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R = [Itdl + 12, - 1 - 11 + I,d, + IZdJ 

where [kl  k2] ,  [I, h ]  are  arbitrary polynomial matrices from R 1 2 { d l ,  d2, 
6 1 .  

CONCLUSIONS 

Sufficient conditions for  the existence of a solution to the deadbeat 
servoproblem for multivariable n-D linear systems are given. An 
algorithm based on elementary column and row operations for finding the 
matrices P ,  Q,  and R of the linear n-D controller is presented and 
illustrated by a simple 3-D example. 
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Robust Controller  Synthesis  Using the Maximum 
Entropy  Design  Equations 

DENNIS S .  BERNSTEIN AND SCOTT W. GREELEY 

Abmuct-This  note presents an application of the optimality condi- 
tions obtained in [l] for dynamic compensation in the presence of state-, 
control-, and measurement-dependent noise. By solving these equations, 
which represent a fundamental generalization of standard steady-state 
LQG theory, a series of increasingly robust control designs is obtained for 
the example considered in 121. 

I. INTRODUCTION 

Perhaps the most significant aspect of LQG theory is the explicit 
synthesis of dynamic feedback compensators. In practice, however, LQG 
suffers from serious defects concerning closed-loop robustness with 
respect to plant deviations. In particular, LQG controllers may possess 
arbitrarily small stability margin with respect to parameter variations [2]. 

One approach to  correcting this defect is to rederive the optimality 
conditions for dynamic compensation in the presence of state-, control-, 
and measurementdependent noise [I] .  Intuitively speaking, the quadrati- 
cally optimal feedback controller designed in the presence of such 
multiplicative disturbances is automatically  desensitized to actual 
parameter variations. The optimality conditions now comprise a system of 
four matrix equations, specifically, two modified Riccati equations and 
two modified Lyapunov equations, coupled by stochastic effects. This 
coupling is a graphic reminder of the breakdown of the separation 
principle in the uncertain plant case. When the uncertainty terms are 
absent, the equations immediately reduce to the standard pair of separated 
Riccati equations. 

For the special case of full-order compensation in the presence of state- 
dependent noise only, versions of these equations were discovered 
independently by Hyland [3]-[5] and Mil'stein [6].  A crucial feature of 
[l] ,  [3]-[5] is the interpretation of the closed-loop stochastic differential 
equation according to the Fisk-Stratonovich definition of stochastic 
integration. For modeling flexible mechanical structures, justification of 
this interpretation as an appropriate model for a  priori parameter 
uncertainty was based upon the maximum entropy principle of Jaynes [ 11. 

A time-varying version of these design equations involving uncorrela- 
ted state- and control-dependent noise has been given in [7]. The 
stochastic interpretation is in the sense of It0 as in [6].  

The purpose of the present note is to summarize the maximum  entropy 
equations for full-order dynamic feedback compensation. These equa- 
tions are then applied to Doyle's example [Z] to produce a series of 
quadratically optimal robust controllers. The full optimal projection/ 
maximum entropy design equations, which also account for a constraint 
on controller order [l] ,  [SI, are applied to a more realistic design problem 
in 191. 

11. PROBLEM STATEMENT AND MAXIMUM ENTROPY DESIGN 
EQUATIONS 

To state the optimal dynamic-compensation problem, we require the 
following notation. Let x E d", y E W', u E d m ,  A ,  A I ,  . * . , A, E 
n n X " , B ,  Bl, ..., Bp E 3""", C ,  Cl, ..., C, E F l t x n ,  RI E F l n X " ,  

R ,  2 0, Rz E amxm,  R? > 0. Furthermore. let u I ,  . . . , up be unit-inten- 
sity. zero-mean, and mutually uncorrelated white noise processes and let 
w l  E 2n and w 2  E i2' be zero-mean white noise processes with 
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intensities VI 2 0 and V, > 0, respectively, and cross intensity V,,  E 
2""'. It is further assumed that vi,  wi and x(0) are mutually uncorrelated. 
We require the technical assumption that, for each i ,  Bi f 0 implies Ci = 
0, i.e., the control- and  measurementdependent noises are uncorrelated. 

Optimal Dynamic-Compensation Problem 

Given the controlled system 

i= I 

design an nth-order dynamic compensator 

X c  = A,x, + B,y, 
u = C,X, 

which minimizes the  performance criterion 

J(Ac, Bc, C c ) = J x ( A c ,  Bc, Cc)+Jm(Ac, Bc, C c ) + J u ( A c ,  Bc, Cc) ,  

(2.5) 
where 

J,(A,,  B,, C,) 4 lim Z [ x r R 1 x ] ,  
r-m 

J,(A,, E,, C,) 2 lim I [2xrR12u] ,  
r-m 

J,(A,, B,, C,) 4 lim S[urR2u] .  
r-m 

To guarantee that J is finite and independent of initial conditions, we 
restrict (Ac, B,, C,) to the (open) set of second-moment-stabilizing triples 

P 
S 2 { (Ac,  B,, C,) : A, 8 A,+ A, 8 A, is stable) 

, = I  

where @ and C3 denote  Kronecker  sum and product and 

A, 2 A + -  A : ,  B, 2 B + -  2 AjBi,  C, & C + -  C,A,.  
1 P  1 "  1 P  

2 2 
, = I  

2 
I =  I I =  I 

For convenience in stating the optimality conditions, the 
following notation for Q, P,  Q, E 

2 A ,  P A , - Q ~ V ; ~ C . ,  = A,-B,R;'B,. 

Theorem 2. I :  Suppose (A,, B,, C,) E S solves the optimal dynamic- 
compensation problem. - Then there exist n x n nonnegative-definite 
matrices Q, P, Q. and P such that A,, B,, C, are given by 
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(2.7) 

and such that the following conditions are satisfied: 

P 

O=A,Q+QA:+   V1 .c  [A,QA' 
I =  I 

P 
O = A : P + P A , + R , + ~  [ A J P A ~  

I =  I 

O = A ~ Q + Q A ; ~ + & V ; ~ I Q : ,  (2.1 1 )  

Remark 2. I :  Letting A,  = 0, Bi = 0 and C, = 0, i = 1, . . . , p ,  it can 
readily be seen that (2.11) and (2.12) are superfluous and that (2.9) and 
(2.10) yield the standard separated LQG Riccati equations. 

Remark 2.2: Since R ,  2 Rz, so that R;I 5 R;I,  it is clear that the 
controldependent noise effectively suppresses the regulator gain C,. 
Similarly, since V,  2 V2, the measurementdependent noise suppresses 
the observer gain B,. The effect of the terms AiQA Tis discussed in [ 11 for 
modal systems. 

m. THE m x I M u M  ENTROPY DESIGN EQUATIONS APPLIED TO 
DOYLE'S EXAMPLE 

As shown in [2], LQG regulators for  the example 

A =  [i :] , . = [ : I  , C = [ l  01, 

V I = #  ;j ,v,:=o, v,=1, 

R l = p  [; :] , R12=0,  R,=I, 

have arbitrarily small stability margin with regard to variations b + Ab 
when u and p are sufficiently large and b = 1 .  

Setting u = p = 60, it follows that the LQG regulator is only stable for 
0.93 5 b + Ab 5 1.01. Uncertainty in b can be modeled by setting p = 
1, A I  = 0, B1 = [0 b,]  r, and C1 = 0. Solving the optimality conditions 
(2.9)-(2.12) with b1 = 0.05, 0.10, 0.15, and 0.20 yields a series of 
increasingly robust controller designs with respect to both positive and 
negative variations 4b  (see  Table I and Figs. 1 and 2). 

CONCLUSION 

As demonstrated on the example of [2],  the maximum entropy design 
equations provide a novel method for synthesizing robust feedback 
controllers. Since the design equations represent a fundamental general- 
ization of standard LQG theory,  the approach represents an alternative to 
LQG-modification techniques. Indeed, these equations are not intended as 
a device for recovering the gain and phase margins of LQ state-feedback 
regulators, but rather as a method for designing output-feedback dynamic 
compensators which are robust with respect to parametric deviations in 
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TABLE I 
DYNAMIC COMPENSATOR  GAINS FOR LQG AND  MAXIMUM ENTROPY 

DESIGNS (b = 1, u = p = 60) 

.05 I p 3  1.0 ] 
-20.69  -7.382 

[ r . 6 3 9  1.0 ] 
-23.27 -6.318 

.15 1 poJ0 1.0 3 
-27.24  -5.710 ’ 

.20 I Po.,, 1.0 ] 
-32.97  -5.295 

[::I 
[:::::I 
[:::.,:] 
[:::::I 
[:::::I 

cc 

1-10 -101 

1-8.382 -8.3821 

1-7.318 -7.3181 

14 .710   -6 .7101  

1 4 . 2 9 5  -6.2951 

of b + Ab 

c.93. 1.01) 

C .88, I .03) 

C.82. 1.08) 

C.77. 1.13) 

C.72, 1.21) 

.7 .a .9 1 .a 1.1 1.2 1.3 

b+Ab (Actual  Value] 

Fig. I .  Robustness of LQG versus maximum entropy designs (b ,  = 0.05, 0.1, 0.15, 
0.2). 

the  plant model. AS discussed in [lo], these are significantly different 
objectives. 
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Stability of Multiloop LQ Regulators 
with Nonlinearities-Part I: 

Regions of Attraction 

S. M. JOSH1 

Abstract-The closed-loop stability of linear, time-invariant systems 
controlled by linear quadratic (LQ) regulators is investigated when there 
are nonlinearities in the control channels which lie outside the (0.5, (P) 
stability sector in regions away from the origin (i.e., saturation-type 
nonlinearities). An estimate of the region of attraction is obtained which 
provides methods for selecting the performance function weights for 
more robust LQ designs. 
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