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T
he magnetosphere is the region of space dominated by the magnetic field of the Earth. The size of the
magnetosphere and much of its dynamics are affected by the Sun’s atmosphere, which flows supersoni-
cally away from the Sun past the Earth and the other planets in the form of solar wind. The Sun’s mag-
netic field, which is commonly referred to as the interplanetary magnetic field (IMF), is embedded in
the solar wind [1].

In the absence of solar wind, the Earth's magnetic field resembles that of a dipole magnet with symmetric
magnetic field lines as shown by the dashed lines in Figure 1. However, as the solar wind flows past the Earth,

the magnetic field lines of the Earth become severely distorted as shown in Figure 1. The magnetospheric
region extends out to approximately 10 Re (Earth radii) on the daytime side of the Earth and more than

40 Re on the nighttime side of the Earth.
Although the solar wind typically flows at about 400 km/s, large expulsions of plasma from the
sun, called coronal mass ejections (CMEs) or solar storms, can attain speeds of over 900

km/s. A typical cross-sectional solar wind distribution is shown in Figure 2, while a
CME is shown in Figure 3.

High-energy CMEs, whose intensity varies with the 11-year cycle,
interact with the Earth’s magnetic field causing geomagnetic

storms, which entail ionospheric currents and
aurora in both the northern and
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southern polar regions. Most of the time, the aurora and
the ionospheric currents are minimal and have a negligible
effect on technology. When a CME encounters the magne-
tosphere, however, the aurora and ionospheric currents
increase, heating and expanding the upper atmosphere,
which causes increased drag on satellites. In addition,
large ionospheric current fluctuations can induce currents
in power lines, which can overwhelm and destroy trans-

formers and electrical networks [2]. Additionally, as dis-
cussed in [3], solar storms can adversely affect animals,
humans, and aircraft. It is therefore essential to be able to
predict when and where large ionospheric current fluctua-
tions are likely to occur.

Ultimately, the Sun controls the ionospheric currents and
the aurora.  When the Sun’s atmosphere is calm, there is little
aurora and small currents. However, large ejections of mag-
netic and plasma energy cause large disturbances in the
ionosphere. To predict these large ejections of magnetic and
plasma energy, satellites monitor the solar surface and image
these events. However, these image measurements are not
sufficient to accurately predict the subsequent interplanetary
conditions. Therefore, researchers must wait until the ejec-
tions reach most of the way to the Earth, where additional
measurements of the solar wind and IMF conditions are
made. These additional measurements are made by the
Advanced Composition Explorer (ACE) satellite, which
orbits the Lagrangian gravitational null point between the
Sun and the Earth. Further details about ACE and its orbit
are discussed in “Advanced Composite Explorer.” The solar
wind measurements are made by ACE 30–90 min before the
solar wind encounters the magnetopause, which is the
boundary of the magnetosphere. Note that the data are avail-
able on Earth almost immediately due to the speed of radio
propagation. However, because of the transport delay,
which depends on the solar wind velocity component Vx, the
solar wind measured by ACE at time t reach the magne-
topause at time t + D1/Vx , where D1 ≈ 1.5e 6 km is the
distance between ACE and the magnetopause, as illustrated

FIGURE 1 The Earth’s magnetic field [36]. Due to the solar wind, the

Earth’s dipole-like magnetic field is distorted and stretched toward

the nighttime side. The dashed lines indicate the dipole-like magnet-

ic field lines in the absence of the solar wind, while the solid lines

indicate the distorted magnetic field lines due to the solar wind.

Image used with permission.

FIGURE 2 Solar wind [1]. In this cross-sectional view, the solar-wind

distribution around the sun is shown along with the orientation of the

IMF. The solar wind in some regions is seen to exceed 900 km/s.

Image used with permission.
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FIGURE 3 Coronal mass ejection [1]. This photograph shows the

Sun's surface with a CME on the left side of the photograph. The

CME is magnified in the insert. Large quantities of charged plasma

along with magnetic energy associated with the plasma are released

from the Sun's surface during a CME. Image used with permission.



in Figure 4. Consequently, this delay allows us to construct
empirical models that have an input-driven predictive capa-
bility of 30–90 min before the solar wind reaches the magne-
tosphere. Note that the prediction horizon is determined by
the solar wind velocity and this is outside of our control.

The magnetic perturbations caused by the interaction of
the solar wind and the magnetosphere are measured on the
Earth by ground-based magnetometer stations. The data used
in this article are measurements made by ground-based mag-
netometers located at Thule (THL) in Greenland, Sondre
Stromfjord (STF) in Greenland, and Kotelny (KTN) in Russia.
The locations of these ground-based magnetometer stations
are given in Table 1. Thule is a high-latitude station, Kotelny
is a mid-latitude station, and Sondre Stromfjord is a low-lati-
tude station. However, since the magnetic axis of the Earth
differs from the geographic axis by about 11◦, in terms of the
magnetic latitudes measured from the magnetic pole Thule is
a high-latitude station, Kotelny is a low-latitude (auroral-
zone) station, and Sondre Stromfjord is in between Thule and
Kotelny. For reasons explained below, the dynamics of the
magnetosphere are more complex at auroral latitude stations. 

The size of the daytime-side portion of the magnetosphere
is directly proportional to the solar wind speed, whereas the
size of the nighttime-side portion, called the magnetosphere
tail, fluctuates severely due to the storage and release of

FIGURE 4 The Advanced Composition Explorer (ACE) satellite, mag-

netosphere, and time delay. The position of the ACE satellite is

shown along with the time delay between the ACE measurements

and the inputs to the model. The magnetopause (dark blue line)

encloses the Earth’s magnetosphere. The magnetic field lines

(orange lines) are distorted due to the solar wind as explained in Fig-

ure 1. The ACE satellite orbits the first Lagrangian point, which is

located at a distance D1 (not drawn to scale) from the magne-

topause. The solar wind flowing past the ACE satellite, whose veloci-

ty, density, magnetic field, and temperature are measured by ACE at

time t , reaches the magnetosphere at time t + D1/Vx , where D1/Vx

ranges from 30 to 90 min. Since the ACE measurements are avail-

able almost instantaneously, the identified model can predict condi-

tions on the Earth between 30 and 90 min into the future.
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TABLE S1 Location of the ground-based magnetometers. Real-time Web-based prediction for these ground-based
magnetometer stations are provided on the Web site [40]. Predictions for an additional 28 magnetometer stations
are expected to be added. Magnetometers located at these stations measure magnetic perturbations caused by the
solar wind and solar storms.

Magnetometer station Symbol Latitude Longitude Country
Island Lake ISL 53.86 N 265.34 E Canada

Tromsø TRO 69.66 N 18.94 E Norway

Longyearbyen LYR 78.20 N 15.82 E Norway

Dawson DAW 64.05 N 220.89 E Canada

The Advanced Composition Explorer (ACE) spacecraft [37] is

an Explorer Mission managed by the Office of Space Sci-

ence Mission and Payload Development Division of the National

Aeronautics and Space Administration (NASA). The ACE space-

craft, which was launched on August 25, 1997, orbits the first

Lagrangian null point (L1), which is a point of Earth-Sun gravita-

tional equilibrium. L1 is approximately 1.5 million km from the

Earth and approximately 148 million km from the Sun. By orbit-

ing L1, which is outside the Earth's magnetosphere, ACE stays

in a fairly constant position with respect to the Earth as the Earth

revolves around the Sun.

The elliptical orbit of ACE has a major axis of roughly

6 × 105 km, which subtends an angle of 0.115◦ from the center

of the Sun. At the ACE orbit's extremities, the satellite is roughly

3 × 105 km away from the Sun-Earth axis. However, since the

scale of the solar events is much larger than this distance [38], it

is reasonable to assume that the solar wind conditions mea-

sured by ACE are the same as those encountered by the Earth.

The ACE satellite is 1.6-m long and 1-m high, not including

the four solar arrays and magnetometer booms attached to two

of the solar panels. The satellite spins at 5 rpm, with the spin

axis pointed along the Earth-Sun line. Most of the scientific

instruments are mounted on the top (sunward) deck.

The ACE satellite carries six high-resolution sensors and three

monitoring instruments. From a vantage point of approximately 1%

of the distance from the Earth to the Sun, ACE performs measure-

ments over a wide range of energy and nuclear mass under all solar

wind flow conditions. By continually monitoring the Sun, ACE pro-

vides real-time solar wind data and thus can provide a warning of

solar storms about 30 to 90 min before they reach the Earth.

Advanced Composition Explorer
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magnetic energy. When magnetic energy is released in the
magnetospheric tail, constituting a substorm [4], currents and
high-energy particles are driven along field lines toward the
Earth. The aurora results from these high-energy particles
bombarding the atmosphere, while the currents cause large
magnetic perturbations. Thus, magnetic field lines associated
with the auroral zone map to locations in the magnetosphere
where the storage and release cycles occur. The three magne-
tometer stations are thus governed by different dynamics. In
particular, because of the storage-and-release cycle in the
magnetosphere tail, the dynamics governing auroral-zone sta-
tions are more complex than at higher latitudes and thus more
difficult to model. Moreover, the auroral-zone stations experi-
ence alternating periods of high-latitude dynamics and auro-
ral-zone dynamics, depending on the size and shape of the
magnetosphere. This variation significantly complicates the
identification of dynamics governing auroral-zone stations.

The goal of this article is to use system identification meth-
ods to construct models that can be used to predict magnetic-
field fluctuations. The inputs to the model are the solar wind
conditions measured by ACE, while the outputs of the model
are measurements made by ground-based magnetometer sta-
tions. By predicting ground-based magnetometer response
using ACE data, our objective is to obtain advance warning of
future disturbances. These warnings can be used to take steps
to minimize damage to sensitive infrastructure [2].

EMPIRICAL MODELING OF THE MAGNETOSPHERE

The nonlinear partial differential equations governing the
magnetospheric system involve exogenous drivers and
feedback mechanisms [5], [6]. Since these first-principles
models are computationally expensive, real-time imple-
mentation restricts the spatial and temporal resolution.
Although empirical models are simplistic compared to
first principles models, empirical models are useful for
predicting specific quantities at specific locations. Empiri-
cal models developed for understanding and predicting
magnetic-field fluctuations include neural network models

[7], time-series models [8], and statistical models [9].
In this article we identify Hammerstein-Wiener models

of the magnetosphere by using ACE measurements as
inputs and ground-based magnetometer data as outputs.
The Hammerstein-Wiener model structure, which is
shown in Figure 5, consists of linear dynamics, static input
nonlinearities, and static output nonlinearities [10]–[20].

We make no claim that the Hammerstein-Wiener model
structure can model all of the features of the magnetospheric
system. However, knowledge of physics suggests that non-
linear functions of inputs drive the magnetospheric system.
Moreover, our tests indicate that Hammerstein-Wiener mod-
els are useful for predicting magnetic-field fluctuations.

Although the present article focuses on Hammerstein-
Wiener models, alternative identification methods of potential
interest for the magnetospheric system include techniques for
identifying linear parameter-varying (LPV) models and bilin-
ear models [21]–[24]. Preliminary testing with these methods
suggests that they are also useful for magnetospheric predic-
tion. Comparisons with these methods are left for future work.

Since measurements of magnetospheric conditions are
made by ground-based magnetometers, which rotate with a
one-day periodicity with respect to the magnetosphere, the
system has one-day periodicity. Subspace identification for dis-
crete-time periodic systems is developed in [25], [26]. In partic-
ular, [25] uses lifting to recast the periodically time-varying
identification problem as a set of linear time-invariant identifi-
cation problems. In [26] an ensemble of data sets is used to
identify a set of state-space matrices for each time step. For a
time-varying periodic system with a period of ρ sample inter-
vals, these methods require the calculation and storage of ρ
state-space matrices. In the magnetospheric system, which has
one-day periodicity with measurements sampled at every
minute, 1440 sets of state-space matrices must be calculated
and stored, while using decimated data  every 15 min entails
calculation and storage of 96 sets of state-space matrices. Since
this approach is not computationally tractable, we develop an
alternative approach wherein we identify periodically switch-
ing models that switch among a small number (six or less) of
state-space matrices. We thus identify periodically switching
Hammerstein-Wiener models to capture the time-varying
nature of the system.

In this article, we consider subspace-based identification
methods for periodically switching Hammerstein-Wiener
models of the magnetospheric system. For this application, we
develop and apply a Hammerstein-Wiener identification

FIGURE 5 Hammerstein-Wiener model. The Hammerstein-Wiener

model structure consists of a Hammerstein input nonlinearity H con-

nected to a linear dynamical system L followed by a Wiener output

nonlinearity W . H and W are static multi-input, multi-output maps.

H L WyHu y

TABLE 1 Location of the ground-based magnetometers. Thule is a high-latitude station, Kotelny is an auroral-zone station, and
Sondre Stromfjord is a low-latitude station. Magnetometers located at these stations measure magnetic perturbations caused
by the solar wind and solar storms.

Magnetometer station Symbol Country Latitude Longitude
Thule THL Greenland 77.48 N 290.83 E

Kotelny KTN Russia 75.94 N 137.71 E

Sondre Stromfjord STF Greenland 67.02 N 309.28 E
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method, which is an extension of
[27]–[29], involving optimizing basis
functions iteratively. By comparing
the prediction from these identified
models with data measured subse-
quently, we validate the identified
models based on their prediction per-
formance.

An alternative approach to identi-
fying periodically switching Ham-
merstein-Wiener models is to use the
Hammerstein identification algo-
rithm based on least-squares support
vector machines (LS-SVM) [30].
Although these methods use basis-
function expansions to represent the
nonlinear maps, the actual basis
functions need not be specified,
instead the kernel functions, which
are inner products of the basis func-
tions, are chosen by the user.

A challenging aspect of real
data, such as data from the magne-
tospheric and ionospheric system,
is the occurrence of missing data
points. Data may be missing due to
instrument malfunction, environ-
mental circumstances, excessive noise, or defective
records. To address this problem, we describe a modified
subspace algorithm that accommodates missing data
points. Although this modification is straightforward, it is
of great practical importance and is apparently not dis-
cussed in the literature.

It turns out that the technique for dealing with missing
data is the key to identifying periodically switching models.
Specifically, we partition each day into subintervals, and then
we separately consider each repeating subinterval. In particu-
lar, we view all of the data except within the specified subin-
terval as missing, and we use the non-missing data to identify
a time- invariant Hammerstein-Wiener model for the corre-
sponding portion of the day. By partitioning the day into a
small number of subintervals, we obtain a periodically switch-
ing model that requires the calculation and storage of fewer
sets of state-space matrices than in [25] and [26]. We use this
periodically switching identification method with the Ham-
merstein-Wiener identification algorithm to identify periodi-
cally switching Hammerstein-Wiener models for the
magnetospheric system. A schematic of the various compo-
nents of the identification scheme is shown in Figure 6. 

HAMMERSTEIN-WIENER IDENTIFICATION

Consider the system

xk+1 = Axk + H(uk) + wk, (1)

yk = W(xk) + vk, (2)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rl, A ∈ Rn×n, H : Rm → Rn

is the Hammerstein nonlinear map, and W : Rn → Rl is
the Wiener nonlinear map. We assume that measurements
of uk and yk are available, A, H, and W are unknown, and
wk ∈ Rn and vk ∈ Rl are unknown zero-mean Gaussian
white noise sequences. To estimate the state-space matrices
and nonlinear maps, we present an identification method
based on subspace algorithms and basis-function opti-
mization. Based on this algorithm, periodically switching
Hammerstein-Wiener models are constructed below for
the magnetospheric system.

For convenience, (2) is decomposed as

yHk = Cxk, (3)

yk = W(yH,k) + vk, (4)

where yH,k ∈ RlH , C ∈ RlH×n, W : RlH → Rl, and lH ≥ l.
Equations (1) and (3), which represent the first two blocks
in Figure 5, comprise the Hammerstein subsystem. Equa-
tion (4) represents the last block in Figure 5, which is the
Wiener nonlinearity. The signal yH,k is the output of the
Hammerstein subsystem. The identification method
described in this section is a multistep method in which
the Hammerstein subsystem is identified in the first step,
the Wiener nonlinearity is identified in the second step,
and the basis functions used to represent the nonlinearity
are optimized in the third step.

FIGURE 6 A flowchart showing the various steps in the identification scheme. Steps 1, 2, and 3

constitute the basic identification algorithm. Step 1 uses regularization, while steps 1–3 are iter-

ated for optimized sets of basis functions. The procedure inside the shaded region is repeated

for each set of state-space matrices in the periodically switching Hammerstein-Wiener model.

This entire procedure is repeated with different input combinations, and the prediction perfor-

mance is evaluated to determine the most relevant inputs.
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Sequential Hammerstein-Wiener

Identification with Basis-Function Optimization

Step One: Hammerstein Subsystem Identification
Consider the Hammerstein subsystem (1), (3). The Ham-
merstein nonlinearity H can be written in terms of its
scalar-valued components as H = [H1 · · · Hn]T, where, for
i = 1, . . . , n,Hi : Rm → R. Next, as in [27], we assume
that each component H i can be expanded in terms of basis
functions f1, . . . , fr as

H =

⎡
⎢⎣

∑r
j=1 b1 j fj

...∑r
j=1 bnj fj

⎤
⎥⎦ , (5)

where the bij’s are coefficients of the basis-function expan-
sions. Next, defining f : Rm → Rr as f �= [ f1 · · · fr ]T, it fol-
lows from (5) that

H(u) = B f (u), (6)

where B �= [bij] ∈ Rn×r. Thus (1), (3) become

xk+1 = Axk + Bf (uk) + wk, (7)

yH,k = Cxk. (8)

Once basis functions are chosen, the identification problem
can be viewed as a linear identification problem with the
generalized input f (uk) ∈ Rr. A linear subspace algorithm
such as N4SID [31] can now be used to estimate the state-
space matrices and noise covariances. However, since yH,k
is not measured, we use measurements of yk for the identi-
fication of the Hammerstein subsystem.

Step Two: Wiener Identification
After the Hammerstein subsystem is identified, the Wiener
nonlinearity W is estimated by solving a linear least squares

problem. The function W is written in terms of its scalar-val-
ued components as W = [W1 · · ·Wl]T, where, for
i = 1, . . . , l, Wi: Rl

H → R. We assume that each component
Wi can be expanded in terms of basis functions g1, . . . , gs as

W =

⎡
⎢⎣

∑s
j=1 λ1 j g j

...∑s
j=1 λ l j g j

⎤
⎥⎦ , (9)

where the λij's are coefficients of the basis-function expansion.
Next, we define g: Rl

H → Rs as g �= g1 · · · gs]T , and let
y �= [y1 · · · yN] ∈ Rl×N and ψ �= [g(ŷH,1) · · · g(ŷH,N)] ∈ Rs×N ,
where N is the number of available data points. Now, to esti-
mate the Wiener nonlinearity we solve the least squares problem

argmin
�

∣∣∣∣y − �ψ
∣∣∣∣ , (10)

where � �= [λij] ∈ Rl×s. The least-squares solution of (10) is

� = yψ†, (11)

where † denotes the Moore-Penrose generalized inverse.

Step Three: Basis-Function Optimization
A convenient choice of basis functions for f and g are radial
basis functions, which can handle arguments of arbitrary
dimension. For example, Laplacian, logistic, Gaussian, and
thin-plate-spline radial basis functions have the form

fj(u) = e−αj‖u−cj‖2 , (12)

fj(u) = 1

1 + e−αj‖u−cj‖2
, (13)

fj(u) = e−αj‖u−cj‖2
2 , (14)

fj(u) = ‖u − cj‖2
2log(αj‖u − cj‖2), (15)

respectively. The parameters αj and cj determine
the spread and center, respectively, of fj. Similar-
ly, the basis function gj is defined in terms of the
spread βj and center dj.

After the initial Hammerstein-Wiener identifica-
tion (steps one and two), we optimize the radial basis
functions with respect to the parameters αj, cj, βj, and
dj . Letting α

�= [α1 · · ·α r]T , c �= [c1 · · · cr]T ,
β

�= [β1 · · ·βs]T, and d �= [d1 · · · ds]T, the identifica-
tion error is defined to be the mean-square error

E(α, c, β, d) �= 1
2

N∑
k=1

(yk − ŷk)
T(yk − ŷk), (16)

where yk is the output of the true system, ŷk is the
output of the identified Hammerstein-Wiener
model, and N is the length of the data set.

TABLE 2 Gradient expressions for the Laplacian and logistic radial
basis functions. By using these gradient expressions, we optimize the
mean-square error E given by (16) with respect to the basis-function
parameters α, c, β, and d. The type of basis functions chosen for the
components of f and g may be different.

Gradient Laplacian Logistic 
∂gj

∂ ŷH,k

βj e
−βj ‖ŷH,k −dj ‖2

(dj − ŷH,k )T

‖ŷH,k − dj‖2

βj e
−βj ‖ŷH,k −dj ‖2

(1 + e−β1‖ŷH,k −d1‖2)2

(dj − ŷH,k )T

‖ŷH,k − dj‖2

∂gj

∂βj

−e−βj ‖ŷH,k −dj‖2‖ŷH,k − dj‖2

−βj e
−β1‖ŷH,k −dj ‖2

(1 + e−βj ‖ŷH,k −dj ‖2)2
‖ŷH,k − dj‖2

∂gj

∂dj

βj e
−βj ‖ŷH,k −dj ‖2

(ŷH,k − dj)
T

‖ŷH,k − dj‖2

βj e
−βj ‖ŷH,k −dj ‖2

(1 + e−βj ‖ŷH,k −dj ‖2)2

(ŷH,k − dj)
T

‖ŷH,k − dj‖2

∂fj

∂αj

−e−αj ‖ui−cj ‖2‖ui − cj‖2

−αj e
−αj ‖ui−cj ‖2

(1 + e−αj ‖ui−cj ‖2)2
‖ui − cj‖2

∂fj

∂cj

αj e
−αj ‖ui −cj ‖2

(ŷH,k − cj)
T

‖ui − cj‖2

αj e
−αj ‖ui−cj ‖2)2

(1 + e−αj ‖ui−cj ‖2)2

(ui − cj)
T

‖ui − cj‖2
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Let Â, B̂, and Ĉ be the identified state space matrices for
the Hammerstein-Wiener model, and let ŷH,k be the output
of the identified Hammerstein subsystem. Writing (16) in
terms of g we have

E(α, c, β, d) = 1
2

N∑
k=1

(yk − �g(ŷH,k))
T(yk − �g(ŷH,k)), (17)

with

ŷH,k = ĈÂkx̂0 +
k−1∑
i=0

ĈÂk−i−1B̂ f (ui). (18)

For j = 1, . . . , r, the gradients of E(α, c, β, d) with respect to
αj and cj are given by

∂E
∂αj

=
N∑

k=1

(�g(ŷH,k) − yk)
T�

⎡
⎢⎢⎣

∂g1

∂ ŷH,k

...
∂gs

∂ ŷH,k

⎤
⎥⎥⎦

×
k−1∑
i=0

ĈÂk−i−1B̂êr, j
∂ fj

∂αj
(19)

and

∂E
∂cj

=
N∑

k=1

(�g(ŷH,k) − yk)
T�

⎡
⎢⎢⎣

∂g1

∂ ŷH,k

...
∂gs

∂ ŷH,k

⎤
⎥⎥⎦

×
k−1∑
i=0

ĈÂk−i−1B̂êr, j
∂ fj

∂cj
, (20)

where êr, j is the jth column of the r × r identity matrix.
Similarly, for j = 1, . . . , s, the gradients of E(α, c, β, d) with
respect to βj and dj are given by

∂E
∂βj

=
N∑

k=1

(�g(ŷH,k) − yk)
T�ês, j

∂gj

∂βj
(21)

and

∂E
∂dj

=
N∑

k=1

(�g(ŷH,k) − yk)
T�ês, j

∂gj

∂dj
. (22)

In (19)–(22), the partial derivatives (∂gj/∂ ŷH,k), (∂gj/∂βj),
(∂gj/∂dj), (∂ fj/∂αj), and (∂ fj/∂cj) depend on the basis func-
tions chosen for f and g. These expressions for Laplacian
and logistic radial basis functions are given in Table 2,
while the expressions for Gaussian and thin-plate spline
basis functions are given in Table 3. Each basis function fj
or gj can be chosen to be one of the four types of basis
functions (12)–(15).

By using the gradient expressions (19)–(22) along
with tables 2 and 3, a BFGS quasi-Newton optimization
code is used to optimize E(α, c, β, d) with respect to the

TABLE 3 Gradient expressions for the Gaussian and thin-plate spline radial basis functions. By using these gradient
expressions, we optimize the mean-square error E given by (16) with respect to the basis-function parameters α, c, β, and d.

Gradient Gaussian Thin-Plate Spline 
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FIGURE 7 Cost versus number of iterations for iterative basis-func-

tion optimization. The red asterisks denote the cost after subspace-

based Hammerstein-Wiener identification, while the blue circles

denote the cost after the basis-function optimization. The decrease

in the cost function is not monotonic due to the fact that the basis-

function optimization procedure and subspace identification algo-

rithm minimize different cost functions. Subspace identification

minimizes the least squares error between the true states and the

estimated states, whereas basis-function optimization minimizes the

mean-square error at the output E(α, c, β, d).
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basis-function parameters. Since the state-space matri-
ces and the basis-function parameters are not estimated
simultaneously, basis-function optimization and sub-
space-based Hammerstein-Wiener identification are
performed alternately.

Convergence is not guaranteed for the iterative proce-
dure described above. However, the iterative procedure
converged in all of our tests. Figure 7 shows a typical plot
of the cost function E(α, c, β, d) versus the number of itera-
tions. The decrease in the cost function is not monotonic
due to the fact that the basis-function optimization proce-
dure and subspace identification algorithm minimize dif-
ferent cost functions.

SUBSPACE IDENTIFICATION WITH MISSING DATA

In this section, we show how subspace algorithms can be
modified to accommodate missing data points. Consider
the linear system

xk+1 = Axk + Buk + wk, (23)

yk = Cxk + Duk + vk, (24)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rl. To estimate A, B, C,

and D in (23) and (24), we review results from [32]. The follow-
ing definition is equivalent to Definition 1 in Section 1.4.2 of [32].

Definition 1
Let P ∈ Ra×d, Q ∈ Rb×d, and R ∈ Rc×d , such that
d > max {a, b, c}. Then the oblique projection of the row space of
P along the row space of Q onto the row space of R is defined as

P/Q R�= P
[

R
Q

]† [
R
0

]
. (25)

Next, let N be the number of measurements and let i be an
integer such that n ≤ i and 2i − 1 < N . Define
Y0|2i−1 ∈ R2li×(N−2i+1) , Yp ∈ Rli×(N−2i+1) , and
Yf ∈ Rli×(N−2i+1) by

Y0|2i−1
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y1 · · · yN−2i
...

...
. . .

...

yi−1 yi · · · yN−i−1
yi yi+1 · · · yN−i

yi+1 yi+2 · · · yN−i+1
...

...
. . .

...

y2i−1 y2i · · · yN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

=
[

Y0|i−1

Yi|2i−1

]
=

[
Yp

Yf

]
. (27)

Alternatively,

Y0|2i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y1 · · · yN−2i
...

...
. . .

...

yi−1 yi · · · yN−i−1
yi yi+1 · · · yN−i

yi+1 yi+2 · · · yN−i+1
...

...
. . .

...

y2i−1 y2i · · · yN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

=
[

Y0|i
Yi+1|2i−1

]
=

[Yp+

Yf−

]
, (29)

where Yp+ ∈ Rl(i+1)×(N−2i+1) and Yf− ∈ Rl(i−1)×(N−2i+1) .
The input block-Hankel matrices U0|2i−1, Up, Uf, Up+ , and
Uf− are defined analogously with y replaced by u. The
oblique projection matrix Oi ∈ Rli×(N−2i+1) is defined as

Oi
�= Yf/Uf

[
Up

Yp

]
, (30)

and the extended observability matrix �i ∈ Rli×n is

�i
�=

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAi−1

⎤
⎥⎥⎥⎥⎥⎦

. (31)

Finally, define the state sequences Xp ∈ Rn×(N−2i+1) ,
Xf ∈ Rn×(N−2i+1) and Xf− ∈ Rn×(N−2i+1) as

Xp
�= [x0 x1 · · · xN−2i], (32)

Xf
�= [xi xi+1 · · · xN−i], (33)

and

Xf−
�= [xi+1 xi+2 · · · xN−i+1]. (34)

Definition 2
The input sequence {uk}N

k=1 is persistently exciting for (23),
(24) if

rank
[

Xp

U0|2i−1

]
= 2mi + n. (35)

Theorem 1 [32, Chap. 2, Theorem 2]
Assume that the input sequence {uk}N

k=1 is persistently
exciting, let wk ≡ 0 and vk ≡ 0, and let the singular value
decomposition of O i be

Oi = [U1 U2]
[

S1 0
0 0

] [
VT

1
VT

2

]
(36)

= U1S1VT
1 , (37)



where S1 is nonsingular. Then, the following statements
hold:

1) The matrix O i can be factored as

O i = � iX f. (38)

2) The order of the system (23), (24) is equal to the rank
of S1, that is, the number of nonzero singular values
in (36).

3) There exists a nonsingular matrix T ∈ Rn×n such that

Xf = TS1/2
1 VT

1 . (39)

Theorem 2 [32, Chap. 4, Theorem 12]
Assume that the input sequence {uk}N

k=1 is persistently
exciting. Let the singular value decomposition of O i be

Oi = [U1 U2]
[

S1 0
0 S2

] [
VT

1
VT

2

]
(40)

≈ U1S1VT
1 , (41)

where S1 ∈ Rn×n is nonsingular. Then,

lim
N→∞

S2 = 0. (42)

Furthermore, define Oi,∞ �= limN→∞ Oi and XKF
f,∞

�=
limN→∞ XKF

f ,  where XKF
f is the Kalman filter state

sequence obtained when the initial conditions and initial
covariance for the Kalman filter are chosen to be (4.27)
and (4.28) of [32], respectively. Then the following state-
ments hold:

1) The matrix O i,∞ can be factored as

Oi,∞ = �iX
KF
f,∞ . (43)

2) The order of (23), (24) is equal to the number of
nonzero singular values in S1 in (41).

3) There exists a nonsingular matrix T ∈ Rn×n such that

XKF
f,∞ = TS1/2

1 VT
1 . (44)

Using Theorem 2, define an estimate X̂f of the state
sequence Xf as X̂ f

�=S1/2
1 VT

1 . An estimate X̂f− of Xf− is
obtained analogously. Next, the state space matrices are
estimated by solving the least squares problem

argmin
A,B,C,D

∣∣∣∣
∣∣∣∣
[

X̂f−

Yi|i

]
−

[
A B
C D

] [
X̂f
Ui|i

]∣∣∣∣
∣∣∣∣
F
. (45)

Missing Data

For the case of missing data, let q be a time step for which a
measurement of uq or yq is unavailable. Then define the
modified output block-Hankel matrix

Y0|2i−1
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 · · · yq−2i+1 yq+1 · · · yN−2i
...

. . .
...

...
. . .

...

yi−1 · · · yq−i−1 yq+i · · · yN−i−1
yi · · · yq−i yq+i+1 · · · yN−i

yi+1 · · · yq−i+1 yq+i+2 · · · yN−i+1
...

. . .
...

...
. . .

...

y2i−1 · · · yq−1 yq+2i · · · yN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(46)

=
[

Ỹ0|i−1

Ỹi|2i−1

]
=

[
Ỹp

Ỹf

]
. (47)

Note that Ỹ0|2i−1 has the same form as the output block
Hankel matrix (26), except that all of the columns of the
Y0|2i−1 containing yq are omitted, that is 2i − 1 columns are
omitted. When several data points are missing, the block
Hankel matrix is constructed similarly by omitting all
columns that contain the time steps corresponding to the
missing data. When Nq consecutive data points are miss-
ing, Ỹ0|2i−1 has 2i + Nq − 2 fewer columns than Y0|2i−1 .
However, when data points are missing at intervals of less
than 2i, Ỹ0|2i−1 is empty and no data are available for iden-
tification. Ỹ0|2i−1 can be partitioned alternatively as

Ỹ0|2i−1
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 · · · yq−2i+1 yq+1 · · · yN−2i
...

. . .
...

...
. . .

...

yi−1 · · · yq−i−1 yq+i · · · yN−i−1
yi · · · yq−i yq+i+1 · · · yN−i

yi+1 · · · yq−i+1 yq+i+2 · · · yN−i+1
...

. . .
...

...
. . .

...

y2i−1 · · · yq−1 yq+2i · · · yN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

=
[

Ỹ0|i
Ỹi+1|2i−1

]
=

[
Ỹp+
Ỹf−

]
. (49)

The modified input block-Hankel matrices Ũ0|2i−1, Ũp,
Ũf, Ũp+ , and Ũf− are defined analogously with y replaced
by u. Finally, the modified state sequences X̃p, X̃f, and X̃f−

are defined as

X̃p
�= [x0 · · · xq−2i+1 xq+1 · · · xN−2i], (50)

X̃f
�= [xi · · · xq−i xq+i+1 · · · xN−i], (51)

and

X̃f−
�= [xi+1 · · · xq−i+1 xq+i+2 · · · xN−i+1]. (52)

These modified state sequences have a gap of 2i − 1 time
steps when one data point (uq or yq) is missing. X̃p is missing
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states from time step q − 2i + 2 through time step q, while
X̃f is missing states from time step q − i + 1 through time
step q + i.

It is straightforward to check that theorems 1 and 2
hold when the modified block-Hankel matrices Ỹp, Ũp, Ỹf,
Ũf, and the modified state sequence X̃f are used instead of
Yp, Up, Yf, Uf, and Xf, respectively. Thus by using these
modified block Hankel matrices, subspace identification
can be performed when data are missing.

The modified subspace algorithm for dealing with miss-
ing data points is used for linear subspace identification
and the two Hammerstein-Wiener identification algorithms
described above. However, if the missing data occur at
intervals of less than 2i, then identification is not possible
since all columns of the Hankel matrices must be discarded.

IDENTIFICATION OF PERIODICALLY 

SWITCHING MODELS

To identify periodically switching models, consider the lin-
ear time-varying model

xk+1 = Akxk + Bkuk + wk, (53)

yk = Ckxk + Dkuk + vk, (54)

where Ak, Bk, Ck, and Dk are assumed to be periodically
switching with period ρ. The switching occurs at time steps
νρ, νρ + r1, νρ + r2, . . . , νρ + rτ−1, where ν is an integer, τ is
the number of different sets of state-space matrices, and
r0 = 0 < r1 < r2 < · · · < rτ−1 < ρ are the offset switching
times. Since the state-space matrices remain constant between
switching times, it follows that, for σ = 1, . . . , τ − 1,

Arσ−1 = Ak, rσ−1 ≤ k ≤ rσ − 1 (55)

and similarly for Bk, Ck, Dk.
To identify the σ th set of state-space matrices, the data

points corresponding to all of the other sets of matrices are
viewed as missing data points as shown in Figure 8. Sub-
space identification with missing data discussed in the pre-
vious section is then used to estimate the state-space
matrices. Since one missing datum causes a gap of 2i − 1
state estimates in the estimated state sequence as seen in
(51), the offset switching times rσ must satisfy

rσ − rσ−1 ≥ 2i, σ = 1, . . . , τ − 1. (56)

Periodically switching Hammerstein-Wiener models
are identified using the missing-data modification along
with either the basis-function optimization algorithm or
LS-SVMs. For basis-function optimization the gradient
expressions (19)–(22) now involve products of the switch-
ing dynamics matrices A1, . . . , Aτ . For example, consider
three sets of switching matrices as shown in Figure 8 with
r1 > 4. Then, for i = 4 and k = ρ − 2 in (19)–(22), the term
ĈÂk−i−1B̂ becomes Ĉ3Âρ−2−r2

3 Âr2−r1
2 Âr1−4

1 B̂1 .

IDENTIFICATION USING ACE 

AND MAGNETOMETER DATA

Time Shifting of the Input Data
For system identification, the IMF and solar
wind data measured by ACE are used as
model inputs, while the ground-based mag-
netometer data are used as model outputs. In
the region between ACE and the magne-
topause, the solar wind is unobstructed and
thus can be assumed to be constant. Hence,
since the solar wind takes an additional 30 to
90 min to travel from ACE to the magne-
topause, there is a time delay between the
ACE measurements and the inputs entering
the magnetosphere. This time delay, which
depends on the solar wind velocity, is given
by D1/Vx, where Vx is the x component of the
velocity of the solar wind, and D1 is the dis-
tance between ACE and the magnetopause.

FIGURE 9 The velocity of the solar wind as a function of time for January 1999. This

plot indicates that the velocity of the solar wind changes substantially over the course

of a month. This change in the velocity implies a variable delay between the ACE

measurements and inputs reaching the magnetosphere.
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Figure 9 shows the velocity of the solar wind as measured by
the ACE satellite for the month of January 1999. As seen
from Figure 9 the solar wind velocity typically varies
between 300 km/s and 900 km/s. To identify models that
take into account the time delay, we advance the ACE data
by time t = D1/Vx. That is, each measurement is advanced
by a different amount of time depending on the current solar
wind velocity. Figure 10 shows a schematic of the ACE data
shifting. Measurements made by the ACE satellite
are thus inputs to the model at a time D1/Vx into
the future. The identified models thus have a real-
time predictive capability of 30 to 90 min.

Input Selection and Model Switching

Physics suggests that combinations of compo-
nents Bz and By of the IMF play a role in deter-
mining the size, shape, and dynamics of the
magnetosphere. In particular, terms that are
potentially useful include [7], [33]
Bs,VxBs,V2

xBs,VxBz,VxBt , and BtVx sin4(θ/2) ,
where Bt

�=
√

B2
y + B2

z , θ �= cos−1 (Bz/B t), Vx is the
x-component of the velocity of the IMF, and 

Bs
�=

{
Bz, if Bz < 0,

0, if Bz ≥ 0.
(57)

Testing all  of these terms shows that
BtVx sin4(θ/2) yields the least prediction error.
In addition to the inputs through the Hammer-
stein nonlinearity, inputs that enter linearly
into the dynamical system are also used. These
linearly entering inputs are chosen from sever-
al candidate inputs using the error search algo-
rithm described in the next section.

As seen from Figure 4, the size and shape of the
magnetosphere on the daytime side and nighttime side of the
Earth are significantly different. As a consequence of this
asymmetry the flow patterns and the dynamics on the daytime
side and nighttime side of the Earth are different. However,
this asymmetry and the resulting differences in dynamics are
fixed in a sun-fixed coordinate system, whereas the ground-
based magnetometers rotate along with the Earth. The ground-
based magnetometers thus measure magnetic perturbations in
the daytime side and nighttime side alternately, with a 24-h
periodicity. A periodically switching Hammerstein-Wiener
model is used to capture this one-day periodicity and model
the different dynamics governing the daytime side and night-
time side of the magnetospheric system.

Overfitting Determination

Candidate model inputs include Bz, By, Bx, plasma density,
Vx, Vy, Bt, and BtVx sin4(θ/2). Since all of the above candi-
date inputs can be used for identification, there is a risk of
overfitting [34], which can hamper the predictive capabilities
of an empirical model. Overfitting is a result of either nonre-
peatable effects such as noise or model/system mismatch. To

avoid overfitting, an error search algorithm is used to rank
the inputs in the order of their importance. Specifically, the
error search algorithm systematically adds one input at a
time and evaluates the prediction error. The prediction error
is evaluated as 

∑N
i=p(y(i) − ŷ(i))4 , where p is the first data

point in the prediction region. A quartic error function is
used instead of a quadratic function to emphasize the peak-
finding ability of the model. If the prediction error degrades

FIGURE 11 Illustration of the error search algorithm. Each branch in

the plot represents an additional input in the model. Starting from

the point marked with ×, in the first few branches the fit error and

prediction error are both decreasing, but later the prediction error

increases, indicating overfitting.
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when an input is included, then that input is dis-
carded, even if the fit error improves substantially.
This test is performed for all of the candidate inputs.
A typical outcome of the error search algorithm is
shown in Figure 11, where each branch in the plot
indicates an additional input to the model. Based on
the error search algorithm the most effective linearly
entering inputs are density, By, Bz, and Bt, whereas
the input entering through the Hammerstein non-
linearly is BtVx sin4(θ/2).

Regularization

We use regularized least-squares to obtain bet-
ter estimates than the standard least-squares
solution. In LS-SVM identification algorithm in
[30], [35], Tikhonov regularization is incorporat-
ed into the subspace algorithm. Similarly, in the
Hammerstein-Wiener identification method
based on basis-function optimization, we use
regularization in the least squares step to obtain
improved estimates of the state-space matrices.

Identification Results

For illustration, data for the month of January
1999, with a sampling period of 15 min, are used to
build periodically switching Hammerstein-Wiener
models. Data from the first 15 days are used for
identification, while data from the next 16 days are
used for validation. The output of the periodically
switching Hammerstein-Wiener model for THL,
identified using the basis-function optimization
method is shown in Figure 12. In this model, the
dynamics order is chosen to be eight as determined

by examining the singular values of Oi according to Theo-
rem 2, and switching between four sets of state-space
matrices occurs at regular time intervals of 6 h each as
shown in Figure 13. As indicated by Figure 12, transients at
the switching interface are typically not significant, and
thus interpolation schemes are not employed. Furthermore,
thin-plate spline radial basis functions are used to represent
both the Hammerstein and Wiener nonlinearities. In the
figure, data to the left of the black vertical line are used for
identification, while the identified model is used to predict
the data to the right of the vertical line. Identification is
repeated with the data for the seventh day assumed to be
missing. The model output is shown in Figure 14.

Model Validation

The prediction efficiencies Ep of the periodically switching
Hammerstein models are calculated as [7]

Ep
�= 1 −

∑

k

(yk − ŷk)
2/σ 2

y , (58)

where σ 2
y is the variance of the measured output y. From

Table 4, the prediction efficiency for periodically switching

FIGURE 13 Switching times for the identified periodically switching

Hammerstein-Wiener models. To capture the different dynamics dur-

ing daytime and nighttime, the periodic model switches between four

sets of state-space matrices. While the daytime and nighttime mod-

els represent the dynamics during periods of light and dark, respec-

tively, the dawn and dusk models represent transition dynamics.
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Hammerstein-Wiener model identified using basis-function
optimization is seen to be above 70% for both the amplitude
B and the fluctuation dB/dt of the magnetic field. Next, peri-
odically switching Hammerstein-Wiener models for the
ground-based magnetometer stations KTN and STF are
identified using the basis-function optimization method. The
prediction efficiencies for the magnetometer stations listed in
Table 1 as a function of the local time are shown in Figure 15.

Furthermore, we examine the frequency content of the
residuals by computing the FFT of the prediction error.
Figure 16 shows the frequency content of the residual
between the measured data and the predictions of the
Hammerstein-Wiener model for the Thule ground-based
magnetometer identified using basis-function optimiza-
tion. The spectrum of the residual does not indicate pres-
ence of prominent unmodeled linear effects. Additionally,
the correlation coefficients of the residual with the inputs
are all less than 0.15.

TABLE 4 Prediction efficiencies for the identified models of the Thule magnetometer, obtained from the periodically switching
Hammerstein-Wiener methods. Ep,B is the prediction efficiency in predicting the amplitude of the magnetic field, while Ep,Ḃ
is the prediction efficiency in predicting the magnetic-field fluctuations. A prediction efficiency of Ep = 1 corresponds to
perfect prediction.

Identification Method dim f Order of L dim g Ep,B Ep,Ḃ

(r) (n) (s)

Basis-function optimization 49 8 31 0.9189 0.7389

FIGURE 14 Measured and predicted data of the Thule magnetometer

with the periodically switching Hammerstein-Wiener model identified

using the basis-function optimization method. For this plot, the data

for the seventh day are assumed to be missing. Data to the left of

the vertical line are used for identification, while data to the right of

the vertical line are used to assess the prediction ability of the identi-

fied model. The prediction efficiency in the above plot is 0.9142.
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T o illustrate regularization, consider

zk = θφk + ek , (S1)

where φk ∈R
nφ and zk ∈R

nz are known, ek ∈ R
nz is unknown

measurement noise, and θ ∈ R
nz×nφ is to be determined. We

define the cost function Jls(θ) to be the sum of squared errors

Jls(θ)
�=

N∑

k=1

‖θφk − zk‖2
F, (S2)

where N is the number of measurements. Defining

z
�=[z1 · · · zN ] ∈R

nz×N and φ
�=[φ1 · · ·φN ] ∈ R

nφ×N , assuming

that rank(φ) = nφ , and minimizing (S2) yields the least-

squares solution

θ̂ls = zφT(φφT)−1. (S3)

When φφT is ill conditioned, some components of θ̂ls may be

large. Ill conditioning of φφT may result from overparameteriza-

tion, which occurs when θ has more components than needed.

Regularization [34], [35], [39], which is a modification of stan-

dard least squares, is useful when φφT is ill conditioned. Regu-

larization involves augmenting the least-squares cost with a

function of the unknown parameters. The most commonly used

regularization method is Tikhonov regularization [39] (also called

ridge regression) in which the regularized cost function is

Jrls(θ)
�=

N∑

k=1

‖θφk − zk‖2
2 + γ ‖θ‖2

2, (S4)

where γ > 0 is the regularization parameter. The regularized

solution that minimizes (S4) is

θ̂rls = zφT(φφT + γ I)−1. (S5)

By adding γ I to φφT in (S5), γ has little effect on the signifi-

cant eigenvalues of φφT (that is, eigenvalues λ such that

λ � γ ), while the small eigenvalues (satisfying λ � γ ) are

essentially set to γ . Since the condition number of φφT + γ I is

approximately λmax/γ , where λmax is the largest eigenvalue of

φφT, γ is chosen to improve the condition number of φφT with-

out affecting the large eigenvalues of φφT.

In simplified terms, the penalty term γ ‖θ‖2
F in (S4), reduces

the components of θ that are not useful in minimizing Jls. How-

ever, regularization tends to increase bias in the estimates com-

pared to standard least squares [34].

As noted in [30] subspace-based Hammerstein identification

using basis functions is an overparameterized method. This

overparameterization leads to ill conditioning of the matrices

involved in the least-squares step for estimating the state space

matrices A, B, and C.

What Is Regularization?
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CONCLUSIONS

A Hammerstein-Wiener identification algorithm is consid-
ered for application to the magnetospheric system. A modi-
fied subspace algorithm that allows missing data points is
described and used to identify periodically switching mod-
els. To capture the periodically time-varying nature of the
system, periodically switching Hammerstein-Wiener models
are then identified using the two Hammerstein-Wiener iden-
tification methods. The inputs to the models are measure-
ments from the ACE satellite, which is located at the first
Lagrangian point between the Sun and the Earth, while the
outputs of the model are ground-based magnetometer read-

ings. The identified models are used to predict future mag-
netic fluctuations at 3 ground-based magnetometers and are
validated using prediction efficiencies. Future work is
expected to focus on additional lower latitude magnetome-
ters and identification based on alternative model structures.

As discussed in “Real-time Web-based Magnetometer
Data Prediction,” identification using the basis-function opti-
mization method is implemented to identify models and pre-
dict data for several ground-based magnetometer stations.
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FIGURE 16 Frequency content of the residual between the actual

data and the predictions made by the Hammerstein-Wiener model

for the Thule ground-based magnetometer identified using the

basis-function optimization method. The spectrum of the residual is

not flat and shows significant content at low frequencies, which sug-

gest that the identified models do not capture all the features of the

actual system.
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Real-Time Web-Based 
Magnetometer Data Prediction

To provide advance warning of future solar storms, a website

for real-time magnetometer data prediction [40] is being

developed. This website provides real-time prediction of

ground-based magnetometer data for 30 to 90 min into the

future depending on the currrent solar wind velocity.

The most recent ACE and ground-based magnetometer

data are downloaded every minute from the Web site [41].

Using this data, periodically switching Hammerstein-Wiener

models are identified once per day. A different periodically

switching Hammerstein-Wiener model is identified for each

magnetometer station. These models are then used with

advanced ACE data to generate predictions of ground-based

magnetometers, and the prediction plots are displayed on the

website. These prediction plots are updated every 10 min.

Thus, these predictions are generated continually, 24 hours a

day, 365 days a year. All of the above steps are achieved

through automated UNIX and Matlab scripts. For maintenance

purposes extensive log files are also maintained.

Since the Sun rotates around its own axis with a periodicity

of 27 days, the Earth is exposed to certain anomalous features

of the solar surface every 27 days. Due to this periodicity some

characteristics of the solar wind repeat every 27 days. To take

advantage of this repeatability, the last 27 days of data are used

for identifying the current model for web-based prediction.

Currently, the real-time prediction website provides predic-

tions for the four ground-based magnetometers listed in

Table S1. However, data for 32 magnetometers spread over the

northern hemisphere are downloaded in real time. Predictions

of magnetometer data for all of these magnetometer stations

are expected to be added to the Web site.

Due to computational limitations, the optimization step of the

basis-function optimization method is not used to construct the

Web site models. Also, the error search algorithm that chooses

model inputs as well as the tuning of the regularization parame-

ter are performed offline.

FIGURE 15 Prediction efficiencies as a function of local time for

three ground-based magnetometer stations. For all three sta-

tions, Hammerstein-Wiener models are identified using the

basis-function optimization method. The prediction efficiencies

are best for the ground-based magnetometer at Thule, which is

a high-latitude station.
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