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The problem of optimal ;}(zrejection of noisy disturbances while
asymptotically rejecting constant or sinusoidal disturbances is
considered. The internal model principle is used to ensure that
the expected value of the output approaches zero asymptotically
hi the presence of persistent detenninistic disturbances. Neces-
sary conditions are gi.venfor dynamic output feedback control-
lers that minimize an (}{zdisturbance rejection cost plus an
upper bound on the integral square output cost for transient
perfonnance. The necessary conditions provide expressions for
the gradients of the cost with respect to each of the control
gains. These expressions are then used in a quasi-Newton gradi-
ent search algorithm to find the optimal feedback gains.

1 Introduction

Asymptotic rejection of deterministic disturbances with
known frequency content is a central problem in feedback con-
trol theory. A state space approach to this problem was devel-
oped by Johnson (1971), where the disturbances are character-
ized by an exogenous system with unknown initial conditions.
The controllers given by Johnson (1971) provide asymptotic
disturbance rejection under the restrictive assumption that the
rangeof the disturbanceinputmatrixis a subspaceof the range
of the control input matrix.

An alternative approach to this problem is based on asymp-
totic tracking of reference commands. Davison and Goldenberg
( 1975) showed that for a system to achieve asymptotic distur-
bance rejection, the controller must contain an internal model
of the exogenous dynamics that produce the disturbance. Fur-
thermore, asymptotic rejection of the disturbances requires that
the exogenous dynamics be replicated in each feedback loop.
A compensator is then used to stabilize the augmented system
consisting of the plant and the internal model. For this approach,
no condition on the range space of the disturbance input matrix
is required.

Because a controller that achieves disturbance' rejection con-
sists of both an internal model and a stabilizing controller, there
is considerable freedom in the design of such controllers. This
design freedom can be used to mee~additional objectives such
as pole placement, time and frequency response criteria (Davi-
son and Ferguson, 1981), or the optimization of a performance
criterion such as disturbance rejection via minimization of the
{}{znorm (If tar and Ozguner, 1986).

Unfonunately, the problem of minimizing the ;Xz norm of
a closed-loop system while achieving asymptotic disturbance
rejection is not straightforward. Since the internal models for
disturbances such as steps, ramps, and sinusoids have imaginary
axis eigenvalues, these modes are not observable by the perfor-
mance variables used in the {}{zcost functional. Hence, there
does not exist a stabilizing solution to the Riccati equation for
the augmented system so that standard (}{ztechniques cannot be
applied. .
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Although the use of an internal model addresses the steady-
state disturbance rejection problem. transient behavior is also
of interest. This behavior can be quantified by means of the
integral square of the mean output, which provides a measure
of the effectiveness of the controller in rejecting disturbances.
To this end, the approach of Abedor, et al. (1992) yields a
family of controllers that achieve asymptotic disturbance rejec-
tion and stabilize the augmented plant with transient perfor-
mance determined by the scalar parameter cr. However, the
parameterization of Abedor et al. (1992) does not necessarily
yield an optimal tradeoff between these competing objectives.

The goal of the present paper is to determine controllers
that not only provide asymptotic disturbance rejection but also
achieve better transient performance for the same ;Xzcost. To
do this, necessary conditions are given for the problem of min-
imizing a cost function consisting of an ;J{zcost plus an upper
bound on the integral square output cost. These necessary condi-
tions provide analytical expressions for the gradients of the cost
with respect to each of the control gains and can then be used
by a gradient optimization algorithm to find control gains that
minimize the cost function. Tradeoffs between transient perfor-
mance and {}{zdisturbance rejection can be obtained by varying
the weights in the cost function. The results in the present
paper complement those of Sparks and Bernstein ( 1995), where
necessary conditions are given for the related problem of asymp-
totic tracking.

Iftar (1990) addressed the problem of rejecting stochastic
and deterministic disturbances, giving conditions for the exis-
tence of the optimal ;J{zcontroller that asymptotically rejects
deterministic disturbances, as well as showing robustness of the
controller. The present paper expands the work of Iftar (1990)
by considering transient performance as well as ;J(zdisturbance
rejection by providing analytical expressions for gradients of
the cost with respect to the controller gains.

2 Problem Formulation

Considerthe plant model

x(r) =Ax(t) + Bu(t) + D,w(t) + DdlwAt), (I)

y(r) = Cx(t) + Dzw(t) + Dd2wAt), (2)

z(t) = E,x(t) + Ezu(t), (3)

where x(t) E IR"is the plant state, u(t) E IRmis the control,
y(t) E IR/is the measurement, w(t) E IRqis a stochastic distur-
bance, wAt) E IRdis a deterministic disturbance, z(t) E IRPis
the performance output, (A, B) is controllable, and (C, A) is
observable. .

The control objective is to have lE[y(t») approach zero as-
ymptotically so that in the absence of a stochastic signal, y(r)
approaches zero asymptotically. In addition, we wish to mini-
mize the (}{znorm of the closed-loop transfer function between
w(t) and z(r) as well as the integral square output

f: lE[y(t)]TMIE[y(t)]dt, where M is a nonnegative definite
matrix.

In this paper, two types of disturbances Wd(t) will be consid-
ered, namely, constant disturbances and sinusoidal disturbances.
For the case of constant disturbances, we assume that each
elementWd, of the vector wAt) is uncenain, that is,

r

(4)

where the elements Wdare uncenain. For the case of sinusoidal
disturbances, we assu~e that each element Wd,(r)of the vector
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Wd(C)consists of a sinusoid whose frequency i.o:is known. but
whose amplitude and phase are uncertain. that is.

[

Wd, sin (:...:r .;- cDl)

]wAr) = Wd: s~n(~'r .;-cD!) .
Wd, Sin (i.o:r .;- cPt)

where the amplitudes Wd,and the phases cDiare uncertain.
We represent the disturbance Wd(c) by means of an exogenous

system of the form

Xd(C) = Adxd(r). Xd(O) = XdO

Wd(c) = CdxAr).

where xAc) E IR"'. For the case of constant disturbances. let
nd = 1. Ad = O. and XdO = 1.so that Wd(t) = Cd. and thus the
elements of Cd detennine the magnitudes of the disturbance
components. Similarly. for the case of sinusoidal disturbances.
let nd =2.

and let Cd E IR'X! be an uncertain matrix. Then. Wd,(t) =
Colli sin i.o:C+ Con; cos i.o:C.where Colli and C,ci are the i'h elements

of the first and second columns of Cd. Equivalently. IVd,(t)can
be rewritten as IVd (t) = Wd sin (wt + cPi). where IVd =
JC~1i + C~i and ~i = tan -; C,cJCdli. Conversely. Coil: =
(Wd/ Jtan ~cPi+ I) and C,ci = (Wd, tan cPJJtan! cPi+ I).
Hence, each component Wd,(t)of the disturbance has uncertain
amplitude and phase.

To guarantee that the expected value of the measurement
IE[y(t)] approaches zero asymptotically, the feedback loop must
contain an internal model. which is a replicated version of the
exogenous dynamics (5) (Davison and Goldenberg, 1975). The
internal model is given in state space form by

where xs,(c) E IR"'"is the servocompensator state and where
As, is comprised of t replications of the matrix Ad. For a constant
disturbance IVd(t) = Cd. the matrices As, and Bs, are given by

where OiXj is the i X j zero matrix and Ii is the i X i identity
matrix. Analogously. for a sinusoidal disturbance Wd = Coil sin
wt + C,c cos wt. the matrices As, and Bs, are given by

We can now form the augmented system as

X.(t) = A.x.(t) + B.u(t) + D.w(t) + DddWd(t), (10)

where

B. ~
[0

B

] .
II..Xm

The following lemma gives sufficient conditions under which
the pair (A.. BD)of the augmented system (10) is controllable.
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Fig. 1 Block diagram of the closed-loop system

(5)

(6) Lemma 2.1. If

[
jwI - A B

]
rank = n + t.-C 0 (II)

then the pair (A.. BD) is controllable.

Remark 2.1. The rank condition in ( II ) ensures that there
are no pole-zero cancellations in the cascaded realization of the
plant model and the internal model. This rank condition is a
requirement for asymptotic disturbance rejection. Lemma 2.1
specializes to the case of a constant disturbance by letting w
= O.

Now consider a dynamic compensator of the form

x,(t) = A,x,(t) + A,scxs,(t) + B,y(t), (12)

u(t) = C,x,(c) + Cs,xsc(c). (13)

where :tAt) E II("<.so that the controller consisting of the servo-
compensator (7) and the dynamic compensator ( 12). ( 13) has
the realization

(7)

[

A, A,s, B'

]
G,(s) - 0 A Bs, .

C, Csc 0

The closed-loop system. (I )-(3), (7). (12). and (13) thus
has the form

(14)

i(t) =M(t) + Dw(t) + DdlVd(t).

y(t) = Cx(t).
z(t) = a(t).

(15)

(16)

(17)
(8)

(9)

If (AD'B.) is stabilizable. then a stabilizing controller exists so
that the closed-loop augmented system is stable. A block dia-
gram of the closed-loop system is shown in Fig. I.

The following two lemmas are special cases of Theorem I
of Iftar (1990).

Lemma 2.2. Suppose the disturbance wjf{t) = Cjf, and as-
. sume the augmented matrix A in ( 15) with internal model (8)
is asymptotically stable. Then IE[y(t)] - 0 as t _::0.
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Lemma 2.3. Suppose the distUrbance Wd(t) = Cdl sin wt +
Cd2 cos wt and assume the augmented matrix A: in (15) with
internal model (9) is asymptotically stable. Then lE[y(t)] -+ 0
ast-+:c.

Remark 2.2. The internal model ensures that the expected
value of each output decays to zero. It is essential that the
exogenous dynamics be replicated I times in the internal model,
since a single copy of the exogenous system dynamics is not
sufficient to ensure that the expected value of each output decays
to zero individually.If a singlecopy of the exogenoussystem
dynamics were used in the internal model. then only a linear
combination of the expected value of the outputs would decay
to zero. that is, B...IE[y(t)] -+ O.

The following propositions provide expressions for the inte-
gral square error.

Proposition 2.1. Let Wd(t) = Cd and suppose A: is asymptot-
ically stable. Then, the integral square output is given by

f lE[y(t)]TMIE[y(t)]dt = C~D~TDdCd. (18)

where T satisfies

0= ATT + TA + A-TCTMCA-1. (19)

Proof It follows from ( 15) that

1E[.i(t)] = A-1e.i.'DdCd - A-1DdCd.

Thus.IE(y(t)] = cA:-le.i.'DdCd- CA:-IDdCd.Next, using (IS)
and since A: is asymptotically stable, lim..- 1E[.i(t)] =
-A:-1DdCd. It follows from (2) that Jim..- lE[y(t)] =
-CA:-1DdCd. Since. be Lemma 2.2. lE[y(t)] -+ 0 as t -+:c. it
follows that CA:-I D~d = O. hence lE[y(t)] = CA:-leA'DdCd.
which yields (18). where T satisfies (19). 0

By Proposition 2.1. the minimum value of the integral square
output depends on Cd, which is uncertain. For constant distur-
bances, we assume that Cdbelongs to the set ('d' defined by

C'd,g,{Cd E IRI: CdC~ s VI.

where V <?:0 is a given uncertainty bound. Thus, if Cd E ed, it
follows that

f lE(y(t)]TMIE[y(t)]dt s tr D~TDdV. (20)

Proposition 2.2. Let wAt) = Cdl sin wt + Cd2 cos wt and
let A: be asymptotically stable. Then, the integral square output
is

f lE[y(t)]TMIE[y(t)]dt

=(wC~lD~ + C~D~AT)T(wDdCdl + ADdCd2). (21)

wher~ T satisfies

0= ATT + TA + (A~ + w~l)-TCTMC(A~ + w~l)-I. (22)

Proof It follows from (2) and some simple manipulation
that

lE[y(t)] = C(A2 + ,,-'~l)-le.i.'(wDdCdl + ADdCd2)

- C(A~ + w21)-I[(A sin wt + w cos wtl)DdCdl

+ (A cos v.:t- w sin wtl)DdCd2]' (23)

Since by Lemma 2.3 it[y(t)] -+ 0 as.t -+ :c, and since A: is
asymptotically stable. it follows that eAt -+ 0 as t -+ :c. Taking
the limit of both sides of (23). it follows that the terms involving
sin wt and cos v.:tare zero. Hence the expected value of the
output is

lE[y(t)] = C(A=+ ,,-'=l)-Ie.i.'(,,-'D~dl + ADdCd2)'
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The integral square output can be written as (21). where T
satisfies (22). . 0

By Proposition 2.2, the minimum value of the integral square
output depends on Cd, which is uncertain. For sinusoidal distur-
bances. we assume that Cd belongs to the set eddefined by

ed,g, { Cd E IRlx2: [~:][~:r

s
[

V~ V1~
]

= V
}

, (24)
V 12 V~

where V 2: 0 is a given uncertainty bound. Thus, if Cd E ed. it
follows that

f lE(y(t)fMIE(y(t)]dt s w2 tr D~TDdV1

+ tr D~ATTADdV2 + 2w tr D~TADdV f~. (25)

We can now state the optimal control problem.

Optimal Robust Disturbance Rejection Problem. Given
the plant dynamics (I) and the internal model dynamics (7).
find control gains Ae, Be. Ceo Aes" and Cse that stabilize A: and
minimize

l(Ae. B" Ce, Am. Csc) ,g, IIT=".II~

+ max Jx lE(y(t)]TMIE[y(t)]dt. (26)
C"e"d 0

where T:w is the transfer function from wet) to z(t).

3 Servocompensator Problem Necessary Conditions

In this section we present necessary conditions for the Opti-
mal Robust Disturbance Rejection Problem defined in the previ-
ous section, for which the disturbances are constant and sinusoi-
dal. These necessary conditions provide the basis for numeri-
cally optimizing the controller. For convenience. let Xij denote
the ijrbblock of X partitioned in the same manner as A.

Theorem 3.1. Suppose Ae. Be, C" Aeseoand Csesolve the
Optimal Robust Disturbance Rejection Problem for constant
disturbances. Then there exist nonnegative-definite matrices p.
Q. T, S that satisfy

0= ATp + PA + ETE,

0= AQ + QAT + ]j]jT.

o = A=TTA + ATTA~ + CTMC,

o = A~SAT+ ASA~T+ DdVD~.

0= DI3+ <I>f3+ ef3 + Wf3'

o = (P31D1 + P3~BseD~ + P33BeD~)Dr

+ (Df3 + <I>f3+ ef3 + Wf3)CT

+ (T3IDdl + T3~BscDd2 + T33BeDd2)V D~

o = Er(E1QI3 + E~CseQ=3+ E=CeQ33)

+ BT(Dfl + <I>f,+ ef, + wfd,

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

o = E~(E1QI~ + E=CseQ==+ E=CeQd

+ BT(Drl + <I>r,+ e~, + W~l)' (35)

where <P~ StFTA:, w ~ sA:=Tr,1.1~ ASATr, and D ~ QP.
The proof of Theorem 3.1 is similar to that of the following

result and is hence omitted.
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Theorem 3.2. Suppose Ae. Be. Ce. .4ese.and C,e solve the
Optimal Robust Disturbance Rejection Problem for sinusoidal
disrurbances. Then there exist nonnegative-definite matrices P.
Q. T. 5 that satisfy (27), (28),

o = (A~ + w~I)TATT(A~ + r.-'~1)+ (A~

+ w~I)TTA(A~ + r.-'~1)+ CTMC, (36)

o = (A~ + w~l)A5(A~ + w~l)T

+ (A~ + w~l)SAT(A2 + (21)T + ,,-'~DdV1D~

+ ADdV~D~AT + wADdVf~D~ + wDdV1~D~AT, (37)

o = 0;3 + 4?;3 + e;3 + rr3

+ 1JI;3+ n;3 + .6.;3 + M3' (38)

0= (P31D1 + P32BseD2+ P33BeD~)Df

+ W~(T3IDdt + T3~B$<D~+ T33BeD~)VID~

+ w(TAhIDdt + (TAh2B'eD~ + (TA)33BeD~]Vf2D~

+ r.--[(ATT)3tDdl + (ATT)32B$<D~

+ (ATTh3BcD~]Vt2D~ + (ATTAhtDd'

+ (ATTAh2B'cD~ + (ATTAh3BcD~]V2D~

+ (Of3 + 4?f3+ ef3 + rr3

+ IJIf3+ nf3 + .6.f3 + Af3)CT. (39)

0= Ef(E,Q'3 + E2CscQ23+ E2CcQ33)+ BT(O;I + 4?;1

+ eft + rr, + lJI;t + n;, + .6.;1 + A;I), (40)

o = Of3 + 4?f3+ efJ + rr3 + IJIf3

+ nf3 + .6.f3 + Af3' (41)

o = Ef(EtQI2 + E2C".Q22 + E2CeQ32) + BT(Oft + 4?fl

+ ef, + rrl + IJIf2+ nf~ + .6.f2.+ Af2), (42)

where e ~ AS(,-P + (21)TTA, r ~ (..12+ w2I)S(A2 +
w21)TT,IJI~ AS(A2+ w21)TATT.4?~ S(A2 + w21)TTA2,n
~ S(A2 + w21)TATTA. 0 ~ QP. and.6. ~ wDdVf2D~.

Proof. To obtain the necessaryconditions,firstwrite the Jt
cost in the fonn tr pI5I5T.Next,write (26) as

J(Ae, Be. Ce, Acse, Cse)

~ IIT::wIl~+ w2 tr D~TDdV1

+ tr D~ATTADdV2 + 2w tr D~TADdV f2' (43)

and note that (22) can be rewritten as (36). Fonn the Lagrang-
ian .J:by affixing (27) and (36) via Lagrange multipliers Q and
5, respectively, to obtain

J:= tr PDIY + tr Q(ATp + PI. + ETE) + w2 tr TDdV1D~

+ tr ATTADdV2D~ + 2w tr D~TADdvf2
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+ tr S«A~ + w~l)T ATT(.4:= + r.-'~1)

+ (A2 + r..:~l)TT.4:(A~+ "",,~/)+ CTj'4C). (44)

Setting (1/2)(8tI8Ae). (112)(81'18Be). (l/2)(8U8Ce). (l/
2)(8tI8Aesc)' and (l/2)(8flaC$<) to zero gives the necessary
conditions (38)-(42). Taking the derivatives a£'l8Q, atl8P,
8t18S, and 8tl8T and setting them equal to zero gives (27).
(28). (36), and (37). 0

Theorems 3.1 and 3.2 can be used with an optimization algo-
rithm such as in Dennis and Schnabel ( 1983) to find controllers
that solve the Optimal Robust Disturbance Rejection Problem.
Equation (31) - (35) and (38) - (42) provide analytic expres-
sions for the gradients of the co'st with respect to each of the
control gains. The reader is referred to Sparks and Bernstein
( 1995) for details on such an approach applied to a similar
problem.

4 Summary and Conclusions
Necessary conditions were given for gains that minimize a

cost consisting of two components, namely an X2 disturbance
rejection cost and a detenninistic disturbance rejection cost.
Theorem 3.1 considered constant disturbances. while Theorem
3.2 treated sinusoidal disturbances. The necessary conditions
were obtained by characterizing the cost in tenns of scalar
functions that depend on solutions to Lyapunov equations. The
Lagrangian was fonned by attaching the Lyapunov constraints
to the scalar cost function via Lagrange multipliers. This tech-
nique gave gradients of the cost with respect to each of the
control gains. which can be used within a gradient search algo-
rithm to find optimal gains.
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