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ENERGY FLOW CONTROL OF
INTERCONNECTED STRUCTURES:
II. STRUCTURAL SUBSYSTEMS®

Y. KisHiMoTo,! D. S. BERNSTEIN? AND S. R, HaLr?

Abstract. The dissipative energy flow control technique for intercomnected
modal subsystems developed in a4 companion paper {Kishimoto et al., 1995 b) is now
applied to structural subsystems, In this paper, two energy flow models for inter-
connected structures are derived, namely, the modal subsystem model, which views
each mode as a subsystem, and the structural subsystem model, which views each
substructure as a subsystem. These energy flow models provide alternative founda-
tions for an energy flow control technique. Active feedback controflers based on
bath of these energy flow models are shown to reduce the vibration of a specified
substructure. . :

Key Words—Energy flow, control of flexible structures.
1. Introduction

In a companion paper (Kishimoto et al., 1995 b), active energy flow control
techniques were considered for interconnected modal subsystems. These tech-
niques are now applied to interconnected structural subsystems, For this pur-
pose, we extend results given in Kishimoto and Bernstein (1995 a; b) and derive
two energy flow models for structures interconnected either conservatively or
dissipatively. In the modal subsystem model considered in Kishimoto et al.
(1995 b), each mode is viewed as a subsystem, while in the structural subsystem
model each substructure is treated as a subsystem. For the modal subsystem
model we can directly apply the control techniques considered in Kishimoto et al.
(1995 b). The structural subsystem model, however, requires special care. In par-
ticular, a dissipation filter and a disturbance filter are required since now the
real part of the substructure impedance and the disturbance spectral density are
frequency-dependent. ‘ v ,

Two distinct energy flow control techniques developed in Kishimoto et al.
(1995 b) are applied to the modal subsystem model and the structural subsystem
model. Specifically, the controller is designed either as an additional subsystem
or as a dissipative coupling to minimize energy flow entering a specified sub-
structure. The goal in Kishimoto et al. (1995 b) was to maximize the energy flow
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from a specified subsystem in the modal subsystem model and thus reduce the
vibration of this substructure. ;

In previous works (Miller et al, 1990; MacMartin and Hall, 1991), H, and
H,. control techniques were used to regulate energy flow in a certain frequency
band. In this paper, as in Kishimoto et al. (1995 b), controllers are designed ac-
cording to a specialized LQG positive real control approach that yields positive
real controllers. Thus, the resulting controller minimizes an H, performance in-
dex and guarantees asymptotic stability of the closed-loop system in spite of

modeling uncertainty.

llustrative examples involving Bernoulli-Euler beams show that the result-
ing controllers successfully minimize energy flow into a specified structure and
thus reduce the vibration of the structure.

Notation.

diag(alx Ty (l,-)

(Aﬂh BIII-? C})l! Dm)

D”I:
: bending stiffness of #th beam
Sit):
gt):

hi(€ & t):
I

Eil;

- cross correlation function matrix of x and y
: power spectral density matrix of x
: c\rfo_s_s__spectral density matrix of x and y
a1
. ith column of /
Ay
Ay
A[k,l]:
ijkic
. Ay
Re[A], Im[A]:

ith element of column vector a

{k, [}-element of A

2'% 2 block matrix of (&, 1} portion of A
A(n,, M)

oy ) .
real, imaginary part of A

. diagonal matrix whose ith diagonal element is &;
AT, A%
tr{ A}
A>{(=)0:

oo 814

(l,jj, bl"i
(Af.s ,B]_, CL’ DL):

transpose, complex conjugate transpose of A
trace of A
symmetric positive (nonnegative) definite matrix

state space realization of the transfer function

G(s)=C(sI—A)Y'B+D
modal coefficients
state space model for coupling L{(s)

. state space model for modal subsystem model
(4, B, C;, Dy):
(Ak- BR: CR, DR):
(Aws By G Dy):
(AQL3 Qﬂl):

(4;, Dg):

(Aq, Dy):

state space model for structural subsystem model

state space model for dissipation filter R,;{s)

state space model for disturbance filter T'(s)

augmented matrices for modal subsystem model

augmented matrices for structural subsystem model
augmented matrices for dissipation of structural subsystem
model

disturbance matrix for modal subsystem model

coupling force interaction
coupling moment interaction
coupling effect

identity matrix
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(]
P (P%)

Pé(PY):

P{(PY):

;i1 wave number

: coupling stiffness between ¢, jth subsystems

: linear time-invariant coupling matrix

$): Hnear time-invariant coupling matrix for modal subsystem

mode}

. length of ith beam
i+ stiffness operator
ﬂ‘ji

counter for modal subsystem

: steady-state average coupling energy flow of i(#;;)th sub-

system

steady-state average energy dissipation rate of i(n;;)th sub-
system

steady-state average external power of i(#;;)th subsystem

Q,,: steady-state covariance for modal subsystem model

e

Q. steady-state covariance for structural subsystem model

X
g,;(t):
Ry(s):
1(s):
Su,w, : intensity matrix of _entering disturbance for modal sub-
w; (1)

w; (1), (w;;{£)):
Zu(s):

Z.(38):

z (s}, z;(s):
¢

): modal decomposition
&
i+ coupling position of ith structure
&
p(x):
). eigenfunction of jth mode of ith structure
C!),'ji

x(E 1)

y,;(6)

modal coordinate
dissipation filter for structural subsystem model
disturbance filter for structural subsystem model

system model

normalized white noise disturbance with unit intensity
disturbance entering substructure (mode) :
subsystem impedance matrix for modal subsystem model
subsystem impedance matrix for structural subsystern model
subsystem (impedance transfer function)

structural damping coefficient

structural coordinate

disturbance entering position of th structure
mass density (of ith structure)

natural frequency of jth mode of ith structure

2. Structural Model

We consider  one- or two-dimensional structures under vibration by means

of pointwise external disturbance forces. Each pair of structures is assumed to
be mutually interconnected by means of conservative or dissipative couplings.
For convenience, we make the simplifying assumption that all couplings to a
given structure are connected to a single point on that structure. The case of
structures interconnected at multiple points is more (:omplicated and 1s outside
the scope of this paper.

The partial differential equation for the response of the ith structure is given
by

Py (&)
,,,(&)__aé.___

(D=7 + Lz (&N =mNSE - &) —hi(& &, (1)
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where & € Q; denotes the spatial coordinate defined on the region of space £
for the ith structure. Furthermore, p, (&) is the mass density, £; is the self-
adjoint stiffness operator for the ith st1 ucture, and @;(#) is the external disturb-
ance force acting on the ith structure at the point &. We assume that ;(¢),
i=1, -, r, are mutually uncorrelated white noise d1sturbames with unit mten-
sity. Addltxonally, the coupling effect #,;(&, €, ) at the coupling position £,
given by

for an interaction force f;(¢) and

B8 E DA g (DFE~E) (3)

for an interaction torque g(f), where 8(x) is the doublet (derivative of the
delta function).
We consider a modal decomposition of the ith structure of the form

1(ED= Za, (v, (), i=1,7, (4)

where ¢, (t) and v, (&) denote modal coordinates and normalized eigen-
funmons respectlvcly, and the double subscript i denotes the jth mode of the
ith substructure. The normalized eigenfunctions Vi (&) satisfy the orthogonality
properties

J P,(f)*l’,](g)‘l’mﬁ:@h j fiwjj(ﬁ)wikd§:01%5jks (5)

where @;; is the natural frequency of the jth mode of the ith structure, and 8
is the Kronecker delta. From (4), (5) and appropriate boundary conditions, it fol-
lows that the modal coordinates qﬁ(l } satisfy the equations of motion

G (1) + 20 g, (1) + a)zzjqij(t) = a;; 0 (1) — b 0; (), (6)

where v,-(i) is the coupling interaction and the modal damping term
ZCijwf,-zifj(t} is now included. In (6), the modal coefficient @;; is defined by

-

a5 Aw (&), (7)
while

bi; é%j(éd), (1) 4 fi(1), (8)
for force interaction and

b,-,-éiv-{%éi"l, (1) 4 g,(1), (9)

for torque interaction.
The modal velocity yi].(t) of the jth mode of the ith structure and the
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velocity y,(f) of the sith substructure at the coupling point are given by

[N

()= 2y (1), (11)
=1

where #; is the number of modes of the 7th structure in the frequency range of
interest. For later use we note that the modal impedance z;(s), i=1,.,7,
7=1,--,n,is given by

£+ 20, s+ w?;

zij(s) = . —. ~ (12)

Our goal is to derive an energy flow model for 7 interconnected structures
represented by (6) and design an energy flow controfler to reduce the vibration
of a specified substructure. First, we derive two energy flow models by using (6)
as the basic equation and then apply the control techniques developed in
Kishimoto et al. (1995 b).

3. Energy Flow Modeling: Modal 4Subsystem Model
First, we obtain the modal subsystem model by considering each mode as a
subsystem. Let w;;(/) denote the disturbance force exciting the jth mode of the

ith structure, that is,

ZU,",'(f):a,‘sz‘,'(t},' t=1,--,7 jzl,"‘,ﬂi, (13)

and we assume that the coupling interaction v;(f) and the structural velocity

() are related by a coupling transfer function L(s), that is,
b, = L(s)3,, T
where 3 (£) A[y,(8) - 3 ()] and v,(2) Aoy (1) -+ 0, (1))

To obtain a feedback representation of the interconnected systems, we define
the modal impedance matrix

Z,y(s) A diag(211(5), 212(5), -+, 21, (8), -, 2,1(8), +*+, 2 ($)) (15)
and the vectors

Tl BLGE) 4, (&) Gy (8) gy, () o g (1), (D)7, (16)

W (D) AL () - w1, (8) wa1(8) -+ Wy (£) o wa(t) = w (D), (17)

m(t) A L (t) - d, (1)) . (18)

Note that w,,(t) = D,ib(t), y(£)= Eyy,(t) and v,(t)= E,e(t), where the
matrices D, and E,, are defined by
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[0y @y, O - O 0 - 0 0 - 0 r
pyal® v 0 e e 0 00 0 )
EIE A I R N T S }
by e by O 0 0 0 e 0 0 e 0 T
E,al® w0 O B by 00 0000 (20)

0 0 0 0 o 00 0 by o by,

With this notation the interconnected system (6) can be expressed as the feed-
back system shown in Fig. 1, where u,,(t) 4 w,,({) — v,(¢) and the coupling ma-
trix L,,(s) for the modal subsystem model satisfying v,, = L, y, is defined by

Ln(s)4 E, L(s)Ey,. (21)
Note that if L(s) is conservative, that is, L(j@)+ L*(j@) =0, it follows that

L(jw) + Ly(jw)
= E,L(jo)El +(E, L(jo)ELY*
= En(L(jo)+ L*(jo)) E;,
=0, (22)

so that L,,(s) is also conservative. In the same manner if L(s) is dissipative,
that is, L{jo)+ L*(jw)=0, then L,(s) is also dissipative, L,(j®)
+ LA (jo)= 0. Since now Z,(s) is strictly positive real it follows from
Kishimoto and Bernstein (1995 a) that the feedback system in Fig. 1 is asymp-
totically stable.
Now we consider three steady-state average energy flows P§j, P‘f‘j and P%;,
i=1,-, 7 j=1, -, n which symbolize
P¢; = the steady-state average cnergy flow entering the jth mode of ith struc-
~ ture through the coupling L,,(s),
P‘f_,- = the steady-state average energy dissipation rate of the jth mode of ith

structure,
P§; = the steady-state average external power entering the jth mode of sth
structure,

To evaluate these steady-state average energy {lows consider state-space realiza-
tions of Z,'(s) and L{s) in Fig 1 given by

Ea(8) = A, x,(0) + Bu,(t), (23)
v, (8) = Cpay(l), (24)
£ ()= A (Dx, () + By (1), (25)
v ()= C x,.(1), (26)

respectively. Since  u,(£) = w,,(£) = vp(t) = Dpio(t) — Env{t) and  y (1)
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Fig. 1. Feedback representation of modal subsystem model.

=ET v v,.{1), the augmented system (23)- (26) is given by

xam(”:Axaﬂz(t)+ﬁw(t), : (27)
where
, % - A =B, EnC . B D
N A ,lm(t )} A m s m o, A[ n m}
x”’”mz{mt)' A Ec, a0 PELO

Also define C,y and C,z by
C-ml é {Cm 0]1 cm2 é [0 EmCL]» ) (28)

s0 that y (£) = Cy Xgm(t) and vp(#) = CopXem(t).
Next, we define the diagonal damping matrix

Coa A Re[Z,(5)], o (29)

and note that (12) and (15) imply : | |
Coizij = 28,035 , : - (30) .
where A;;, denotes Ay, ., and n,, (Ez"lnl)Jr 7. With this notation the

steady-state average energy flows PS i P % and Pf; are given by Kishimoto and
Bernstein (1995 a)

Pii = [(] vm(n,,)] (Cm‘ZQmC};il)ijij» (31)
P == €14, 4min)] = = (CoaCon D Coa Vi (32)

P?} & {quwm(n,, ] (DmDTC;xl)mj ’ (33)
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Where ), Umin;) a0d Wiy, are the #;;th element of v,(t), u,({)and w,(f),
respectively, and the steady-state covariance @, D limy_y. & [ %,y (#) 25, (£)] sat-
isfies the algebraic Lyapunov equation

AQ, + (A" + DD = 0. (34)

As shown in Kishimoto and Bernstein (1995 a) and Kishimoto et al. (1993),
P%;, P and P satisfy

P +PL+P =0, i=1-r j=1n. {35)

Furthermore, if L(s) is conservative, then (Kishimoto and Bernstein, 1995 a)
r #
2 2P =0, (36)
i=1j=1
while if L(s) is dissipative, then (Kishimoto and Bernstein, 1995 b)
¥
2 2P =0, (37)
i=1 j=1
Figure 2 illustrates energy flow among four modes of two interconnected struc-
tures.

Pj; —————{Mode 1 of Structure 1 Pe
Py, 12
‘ O
3! i
Mode 1 of Py L(s) Ph 1 Mode 2 of
Structure 2 K Structure 1
| 1
3 P,
P, <—————1Mode 2 of Structure 2 Ps,

Fig. 2. Energy flow model for two structures and four coupled modes.

4. Energy Flow Modeling: Structural Subsystem Model

Now, we obtain the structural subsystem energy flow model by treating each
substructure as a subsystem. In this model, the energy flows are evaluated at
the coupling points of the substructures. Hence the total impedance z;{s) of the
1th structure at the coupling point is given by

1 ; bf}
Zi(S) B j§1 Z,'j(S) (38)

for i=1, -, r. Additionally, by using the fact that the transfer admittance
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frqm the external force @;(f) at 4‘,‘ to the velocity y,(f) at &, is given by
Z,’ 1(a;0;12;(s)) (see p.263 in Skudrzyk (1968}, it follows that the filter func-
tion T;(s) defined by

A u lj
Ti(s) A z,(s)j; (s) (39)

transforms the external disturbance force #; at 51. into the disturbance force w;
at the coupling point &, that is,

w; = Tiw;. (40)
With this notation (6) can be rewritten as
z(s)y, = w; — v, (41)
which corresponds to the electrical representation of the interconnected systems
shown in Fig. 1 of Kishimoto et al. {1995).
Since z(s) is strictly positive real, it follows that

(@) ARe[z(j@)]>0, i=1-r, 0€R, (42

where ¢;(@) is the frequency-dependent resistance or damping. For convenience,
define the » X # diagonal transfer function

Z(s) A diag(#(s), -+, 2.(5)), - (43)

and the frequency-dependent resistance or damping matrix
C4(j) A Re[Z,(jw)] = diag(c; (@), -+, c,(@)). (44)
With this notation the interconnected system in (41) can be expreé;sed as a

feedback system in Fig. 3. In Fig 3, wt) Alw () w, ()Y, u(t)4
Ly (1) -, ()} = wy(t) — v,(t) and ys(t), v.(t) and L(s) satisfy (14).

@
T{(s)
o Ry($) b—s v,
+
uy [T ¥
O Z(s) S
Uy

L{s)

Fig. 3. Feedback representation of structural subsystem model.
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Now, we consider the steady-state average energy flow among substructures.
In a similar manner to the previous section, the steady-state average energy
flows P$, P¢ and P¢ are defined for i =1,-, 7 by

P§ A~ &1y, (D], (45)
P! A - &y, (Hu(b)], (46)
A £y, (Hw (D], (47)

where #;(t) is the ith element of #.(f). The meanmg of these ener gy flow quan-
tities corresponds to the meanmgs of P, P and P§; in the previous section,
respectively, but now P4, P4 and P! are the energy flows for the sth substruc-
ture and P§ is the energy ﬂow through the Louplmg L(s) in Fig. 3.

In the previous section, we expressed PS;, P, T Pt i in terms of the steady-
state covariance §,, according to the approach in Kishimoto and Bernstein
(1995 a) and Kishimoto et al. (1993) In the structural energy flow model, how-
ever, the real part c;(s) of z(s), is not constant and the disturbance w;{(t) en-
tering z(s) is no longer white noise. Thus, to obtain the steady-state covariance
corresponding to @,, we now introduce two filter transfer function matrices
T(s) and R,(s) as shown in Fig. 3, where the disturbance filter T(s) is defined
by

T(s) A diag(Ti(s), o(s), -+, T(5)), (48)
énd the stable dissipation filter Ry(s) satisfying (MacMartin and Hall, 1991)
Ry(s)Ri(—8) = Cyls). (49)
Now, let Z ;’(s), T(s) ‘and R;(s) have the realizations

(6 = Auxi(1)+ Bo(t), | (50)

3,(1) = Cox(t), (51)
£.(0)= Apx,(t)+ B, @(1), (52)
w )= Cox,(t)+ Dy (t), {53)
ip(t) = ARxR(t)+Bkys(t), (54)
¥, (1) = Coxa(1) + Dyy (1), (55)

r(_espe'ctively. By considering the state space model of L(s) given in (25) and (26),
the augmented system is given by

Eas(t) = Ax, (t)+ D (1), (56)
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where
xs(t) A.q Bscw 0 _BSCL BsDw
¢, (1 - 0 A 0 0 . B
A lW(I) A w A W
“all) £ xp(t) ] 4 BrC, 0 Ag 0 7 be 0
x.(8) B¢ 0 0 A 0

Furthermore, define
Cq 4AlC, 0 0 0],
Ca A0 0 0 (],
Ca AIDC, 0 Cp 0],
so that y (f) = Cax,(t), v(f)= Qxas(t) and y,(4)= Cardig(t).
With the above notation, PS and PY are given by Kishimoto and Bernstein
(1995 &)
P§ = = (Ca@Ch )iy (57)
Pl=—(CalClha (58)

where the steady-state covariance Q. D lim, . & [ x4 t)x,m(f)j satisfies
0=AQ, + QA" + DD” . (59)

As in the modal subsystem energy flow model, P$, P and P¢ satisfy

PS+PY+ P =0, , . (60)
Furthermore if L(s) is conservative, then
£ pi=0, (61)
while if L(s) is dissipative, then ; v
i e <0. B (62)

These results are ﬂlustlated in Fig 3 of Kishimoto et al. (1995 b) for the case
¥y =3.

In the following four sections, we consider two types of energy flow control
techniques introduced from Kishimoto et al. (1995 b) and design strictly positive
real controllers by using the LQG positive real control approach explained in
Sec. 3 of Kishimoto et al. (1995 b).

Note that in Kishimoto et al. (1995 b) only one structure was considered. The
following sections, which consider multiple coupled substructures, will allow us
to contrast the modal and structural subsystem models.
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5. Design of an Energy Fiow Controller as an Additional
Subsystem: Modal Subsystem Model

In this section, we consider a control problem involving » —1 structures in-
terconnected by a stiffness (lossless) coupling and design the controller as an
additional subsystem as discussed in Sec. 4 of Kishimoto et al. (1995 b).

Now, we connect the single-input smgle‘output controller z;'(s) to the struc-
tures Z,'(s) whose state space model is given by (23) and (24). The additional
subsystem, that is, the controller 2, (s) is assumed to be expressed by

1 (t)= A.x (t)+ B y(t), (63)
u(t)=C,x,(), (64)

where #(f) and »(t) are scalars and we now assume that the disturbance does
not directly enter into the controller z;'(s). Then the augmented feedback repre-
sentation of the feedback system corresponding to Fig. 1 is shown in Fig. 4. In

Fig. 4, .
E, 0 D
A n A m
E{I::::[O ]:ls Da:{io:“

where D,, and E,, are defined by (19), (20), respectively.

As shown in Fig. 4, the admlttance matrix corresponding to Z;'(s) in Fig. 1
is now comprised of Z,,'(s) and z '(s). In this case, the augumented vectors
(£), tem(t). wom(t) and w,(¢) in Fig. 4 are defined by

{Hﬂ

b ity = U -i
am y

- ] L 0 (s

¥ 4

i 1

Yy o Uas ;

um T

— E, L(s) E; |

:

) 1

1 t

Fig. 4. Feedback representation of plant and controller
(Modal subsystem modet).
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() , Um(?)
s8] 50], ity a[ 0],

v 8]0 wna[70)

respectively.
On the other hand, the stiffness coupling L(s) is now expressed by
L(s)=~+C,

where the symmetric matrix C, € " is partitioned as

CL CL -
C é i} 12 } )
FE { Cl:z CL%

(66)

In the same manner as Sec. 4 of Kishimoto et al. {1995 b), we define the position
vectors ypm(t) a fym(t)dt = CpXm(t} for Z;Y(s) and a scalar state xp(8) by

L) A u(t), : (67)

for the controller 2z, '(s) so that the output vector v,y Of the stiffness coupling
L,{s) is given by

ComEL %,
v{tm:Ea}“CLE;y n= EﬁCL{ b mA”}‘ (68)
S ar x[)t
By using (63)-(68), the feedback system shown in Fig. 4 is expressed as
xnm(lf)z Axanz(”"" Niz’(t)v - (69)
where
_ A‘m - Bm Eman EZ; C[)m - Bm EmCLm 0
A é O 0 C{' 14
L - BLCZQ E; C[)m - Br‘Cng ’ Ac
- F'B"I.Dﬂi ) xﬂl(t)
DAL 0 |, xum{t)B|xu(D)].
o0 #(t)
Furthermore, define
Cam A[C,, 0 0], (70)

sothat y ()= Cppxom(t).
We now determine (A4,, B,, C,) by means of the LQG positive real approach.
By defining .
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(t)é xln(t) ’ Aé[Am —Bn-tEmCLllEiz;Cpm “BmEmCLlZ}’
=L xpe (D) - 0 0

N . . By D,
BAIO-0 1, CAI-CuElCw ~Guab Di8|™Pn].

it follows that A and D in (69) can be expressed as

- | A BC, - | Dy
A"{BCC A, ] D_[BCDB ' (71)
where Dy in D represents fictitious measurement noise required by the LQG

approach.

Now the controller is required to reduce the vibration of a specified substruc-
ture. For this purpose, we define the total energy flow thg‘_ough the coupling to
all 7, modes of the ith structure 2 given by ¢ = X ., P%;, while ¢ and
2% defined by

i n;
LA 2Py, oA P
have a similar interpretation (Kishimoto et al., 1995 a). Furthermore, from (35), it
follows that

PCA P = = (72)

Since ¢ represents energy flow entering the ith structure through the cou-
pling and #? represents external energy flow entering the ith structure, it fol-
lows that the left hand side of (72) represents the total energy flow entering the
ith structure. Hence by mimmizing — ¢, we can minimize the total energy flow
entering the ith structure and as a result we can reduce the vibration of the ith
structure. :

Now defining the augmented diagonal matrix C,,

Coa O .
Con é[ o 0], (73)

where C,; is defined (29), and using (72) with {32) and (69) yields

ad . =
- ’li = Z}L(/amCanamcam}ijij

jesd
{" n;
e e T STy ol 1O
=1 1_ ZILU”-/ Canzcnm o ["«am "‘mn] (’mnan,‘,-]
= ) )

<

;i
e T AT 7 "
= ¢ [ﬁ‘ [xam C(zm( Zlen,, g,,r.,. C’am )Cam"(mz
i= !

e T T T A .
-« ['\'(zmcumcl Cam:‘am]!

[ FUPUUSUDS  W—

|

where the steady-state covariance @, 4 M. & [ Z,m(¢) x5, (¢)] satisfies
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0= AQu + QumA” + DDT (74)
and
P R q
Cl é E]e;zv g,{" Cmn . (75)

Thus, letting the performance variables have the form
z(t) = Eyx(t) + Eyu(l), (76)
it follows that £; is given by
E, = CiCon. (77)

As shown in Kishimoto el al. (1995 b) the plant (A4, B, C) is positive real so that
the results in Sec. 3 of Kishimoto et al. {1995) can be used to determine a posi-
tive real compensator 25 '(s).

6. Design of an Energy Flow Controller as an Additional
Subsystem: Structural Subsystem Model

Now, we design an energy flow controller based on the structural subsystem
model. In this case, the dynamics of the dissipation filter R;{s) and the disturb-
ance filter T(s) must be included in the control design.

As in the previous section by augmenting the vectors and matrices in Fig. 3
we obtain Fig. 5 as the feedback representation of the structural subsystem en-
ergy flow model. In Fig. 5,

.
e =1y
T,(s)
i
Wae ={ios} — Rﬂ(b) — yud
- Hs‘t - x{:y}
'+ tas {),_ Zsll(s) 0 Yus usj
‘ 0. zZNs) ,
v
as L(s)

Fig. 5. Feedback representation of plant and controller
(Structural subsystem model).
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(t) ug(t) ws(t)
TAs)é[Tff’ XS g]

where T(s) and Ry(s) are defined by (48) and (49) respectlvely As shown in
Fig. 5 the admittance matrix corresponding to Z,'(s) in Fig. 3 is now comprised
of Z71(s) and z; ~1(s) whose state space model are given by (50) and (51), (63)
and (64), respectively.

Furthermore, by defining yp(t)AJv (t)dt = Cpexs(t) for the structural
subsystem energy flow model and using a scalar state x,.(f) in (67) the output
vector v, (t) of the stiffness coupling L(s) is given by

] (1)
vas(t)““ CI}’ (t) { ﬂr(t):i (78)

Then the state space model of the feedback system shown in Fig. 5 is given by

¥ty = Az (1) + Dig(D), (79)
where
A, ~B,C,Cy BC, 0 ~BCy 0
0 A, O 0 0
AA B C, 0 A, 0 0 |,
0 0 0 0 C,
B.C,,Cys 0 0 -BC, A
B.D, EAG)
) B, x(t)
DAL 0 |, xu(B)A|xe(8)].
0 3[)(,([)
Y xc(1)
Furthermore, define
Cu BIDxC;, 0 G 0 0], (80)

so that v (8) = Cpyxs(t).
Asin the previous section by defining

45 - BsCLl] Cﬁs Bscw 0 '"BsCLIZ
0 A, O 0
B,C, 0 A4, 0 |
0 0 0 0

3
>




Energy flow control of interconnected structures; 11. 1607
BA[0-0 177,
CA[-CuChp —~Cyp)
B;D,

' B
Dy 4| Be
1= 0 »
0

it follows that A and D in (79) are of the form of (71). Thus, (79) can be inter-
preted as an LQG control problem (Kishimoto et al., 1995 b).

Now, we choose £ in (76) by using energy balance at each subsystem. From
(58) and (60), it follows that

PS+ Pt = = P = (Cou@us Cli )iy (81)

where the steady-state covariance ), 4 iy [ 5,5 (£) 25 ()] satisfies
0= A0y +QudT +DD7. (82)
In a similar manner to the previous section, by minimizing - P¢

5= {(C oy Qs Cag)i iy, We can minimize the total energy flow entering the ith struc-
ture and thus reduce the vibration of the /th structure. Since now

= P{ = (CaQuCltdisy = & 5 Chatiet Cogias],
it follows that
£ =elC,. (83)

As in the previous section, since the plant (4, B, C) is positive real, a posi-
tive real compensator G.(s)= z,'(s} can be obtained by using the results in
Sec. 3 of Kishimoto et al. (1995 b)

7. Design of an Energy Flow Controller as a Dissipative
Coupling: Modal Subsystem Model ~

As a second application of the results of Kishimoto et al. (1995 b), we now
consider the interconnection of {wo structures by means of an interstitial relative
force controller. This problem can be viewed as an extension of the results of
Sec. 6 of Kishimoto et al. (1995 b). Let. Z,,'(s) and G,(s) represent the transfer
functions of the two uncoupled strictly positive real systems and the controfler,
respectively. In the modal subsystem model, the state space model of Z,,'(s) is
given by (23), (24), where G,(s) has the state space realization

T(l) = Acx(t)+ B, x(l), v (84)

u(l) = C,x(1), (85)
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where u(f) and y(t) are scalars.

To obtain the relative velocity y(¢) from ys(t) and the coupling force v(t)

from #(t), we define B as

Bal 1]

(86)

With B given by (86), the feedback systems can be expressed as in Fig. 6, where

L(s)4 ~BG.(s)B" (87)
and
Lu(s)4 ~E,BG(s)B"Ey;. (88)
If G,.(s) satisfies
G(s)+Gr(s) <0, Re[s]>0, (89)
then, for Re[s]>0,
Lis)+ LX)
=~ BG(s)B" ~ [ BG(s) B"T*
= = B[G,(s)+ GI(9)] 57
=90, (490)
which implies that
w
D)))
oy
+ . V.,
N Uy Z;;,l(s} m
B ey N G R iy 3
§ o L{s) =-mmremmrasneans s
Vs :, Em l,:l B — n(}l.(g) . ¥ BT ys E,,[,; ;

Fig. 6. Feedback representation of coupled system (Modal subsystem model).
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Lyu(s)+ Ly(s) =0, Re[s]>0. (91)
Thus, the coupling L(s) and L,{s) serve as dissipative controllers which con-

trol energy flow between the structures.
From (84), (85) and (87),

A. |B.BT
L{s)~]—= ‘
SRR L |

then by comparing the state space model of L, (s) given by (25) and (26) we
obtain

ALzAc, BL—":BCBT, CLm"'BCC.

By substituting these A,, B, and C; into (27) we obtain

x,,m(t)=fix,,,,,(t)%—f)zb(t), (92)
where
Eanlt) & F”’(”},
. A B, E,,BC . IB,D
A A_ N m i E 4 C D é m m )
- {B(BTEZIC”I AC ’ - O
Define

Com A[Ca 01, (93)

so that y (l) am-"(mz(”

By defmmg AAA,, BAB,E,B and C4 BTELC,, A in (92) is of the
form of (71) so that ( {(92) can be inter preted as an LQG control ptoblem

As considered in the previous section we minimize — //',, while E; in {76)
can be obtained by

Ey = é;{(:mn; (94)

where
;

CZ é Zleu,v:e,fjcm' (95) :
j= ¥ 1

8. Design of an Energy Flow Controller as é Dissipative
Coupling: Structural Subsystem Model

In the same manner as the previous section, we now design an interstitial
relative force controller based on the structural subsystem model.

Now, the state space model of Z!(s) is given by (50), (51) and by defining
the controller G,(s) in (84) and (85) and B in (86) we obtain the feedback
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system shown in Fig. 7. By substituting A;, B, and C, obtained in the previ-
ous section into (56) the augmented state space model shown in Fig. 7 can be
obtained as

g5 (1) = Ax, (1) + Din(t), (96)
where
x:(1) A, B.C, 0 B ~Cc B.D,
T () . 0 A, O 0 ~ B,
A A A
xas(t):: xR(t) y Az B[\’Cs 0 AR O 3 D: 0
x,{t) B.B'C, 0 0 A, 0
Furthermore, define
Ca ALDRC, 0 G 0], (97)
so that y,({) = Coaxas(t).
By defining
A,  B.C, o] B.B
AAl 6 A, O BA| O |, CA[BC, 0 0],
B,C, 0 A,J | 0

then (96) is of the form (71) so that LQG contro! can be applied.
As considered in the previcus sections we minimize — P? and as a result £,
in (76) is given by

E=eChy. (98)
w
T(s)
. o~ b ‘NI
Wy Rd(‘s) “d
+ ‘V
U . B
O Sz (s) :
Hitehh b L(8) =mmrmmmmmmmeey
s E B — G.(s B? .

Fig. 7. Feedback representation of coupled system
' (Structural subsystem model).
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As in the previous section the strictly positive real controller —G,{s) can be
obtained by the LQG positive real control approach.

9. Example

To examine the effectiveness of the controllers discussed in the previous sec-
tions we consider two examples involving Bernoulli-Euler beams.

Example 1.  First, we design an energy flow controller as an additional sub-
system for the three simply supported uniform Bernoulli-Euler beams shown in
Fig. 8. The beams are of lengths Ly, Ly, L3, mass densities p,, p,, p;, and
bending stiffnesses E) {1, Ealys, Ezlys, respectively. Each beam is coup%ed by
the rotational springs Ky, Kus, Kj3 and subjected to normalized white noise
disturbance #;(¢), i =1, 2, 3, with unit intensity applied at & . Furthermore,
each beam is coupled with the controller by the rotational springs K., Kj. and
Ky at §,=0,:1=1,2,3.

Since now the coupling interaction is a torque, we consider #(&, ¢ ., ¢) in
(3), where g,(¢) is given by Crandall and Lotz (1971) and Davies (1972)
s [ (E D (&,
-gi(l) = mszlliim( 85 - (95 . (99)

mat

Furthermore, by considering the boundary conditions -

Pr &)

- =0, =123,
a5

E=0,1;

X6 Dlemo, =0, Eily

Controller

Fig. 8. Three coupled beams and controller.
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we obtain the wave number Fk;, the natural frequency wj; and the eigen-
functions y/i].(é) as

i o [ Eily )'17 2
Ay i =i T, v, () p.Li i

l‘=19213) j:},Z,"',n

Thus, a;; and &; in (6) are now given by a;; = v, (5) and §; = \/-212,]

Now, we consider the first three modes of each beam that is, n = m =13
=3andlet Li=n, Ly=n/f15, Ly=n/{2, p.L; =1 and E;1; = p, for
1=1,2, 3, so that

oy =2, @ =157, =2/, y; ()= [2sink;E, i,7=1,23.

Let €1 =001, {,; =002, CM =003, j=123, Kp=01, Kyu=02
K= 03 K.=1, K, =2, Ky, =3, l,‘ =15, :S,»— 10 and & = 05.

"To reduce the vibration of the ith beam i=1,2 3, we design six controllers.
Controllers 1, 2 and 3 are dc:,lgned by the modal qubgystem model, which mini-
mizes — /’f - //’2 and — 2%, respectively, while Controllers 4, 5 and 6 are
declgned by the structural subsystem model, which minimizes ~P1 ~P and
*Ps, respectively. The resulting energy flow diagrams are illustrated in 1‘1gs. 9
and 10 for the modal subsystem model and the structural subsystem model, re-
spectively, where OL denotes the open-loop system and G, represents Controller
i. Figures 9 and 10 show that each controller absorbs energy from all of the
beams and reduces the energy dissipation from each beam. For example, the
energy flow entering beams 2 and 3 in the open loop system is reversed by
controllers. Furthermore, %%, 7=1,2,3, in Fig. 9 does not change even after
Controllers 1-3 are inserted, while PS, i=1,2, 3, in Fig. 10 is decreased after
Controllers 4-6 are inserted. This fact can be explained as follows. Since the
disturbance force entering the subsystem Z,;'(s), w;;(1), has a constant spec-
tral density it follows that the entering energy flow P{; is constant as explained
in Kishimoto et al. (1995 b). Thus, Controllers 1-3 do not change #°¢, i=1,
2, 3. From (72), this fact implies that in the modal subsystem model the perfor-
mance index minimizing — 7Y can be interpreted as maximizing — #¢, that is,
Controllers 1-3 maximize the energy flow from the specified beam through the
coupling as considered in Kishimoto et al. (1995b). On the other hand, in the
structural subsystem model the spectral density of the disturbance force w;(f)
entering the subsystem Z:'(s) is no longer constant due to the disturbance fil-
ter T'(s). Thus, the Controllers 4-6 change the entering energy flow by the dis-
turbance, P¢, i=1,2, 3, and minimize the total energy flow entering the ith
beam, P§ + P<.

To examine the reduction of modal energy by these controllers we define the
total steady-state modal energy hy

3
A L[ Fad o gehednl), i=Lzs (00
=1

which is the steady-state vibrational energy of the ith beam in the absence of
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OL: 16257
OL: 1.9844 . Ge1: 0.6203
(G;,;l‘- 10234 | 1970 Ge: 0.9412
c2: 09768 G.3: 0.963
Cia: 06901 eg: 09038
OL: 0.3448
G 1.3502 5
Geo: 10203 1.5501
Ge3: 1.0067
A (" 2)
CJ OL: —0.3192 oL 005
Gq: 06418 Go:  0.6063
G 0.6884 G 09354
1.6652 G(;;: 0.9751 GC;;: 0.6375
OL: 15757
Y Gp: 0.9438
1 2:5983 Coo: 0.6147
Gep: 2.6531 C 02 09126
Ge3: 2.6193 ik

Fig. 9. Energy flow among hearns for the open-loop system and for
the closed-loop system with controllers G, Geo and Gg
based on the modal subsystem model.

OL: 1.8139 , OL: 1.4901
Gey: 0.3264 YR Geq: 01854
ga;: 0.1‘1:09 _/ (JC:—,E 0.6012
6 0.6927 Geg: 0.5688
OL: 1.9223 OL: 1.5923
oo OL: 0.3448 :
Gra: 01794 Ges: 01147 Geo- 05176 | ¢
Geg: 0. Geg: 01239 6 ~
OL: -0.3192 OL: -0.0256
Gea: 0.0759 Goa: 00137
Gy 00837 G 00296
Ces: 01143 o0 00214 ’

’ \3)
OL: 1.6031 OL: 1.6179
Gpq: 0.6794 Gey: 0.6101
G.s: 0.6013 G.s: 0.1998
Geg: 0.2937 Gs: 04962

G§4 :
Gﬁﬁ:
(;66 .

0.2306
0,2280 «———@
0.2596

Fig. 10. Energy flow among beams for the open-loop system and for
the closed-loop system with controllers Gy, G5 and Ggg
based on the structural subsystem model.
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modal correlation. Table 1 shows that each controller successfully reduces the
stored energy & and that the energy flow controllers hased on the structural
subsystem model, Controllers 4-6, shows better performance compared with
Controllers 1-3 based on the modal subsystem model. For example, Controller 1
reduces the modal energy of beam 1 to 39.32 percent of its open-loop value,
while Controller 4 reduces it to 31.09 percent. Gain and phase plots of Controllers
1-3, shown in Fig. 11, show that each controller has a gain peak near the
coupled natural frequencies of each beam. For example, Controller 1 has a gain
peak near =24, 4.4, 9.4 [rad/sec.] of Beam 1. These controllers are strictly
positive real since their phase plots lie in the range (—90°,90°). The gain and
phase plots for Controllers 4-6 have similar features.

Table 1. Steady-state modal energy for three beams coupled by rotational springs

Modal energy Open-loop Controller 1 Controller 2 Controller 3
&1 4.3697 1.7182 2.6760 2.5462
(39.32{%)) (61.24[ %)) (58.27[%])
& 2.8609 1.7105 1.0763 1.7174
(59.79[%}) (37.62[%}) (60.03(%))
&3 1.4236 {.8881 0.9034 0.4607
{62.38[%]) 63.46[%]) (32.36[ %
Modal energy Open-loop Controller 4 Controller 5 Controller 6
& 4.3697 1.3585 2.6201 2.5056
(31.09{%}) {59.96[ %} (67.34{ %}
&y 2.8609 . ~ 1.5868 0.8688 1.6015
(55.43(% )} (30.37[%} {55.98[%))
&y 1.4236 0.8205 0.8842 0.3892
(58.27[ %)) 62.11{%) (27.34[% 7]

Example 2. Now we design an energy flow controller to serve as a dissipa-
tive coupling for two uniform cantilever beams as shown in Fig. 12. The beams
are of lengths L;, Lp, mass densities p,, p,, and bending stiffnesses FEj 14,
E, 1, respectively. Each beam is subjected to mutually uncorrelated white
noise disturbances #;(f), {=1,2, with unit intensity applied at & and with
control force from the coupling controller f(¢) applied at .

Since a force actuator is used, we view the force as a coupling interaction.
Thus, in 2), fi(t)= f(t) and £(¢) =~ f.(t). By considering the boundary
conditions

oy, (& 1) Py )
/ ( ,t = :OV _‘-L_““ :(’)7 —_—-‘_I-.—“— :0)
x; g )If 0 o0& £ (952 e,
P&t ,
—= =0, i=12,
I

we obtain the natural frequency and eigenfunctions as Norton (1989)
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20
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) 0 1 5
i N .
-50 L noooeq
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Fig. 11. Magnitude and phase of controllers G,y (solid),
G.o (dashed), G, (dash-dot).

<
4
T

l .

Beam 1] ¢
i
! 4
1 B
| ! {Beam 2
oS - fe 1

&l Ge(s) |+ ! |8
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. Controller ¢ V|2
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1 I P i

| |
1 }
¥ H
H H
H 1

wij(éi) = Ai]'[(Sin kij L,‘ - sinh k,‘j L,-)(sin k,;j(‘,: - sinh k,'jé:)
+ (cosk;; L; — cosh ki L;)(cos k;; € — cosh &;; €)1,

where A;; is the normalized parameter so that (5) holds and the wave number
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k;; satisfies
cos kL coshky; L; = ~ 1

Thus, a;; and b;; in (6) are given by ¢;; = 11/}(8,t ) and b; = w”(f

Now, we consider the first three modes of cach beam and lei L=
Ly =25 p=p,=1, EL;=1, Eyl0= 11, ¢, =001, 6, =002, j= 12
3, 5 1, &=15and &, =¢,=22.

To reduce the v1brat10n of the ith beam, 7 =1, 2, we design four controllers,
Controllers 1 .md 2 are designed by the modal subsystem model to minimize
- 2% and ~ //’o, respectively, while Ccmtrollers 3 and 4 are designed by the
btructural subsystem model to minimize —P] and — P4, respectively. The re-
sulting energy flow diagrams are illustrated in Fig. 13 and 14 for the modal
subsystem model and the structural subsystem model, respectively, where OL
denotes the open-loop system and G,; represents Controller 7. Figures 13 and 14

OL: 1.7565 — , OL: 0.4550
Ger: 0.6841 gcl; %242 ' Go: 0.3426
G 0.9236 7e2: LU0 Geo: 0.2123
(D\ B, BG(s) BT <2>
OL: 0 OL: 0
G 1.0724 Gpy: 0.1124
Goo: 0.8329 Goo: 0.2427
1.7565 0.4550

Fig. 13. Energy flow between beams with controllers G, and G
based on the modal subsystem model.

OL: 1.7153 OL: 0.4243
Geg: 0.1547 Ge3: 0.1273 Gea: 0.2722
G,4: 0.3092 Geq: 0.1002 Gey: 0.1362
Cl) - BG(s)B7 ~—~—~~—-<2>

OL: 0 OL: 0

G.3: 0.1249 Goz: 0.0024

Ges: 0.0037 Ges: 0.0965
OL: 17153 OL: 0.4243
Gez: 0.2796 Gy 0.2746
Cey: 0.3129 Gy 0.2327

Fig. 14. Energy flow between beams with controllers G, w3 and Gy
based on the structural subsystem model.
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show that the controller absorbs energy from all of the subsystems and mini-
mizes the energy dissipation from each beam. Furthermore, as explained in
Example 1, Controllers 1 and 2 remove maximal energy from beams 1 and 2,
respectively, while Controllers 3 and 4 minimize the total energy flow entering
beams 1 and 2, respectively. The steady-state modal energy ¢;, ¢ =1, 2 is listed
in Table 2, which shows that controllers designed by both models successfully
reduce the modal energy of the specified beam. Furthermore, Fig. 15 shows that
Controllers 1 and 2 are strictly positive real. Similar remarks apply to Controllers
3 and 4.

In this section, we obtained energy flow controllers based on both the medal
subsystem model and the structural subsystem model. It is interesting to com-
pare these two energy flow controllers. Since the structural energy flow model
predicts energy flow among substructures, it is reasonable to expect that the
controller based on this energy flow model is more effective than the controller
based on the modal subsystem model. This fact is confirmed by Tables 1 and 2.
In the structural subsystem model, however, the dynamics of the dissipation fil-
ter and the disturbance filter must be included in the augmented system, which
increases the dimension of the controllers. For Example 1, the dimension of the
controller for the modal subsystem model is 19, whereas for the structural sub
system model the controller order is 43.

Table 2. Steady-state modal energy for two coupled beams with relative force actuator

Modal energy | . Open-loop  Controller 1 Controller 2 Controller 3 Controller 4

& 2.3196 0.8441 1.7657 0.7882 1.6302
(36.39[%) (75.69[%D (33.98[%) (70.28[% ] .
& 0.6608 0.5434 0.2468 0.5051 0.2008

(82.24[%]) {37.35[%]) (76.44[ %)) (30.93{ %1

EE‘
=,
o=
'3
&)
‘"60 IR S RET) [N S SRR} R N E T btk LA
107! 10° 10! 10° 10°
Frequency {rad/sec.]
100
%50
=
@ 0
&
£ —50
- 100 b oarpade TSRS T I 0 8 2 o 2
107! 10° 10* 10° 10°

Frequency [rad/sec.]

Fig. 15. Magnitude and phase of controllers
Gy (s0lid) and G,y (dashed).
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10. Conclusion

In this paper, we applied the control techniques developed for modal sub-
systems in Kishimoto et al. (1995 b) to structural subsystems, that is, intercon-
nected structures. Based on these two energy flow models, strictly positive real
controllers were designed as an additional subsystem or as a dissipative cou-
pling by the LQG positive real control approach. The resulting controllers suc-
cessfully minimizes the energy flow entering specified subsystems in H, sense
and reduce the stored vibrational energy of the specified structure. These fea-
tures were demonstrated by numerical examples.
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