I I [I OJT2T,PT,T2= 0 0

Ti'T)"'QT)"'T2' = [D02 0 J
Q2 - Q\2 UDi' U'Q'2

The last equality is a consequence of the rank conditions (14). If W'" T, T2

then

which completes the proof.

(15)

o
Remark I (Hyland and Bernstein 1985): Let Q and P be as in Lemma I. Then
there exists a non-singular U E D;l"'" and positive definite diagonal A E D;l"m x "m such
that

Q=U[~ ~Ju', P=U-'[~ ~Ju-'
Proof: The statement follows from (15) using

[
D 1/4 OJU'" W 2o 1

o

The following lemma defines a projective factorization of the product of the
pseudogramians and gives an effective way to compute it using a contragredient
transformation. The proof here is slightly different from that of Hyland and
Bernstein (1985).

Lemma 2 (Hyland and Bernstein 1985): Let symmetric positive semidefinite Q,
P E D;l" X" satisfy the rank conditions (14). Then, there exist G, r E D;l"m X" and
positive semisimple (positive semisimple means similar to a symmetric positive
definite matrix) M E D;l"m x "m such that

QP=G'Mr

rG'=1"m

( 16)

(17)

Proof: Owing to Remark I, there exist non-singular W E D;l" X" and positive
definite diagonal f E D;l"m x "m such that

Q= W [f OJ WI fi = W- I [f OJ W-'° 0' ° °
The equations (18) can be expressed in the equivalent form

Q= W,fW\. fi = U\fU,

( 18)

( 19)
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n, ..

W=[W, W21, -I n",i [V'JW =V=
V2

(20)

From (20) with G == WI and r == V, follow (16) -(17). 0

Matrices G, M and r from Lemma 2 are a (G, M, f)-factorization of (Q, Pl.

6. Homotopy method based on the Drazin inverse
One approach designing a homotopy algorithm for solving the optimal projec­

tion equations is to use the decomposition of the projection matrix T based on the
Drazin inverse.

6.1. Theoretical results

Since the homotopy algorithm involves computation of derivatives at each step,
it is essential that (6) -(7) be differentiable. The problem of proving the differen­
tiability of the equations (6)-(7) with the rank conditions (8) reduces to the
problem of proving the differentiability of the Drazin inverse.

Definition 3: The index of A E IRn
x n is the smallest non-negative integer k such

that im(A k
) =im(A k + I

) .

If A E IR" X" has index k, then IR" = im (A k) EB ker (A k). Thus any x E IR" has the
unique decomposition x = u + v, u E im (A k

) , v E ker (A k
) . Observe further that A

is invertible on im (A k).

Definition 4: Let A E IR" X" have index k, where x = u + v, U E im (A k),
v E ker (A k). The Drazin inverse A" of A is defined by A ..x = A ,'u, where A I is
A restricted to the image of A k.

If k = I, the Drazin inverse A .. is called the group inverse, and in fact that is all
that is needed here.

Theorem 4 (Campbell and Meyer 1979): Let A E IR" X" have index k. The Drazin
inverse A .. of A is the unique matrix A • such that:

A" AA" = A·

A" A = AA"

Theorem 5 (Campbell and Meyer 1979): If A E IRn x
" has index k, there there exist

non-singular matrices T and C, and a nilpotent matrix N of index k such that

A" is computed using the Hermite echelon form as described by Campbell and
Meyer (1979). Hearon and Evans (1968) give conditions for the differentiability of
the Drazin inverse. That theorem is proven here in a simpler way and using
different terminology.
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182 D. tigic et al.

Theorem 6: LeI A(I) E C'(I) for some internal I and

rank (A(I» = rank (A 2(1» = r

for each I E I. If, for each I E I, B(t) is the Drazin inverse of A(t), then B(t) E C'(F).

Proof: The rank condition implies A has either index 0 or 1. For index 0,
A * = A -, is differentiable and there is nothing to prove. So assume A has index I.
Then for each I E I, it has the Jordan decomposition

A=T[~' ~JT-'

where A I is square and non-singular. Using the characteristic polynomial of A I' a
divisor of the characteristic polynomial of A, A ,I can be expressed as a polynomial
in A, whose coefficients are polynomials in the elements of A:

A,'=p(Ad

Let

Then

BI =p(A) = Tp ([~' o ] T-'
p(O)

is the Drazin inverse of A. Furthermore, since the elements of B are polynomial
functions of the elements of A, B E eS(I). 0

The derivative r ' of r is actually computed using the Sylvester equations. Since
r = (QP)(QP) *, it follows that

r ' = (QP)'(QP) * + (QJ')[(QP) *]'

where everything is directly computable except [(QJ') *]'. From (19),

rank (Qp)2 = rank (WI}; W\ Vj EV,)2

= rank (W,E 4 V,) = rank (E 4
) = rank (E 2

)

= rank (WIEWj Vj EVd = rank (QP) = nm < n

and therefore QP has index I. The following describes a procedure for the
computation of the derivative of the Drazin inverse X of a matrix A of index I.

For given A of index I, X is the unqiue matrix that satisfies

AXA =A

XAX=X

AX=XA

Differentiating (21) -(23) yields

A'XA + AX'A + AXA' =.A'

(21)

(22)

(23)

(24)
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X'AX + XA'X + XAX' = X'

AX' -X'A = XA' - A'X

183

(25)

(26)

Substituting AX' from (26) into (24) and summing up equations (24) -(26) gives
the Sylvester equation

(A +XA -1)X'+X'(AX-A +A 2
)

=XA'-A'X-XA'X+A'-XA'A -AXA' (27)

which has a unique solution with probability one due to the randomness In

A(A).
Solving (27) for X' = [(QP) *], completes the computation of t ',

6.2. Description of the algorithm

The following is a description of the algorithm. The algorithm is based on the
normal flow algorithm for dense jacobian matrices described by Watson et al.
(1987), slightly modified here (Steps 13, 14 of the pseudocode below) to handle the
rank requirements of the solution (Q, p).

The algorithm starts at the point

(A., x) = (0, xo) = (0, Qo, Po)

with some Xo = (Qo, Po) chosen as explained in § 4. Then it follows the zero curve
y of the homotopy map (9) until a point where A= I is reached.

Fia, A, x) is represented by two equations

A(A)Q + QA '(A) + rBVB' + BVB'r' - rBVB'r' = 0

A'(A)P + PA(A) + r'C'RC + C'RCr - r'C'RCr = 0

where

A(A) = AA + (I - A)D

Recall from (II) that D is a function of the parameter vector a.
Since the equations are symmetric, only the upper right triangles are considered,

i.e, qij and Pij are computed only for j :;;, i. Therefore, the number of variables is
2[n(n + 1)/2] = n(n + I).

The mathematical software package HOMPACK requires that the user
provide routines to evaluate p,,(A, x) and the jacobian matrix Do, at each step.
While the former is relatively simple, the latter involves considerable computa­
tional effort.

The jacobian matrix consists of lI(n + I) + I derivative vectors, which corre­
spond to the partial derivatives with respect to qij, Pi}' and A. The terms that do not
include r are simple to evaluate analytically. For example,

(28)

On the other hand, the components of t' have to be evaluated numerically. Each
evaluation involves solving a Sylvester equation (27). Fortunately, since for differ­
ent qij and Pi} only the right-hand side of the equation changes, the whole process
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Step 1.

Step 2.

can be done efficiently. In order to compute a/uqll all the computations related to
(27) are done completely. For all subsequent partial derivative evaluations only the
right-hand side of (27) is evaluated and submitted to the procedure that solves a
Sylvester equation. The procedure used for that purpose (Bartels and Stewart 1972)
supports this approach very efficiently.

The derivatives of (I - J.)F(a, 0, xo) with respect to qij and Pij are zero, and the
derivative with respect to J. is - F(a, 0, xo).

When a final solution to (6)-(7) is obtained, the computation of (Am' Bm, Cm)
is completed by applying the formulae (3) -( 5), where G and r are obtained as
explained in Lemma 2.

In summary the whole algorithm is as follows.

Define D = - cl + diag {el , ... , en}, with c > 0 and small random e..

Choose Qo and Po that satisfy (8) as small perturbations of, respectively,
BVB I/2c and C'RC/2c.

Step 3. Set J. ,= 0, x ,= Xo'

Step 4. Compute Drazin inverse (QP) *.
Step 5. Compute r = (QP)(QP) *.

Step 6. Evaluate p,,(J., x).

Step 7. (Evaluate Dp,,{J., x).) For each Pij' q'j such that j ~ i, and J., do Steps
8-11.

Step 8. Compute derivatives of terms that do not include t using analytical
formulae similar to (28).

Step 9. Compute [(Qp) *]' using equation (27).

Step 10. Complete the computation ofr' as r"=(Qp)'(Qp) * +(Qp)[(QP)*],.

Step II. Sum the values obtained in Steps 8 and 10 to the final value of the
derivative vector.

Step 12. Take a step along the curve and obtain x, = (QI' PI)'

Step 13. Compute a contragredient transformation (18) as if XI satisfied the rank
conditions.

Step 14. Use formulae (19) to compute XI = (Q, p).

Step 15. If J. < I, then set x ,= XI' and go to Step 4.

Step 16. If J. ~ I, compute the solution XI of (6)-(8) at J. = I. Obtain G and F as
explained in Lemma 2.

Step 17. Compute the reduced order model using equations (3) -( 5).

7. Methods based on decompositions of pseudogramians
Homotopy algorithms for solving optimal projection equations can be designed

using decompositions of the pseudogramians based on contragredient transforma­
tions.
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7.1. Descriptions of methods

The equations (6)-(7) can be considered in another, equivalent form. If (6) is
multiplied by V, from the left, and (7) is multiplied by W, from the right, using
(19) -(20), the following two equations are obtained:

The third equation

V,AW,LWl + LWlA' + V,BVB' =0

A'V\L + VILV,AW, +CRCW, =0

V, W,-I=O

(29)

(30)

(31)

determines the relationship between W, and V,,
The matrix equations (29)-(31) contain 2nnm + n~, scalar equations. On the

other side, the only unknowns in (29)-(31), W" V, and diagonal L, contain
2nnm + 11m variables. Hence, some. additional techniques are necessary in order to
make an exact match between the number of equations and the number of
unknowns.

One approach is to consider L to be symmetric and all elements of L as
unknowns. This is appropriate, since the equations (29)-(31) with a full symmetric
L can be transformed into equations of the same form with a diagonal ~ by
computing

L = TXT', W, = WI T, 0, = T'V,

where X is diagonal and T is orthogonal.
Another approach is to consider the decomposition from the statement of

Lemma I, which leads to the equations

V,AW,LWl +LWlA'+ V,BVB' =0

A'VIQ + VIQV,AW, + CRCW, =0

V, W,-I=O

which also have 211nm + n~ scalar equations. In this case the number of unknowns
in W" VI and symmetric Land Q is 2nn", + n~ + n",. An additional 11m equations
can be obtained, for example, by requiring

U ii - Wi; = 0 for i = 1~ ...~ 11m

Alternatively, the number of unknowns can be reduced to 2nnm + n~ if the diagonal
elements of Q are actually the diagonal elements of L.

7.2. Algorithm

The following is a description of the algorithm for the method determined by
the equations (29)-(31). The algorithm is based on the normal flow algorithm for
dense jacobian matrices described by Watson et al. (1987). Depending on the
relative size of F(a, 0, xo), the algorithm may be modified. If F(a, 0, xo) is relatively
large, computational experience shows that it is desirable (but not theoretically
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necessary) to enforce the symmetry of E along the homotopy path. This is done by
observing that a symmetrized E corresponds to some homotopy map that could
have been chosen initially. In effect, Xo is changed in the homotopy map at each
step along the homotopy zero curve y. Obviously, in that case the homotopy map
(10) must be used.

The algorithm uses the homotopy map (9) or (10), where F(a, A, x) is repre­
sented by three equations:

VI A(A) WI EW\ + EW\A'(A) + VI BVB' = 0

A'(A)V\E + V\EVIA(A)WI + C'RCWI =0

(32)

(33)

(34)

A detailed description of the algorithm for evaluating the jacobian matrix
Dp,,(A, x) is given in Appendix B of Zigic (1991). A program that implements this
method is given in Appendix C of Zigic (1991).

In summary, the whole algorithm is as follows.

Step I. Define Dusing formula (II) or (12).

Step 2. Choose a starting point Xo = (Qo, Po) using one of the strategies explained
in § 5.2. Compute (Wdo, (VI)o and Eo using a contragredient transforma­
tion.

Step 3. Set A.=O, x'=xo=«W,)o,(VI)o,Eo).

Step 4. Evaluate p,,(A, x) given by (9) or (10), and (32)-(34).

Step 5. Evaluate Dp,,(A, x).

Step 6. Take a step along the curve and obtain x I = (WI' VI' E), X.

Step 7. Compute XI = (WI> VI,.t) = (WI> VI' (E + L')/2).

Step 8. Change the homotopy to

F(a, A, x) - (I - A)V = 0

where v = F(a, X, xd/( I - A).

Step 9. If I < I, then set x,=x" A'=X, and go to Step 4.

Step 10. If I"" I, compute the solution XI at I = I. Compute the reduced order
model by diagonalizing E = T.tT'.

Note. If F(a, 0, xo) is small, Steps 7 and 8 can be omitted without a
serious loss of efficiency.

8. Numerical results
Three examples are discussed here. The methods were tested on a number of

additional examples, reported by Zigic (1991). The results were obtained using the
method based on a contragredient transformation that has WI' VI and E as
unknowns, using the homotopy (9). For all examples V = R = I.
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H 2 reduced order model problem

Example 1 (Kabamba 1985): The system is given by

187

_ [-0.05
A - -0.99

For the starting point

100)

Yo=

o
0·0099995
0·99995
0·0099995
0·99995
0·5

the homotopy algorithm converges to a solution corresponding to the model of
order n.; = I given by

Am = (-4998'078625), Bm = (100'000194), Cm = (100'000194)

This model yields the (minimum) cost J = 96·078058.
For the starting poin t

Yo=

o
1
0·25
1·07

-0·27
1

the solution found corresponds to the model of order n; = 1 given by

Am = (-0485152), Bm = (-0'0000011427), Cm = (-0'000000073400)

which yields the (maximum) cost J = 10100. This example shows that the homo­
topy method can obtain different solutions. 0

Example 2: This is a model of a synchronous machine connected to an infinite
busbar (Hickin and Sinah 1980). The system is given by

-6·2036 15·054 -9·8726 -376·58 215·32 -162·24 66·827

0·53 -2·0176 1-4363 0 0 0 0

16·846 25·079 -43·555 0 0 0 0

A= 3374 -89-449 -162·83 57·998 -65·514 68·579 157·57

0 0 0 107-25 -1\8·05 0 0

0·36992 -0·14445 -026303 -0·64719 0-49947 -0·21133 0

0 0 0 0 0 376·99 0

89·353 0

376·99 0

0 0

c=[ ~ ~J
0 0 0 0 I

B= 0 0
0 0 0 0 0

0 0

0 0·21133

0 0
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A model of order n.; = 3 is

[

- 0,0261157
Am= -9·352068

-0-0541716

[

-2-414471
8 m = 14·906052

-14-944459

_ [-0.371712
Cm - 2.453290

9·349756 -0-0528086]
- O' 912444 O' 506220
- O· 506226 - 0-198770

-0-571953 ]
0·0416151 ,
0·0512237

0·00240265 0.0122915J
14·906110 14·944542

This model yields the cost J = 0·673079.
A model of order n.; = 4 is

[

- 37-55440 -0·0546940 0·326197 -0-0709427]
0·0561170 -0-0261155 9-349755 -0·0528084

Am = 0.324384 -9·352067 -0·912440 0·506220
0·0705453 -0·054714 -0·506226 -0·198769

[

-2·666516 -0.0062470] [0280123 -2-651769]
-2-414464 -0-571953 t -0·371711 2-453283

e; = 14·906036 0-0416151' Cm = 0·00240433 14·906094
'-14-944458 0·0512237 0·0122916 14·944541

This model yields the cost J = 3·27495 X 10- 6 .

Example: This is a state space model of the transfer function between a torque
activator and an approximately collocated torsional rate sensor for the ACES
structure (Collins et al. 1991), located at NASA Marshall Space Flight Center,
Huntsville, Alabama. The system in this example is of size n = 17, m = 1, I = I_ The
non-zero elements of A are

A( 1,1) = A(2, 2) = -0'031978272,
A( I, 17) = O' 0097138566,
A(3, 3) = A(4, 4) = -5·152212,

A(3, 17) = -0·021760771,
A(5, 5) = A(6, 6) = -0'1351159,

A(5, 17) = -0,02179972,
A(7, 7) = A(8, 8) = -0-42811443,

A(7,17)=0'01042631,
A(9, 9) = A( 10, 10) = -0-064896745,

A(9, 17)= -0'030531575,
A(II, 11)=A(12, 12) = -0,048520356,
A(II, 17)= -0-016843335,
A(13, 13)= A(14, 14) = -0-036781718,
A( 13,17) = -0'1248007,
A(15, 15)=A(16, 16) = -0,025112482,
A( 15, 17)= -0·035415526,
A(17, 17) = -92·399784_

The matrices 8 and Care

A(I, 2) = -A(2, I) = -78,54
A(2, 17) = -0·0060463517

A(3, 4) = -A(4,3) = -51-457677
A( 4, 17) = O' 0054538246
A(5,6)= -A(6, 5) = -15417859

A(6, 17) = -0·015063913
A(7, 8) = -A(8, 7) = -14·698408

A(8, 17) = 0·0088479697
A(9, 10) = -A( 10,9) = -12-077045

A(IO, 17)= -0·030260987
A(II, 12)= -A(12, II) = -8-9654448
A( 12,17) = -0'011449591
A(l3, 14)= -A(14, 13) = -4-9057426
A(l4, 17) = 0.0005136047
A(15, 16)= -A(l6, 15) = -3·8432892
A( 16,17) = -0·028115589
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B=

1·8631111
-1·1413786
-1·2105758

0·31424169
0·013307797

-0·211128913
0·19552894

-0·037391511
- 0·0 1049736
-0·011486242
-0·029376402

0·0082391613
- 0·0 12609562
- 0·0022040505
-0·030853234

0·0011671662
o

C'=,

-0·0097138566
0.0060463517
0·021760771

- 0·0054538246
0·02179972
0·015063913

- 0·0 1042631
- 0·0088479697

0·030531575
0·030260987
0·016843335
0·011449591
0·1248007

-0·0005136047
0·035415526
0·028115589

184·79957

A model of order n.; = 8 is given by

-70·\47 2\-9\8 -2·74\ -2·9917 -0·372\ 0·228 0·0246 0·083

54·\6\ -32-186 4·683 9·2995 -0-4958 0·\80 00289 0-093

3·51\8 -4-65\2 -0·208 -51-396 0·\211 -0-013 -0-0049 -0·0\6

-22-253 \9·045 51·85 -\2·043 \·0945 -0·639 -0·074\ -0-243
Am =

1·227\ -1·\976 -0·200 \-1602 -0·1936 15-44 0·0243 0-0807

0·5249 -0·5415 -0-076 0·6934 -15-450 -0·014 -0·0\25 -0·041

-0·0705 0·0708 0·011 -0-0770 0·0238 0-012 0·0\81 -78·57

-0·2393 0-2397 0·036 -0·2610 0·0803 0·042 78-508 -0·082

-0·05753 -0-16432

-0·06445 0-16512

0·01043 0-02442

0·\6983 -0·18\65
8 m =

-0·05959 c:ll = 0·05966

0·02622 0·02629

0-0459\ -0·04472

0-15\67 -0-\5162

This model yields the cost J = 3·95223 X 10- 5.

9. Conclusion
This paper has considered the use of probability-one homotopy methods to

solve the optimal projection equations for the model reduction problem. Four
different approaches (Drazin inverse, contragradent transformations with full l:,
with full symmetric l: and Q, with diag l: = diag Q) have been given for solving the
equations. The first approach is based on solving the optimal projection equations
in their original form. The three other approaches stem from a decomposition of
the pseudogramians based on a contragredient transformation and proved to be
more numerically robust than the first approach. The 'best' algorithm was shown to
be effective in finding the optimal reduced order models for several examples.
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The number of variables associated with the first approach is of order n Z (n is
the dimension of the original model), while the number of variables for the latter
approaches is of order nn.; (n", is the dimension of the reduced order model). Future
research will involve the development of homotopy algorithms with fewer variables.
It appears that by using a more rudimentary form of the optimal projection
equations it is possible to reduce the number of variables to be of order n(m + I) (m
and I are, respectively, the number of inputs and outputs). Future research will also
consider the Hz! H 00 reduced order problem (Haddad and Bernstein 1989).
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