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Lyapunov-based backward-horizon adaptive stabilization
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SUMMARY

In this paper we develop a discrete-time adaptive stabilization algorithm based on a one-step backward-
horizon cost criterion. By optimizing the cost with respect to the update step size, we obtain a gain
update law that guarantees convergence of the plant states. The convergence proof is based on a
modified Lyapunov technique. We extend the algorithm to include integral control for rejecting
constant disturbances and we present an experimental application to DC motor positioning system.
Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although there is no precise definition of adaptive control, one can say intuitively that an
adaptive controller operates by adjusting parameters in response to the behaviour of the plant.
For continuous-time systems, direct adaptive control algorithms have been developed based on
Lyapunov methods [1-5]. The proofs of stability and convergence often depend on the existence
of a reference stabilizing controller (called a ‘dummy gain matrix’ in Reference [3, p. 67]),
although knowledge of a stabilizing controller is not needed. For output feedback, these results
are generally limited to minimum phase systems with known relative degree.

Direct adaptive control algorithms have also been developed for discrete-time systems
[1, 4-13]. However, unlike the continuous-time case, these discrete-time results are based on
RLS or LMS algorithms rather than Lyapunov methods. In particular, the approach developed
in Reference [6] is based on a convergence result called the Key Technical Lemma (Lemma 6.2.1,
pp- 181-182, [12]) which can be applied to RLS or projection-based adaptive control methods.
This approach is extended to certain classes of non-minimum phase plants in References [14, 15]
and to plants with disturbances in Reference [16]. Extensions of this approach to smooth
stabilization with unknown high frequency gain are given in References [17, 18].
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Lyapunov synthesis for adaptive control is more straightforward in continuous time because
the Lyapunov candidate can usually be chosen such that the derivative is linear in the error
states [19]. Nevertheless, Lyapunov techniques have been used for discrete-time direct adaptive
control algorithms in References [20-23]. The work in References [20, 21] is based on an RLS
approach for model-reference adaptive control in which a cost function based on past input—
output data is minimized with respect to the current controller parameters. Such an approach is
retrospective in the sense that it optimizes controller performance based on past data. A
conceptually similar approach is used in Reference [22], where the controller update gradient is
based on a window of past data. In Reference [23], a one-step-ahead cost function is used to
determine the optimal control signal; however, implementation of this algorithm depends on the
choice of two positive-definite matrices that need to satisfy an a priori unverifiable stability
condition. In addition, the Lyapunov function for stability analysis of the update law in
Reference [23] is based on a parameter identification problem and thus does not explicitly
involve the states of the plant and controller.

In this paper, we develop an alternative approach for full-state feedback based on a modified
Lyapunov technique and an adaptive step size. We begin by considering an update law for the
feedback gain matrix based on minimizing a time-dependent cost function that involves the state
at the current time step. The gradient of the cost function with respect to the gain matrix at the
previous time step provides an update direction, while the step-size in the gradient direction is
chosen such that the distance from the updated gain matrix to the optimal gain is minimized.
This optimization is a one-step backward-horizon procedure because the current gain matrix,
which affects the state at the next time step, is updated based on the prior cost function
involving the current state. An analogous step size is used in References [24-26] within the
context of Reference [6], and also in Reference [22] as a key element in an adaptive disturbance
rejection algorithm.

We present the main results in Section 2. Implementation issues are discussed in Section 3. In
Section 4, we augment the adaptive stablization controller with an integrator to reject step
disturbances. Numerical examples with single input and multiple input plants are presented in
Section 5, experimental results are given in Section 6, and conclusions are in Section 7.

2. ADAPTIVE STABILIZATION ALGORITHM

Consider the discrete-time system

Xiy1 = Axy + Buy (1)
where x; € R™, u, € W™ and k =0, 1, ... denotes the time step. We assume that the pair (4, B) is
stabilizable and rank(B) = n,. Furthermore, we assume there exists K e R™*™ such that
As = A + BK is asymptotically stable and known. However, we do not assume that we have

sufficient knowledge of 4 and B to actually determine K. Therefore, our objective is to
determine a full-state-feedback control law of the form:

Up — kak (2)

such that the origin of the closed-loop system (1), (2) is attractive with respect to x;. The
adaptive gain matrix K; is updated at each time step k to yield the next gain matrix K.
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In certain cases these assumptions can be satisfied with minimal knowledge of the system
parameters. For instance, for a single input system in companion form, we do not require
knowledge of the last row of 4. Additional details as well as a multiple input example are given
in Section 5.

To derive an adaptively stabilizing control law, we consider the one-step cost function

JK) = 3 (OPer(K) @

where &;(K) = x511(K) — x511(K5), xi01(K) = (4 + BK)xy, the state at time k 4+ 1 when the gain
matrix K is used at time k, and P € R™ is a positive-definite matrix. Note that x; 1 (Ks) = Asxy.
We also define

JHK) =K — K% )

Let o1max(4) denote the maximum singular value of 4, let 7, denote the n x n identity matrix, and
let Z* denote the set of nonnegative integers.

Lemma 1
Consider the gain update law

OJx

e Kk= Ky — 0B Per(Ki)x; ®)

Kir101;) = Kie

where 17, € R and k€ Z*. Let N € R™ satisfy N'N = P. Then the following statements hold:
(1) If &x(Kx) = 0, then Kyy/(n;) = Ki for all n, € R.
(i1) If &(Ky)#0, then 7, given by

. INex(Ki)ll3
o= (6)
BT Per(Ki)x I3

is positive and minimizes J(Ky(17,)) with minimum value

INex (Kol

Ji(Ki1 (i) = Ji(Kp)) — ———F22
K (Ki+1(1k)) = Ji(Ky)) BT Poc(KoxT |12

(7
(iii) Suppose & (Ky)#0. Then jk(Kk+1(nk))<jk(Kk) if and only if #n; € (0, 24;). Furthermore,
Ji(Kiy1(n,)) = Jx(Ky) if and only if either , = 0 or 7 = 2.
Let {n;}ie+ be a sequence of positive real numbers, let Ky e R™*™, let {K;},~, be the
sequence generated by (5), and let S= {k € Z* : (K})#0}. Then the following statements hold:
(iv) If S is empty, then

lim x; =0 ®)
k—00
(v) If S is not empty and
sup |k ’<1 9)
keS Mk
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then
IV e (Kl
=0 10
I W 1o
Proof
To prove (i) let &(Ky) = 0. Then (5) implies K+1(17;) = K for all ;. To prove (ii), define
K =Ky — K, (11)
and rewrite (5) as
Kii(n) = Ki — 0BT Pep(Ko)x (12)
Now using (1), (2) we can write
Xir1(Ki) = (As + BK)x; (13)
which implies
er(Ky) = BKx; (14)

From (12) and (14) it follows that
JeKi1(1) =K )l
=IKs — 0BT Pep(Ki)xf |17
= Ji(Ky) + | BT PBR xix] |27 — 2tr(B"PBK ixixf Ky,
= J(Ky) + |B"PBK xix] (I — 2INBK x| 3y
= Ji(Ky) + |IB" Per(Ki)xg [[gn; — 21INex (Kol 3y
= Ju(Ky) + n(ny, — 2030)|1BT Per(Ki )y ||
= Ji(Ki) + (1, — ii6)* — ADIIBT Per(Kix/ |13 (15)

To minimize Jk(KkH(r]k)) we proceed as follows. By (14), &x(Ky)#0 implies Kyx; #0 and
x;#0. Hence Kyxxl #0. Since B'PB is non-singular, it follows that ||BTP(O,((K,()xz||F =
||BTPBkakxg||F #0. Therefore #j; can be defined by (6) and 5, = 7, minimizes J;(Ki,1(y,)) with
().

To prove (iil) assume J(Ky+1(1;)) — Jx(Kx) <0. Then by (15)

(1 — 20)||B" Per(Kix |l <0 (16)

which implies 0<; <27. Conversely, 0<un; <2#; implies (16), which implies Ji(Kii1
() — Je(Ky) <0 by (15). Setting Ji(Ki+1(1;)) = J(Ky) in (15) yields n, = 0 or ;. = 24jy.

To prove (iv) let ¢,(K;) = 0 for all k € Z*. This implies x;,| = A,x; for all k € Z*. Since Ag is
asymptotically stable, it follows that (8) holds.
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To prove (v), define

)= sup

Wq’ (17)
s

By (9), y<1, hence n;, € [(1 — )ik, (1 + )ik < (0, 27) for all k € S. Hence 1, #0 and n, # 24;.
Furthermore, as in the proof of (ii), ||BTP.9k(Kk)xE||% #0 and n;, <27;. Now let k € S.
Using (6) and (15) we have

1K1l — IKElE = ne(nilIBT Pe(Ki)x I — 2[INex(Ki)ll3)
= el — 200NIBT Per (K I
<0 (18)

Since S is not empty, there exists a positive integer n > 0 such that ¢ (K,)#0. Let ryp > n and,
for all > ry, define the non-empty set S, = {k : 0<k<r and &/(K;)#0}. For r> ry, it follows
from (18) that

o 112 112 112
1KollF = 11Kollf — 1Kl
r
> 112 112
= > (IKAE — IKe1F)
k=0

= > 2k — n)IIB" Per(Kix] |17
keS,

>0 (19)

Let »>ry, let k€ S,, and consider the function ¢(n) = n(2#7; — n) defined on the interval
L =[(1 — ), (1 4+ y)]- Since g(-) is quadratic, it follows that

(1 — it = min g1) = g((1 = )ie) = g((1 + 7))
Hence,
N2k — )= (1 —9?)i; for ally € [(1 — )ik, (1 + )il (20)

Using (6) and (20), we can rewrite (19) as

R New(Ko)||4
IRolE> (1 — 33 S0 N K
ies. 1B Per(Kp)x; |Ig

(=Y — eI,
' ||BT Per(Ki)x] NTN T

> INe(K)ll3
==y )Z PETEV b} PTEVARTIE
ies. INBgl N ex(Kio)lla | [Nxe | [5IN I

) INec(Ki)ll3
>(1-") oo = A
kes,”NBHF”kaHzN “F
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or
INe (KI5
kes, ||ka||2
where = ||Ko|[#INB|ZIN'|[2/(1 — ?). Letting » — oo yields
New(K,
Z IV e ( k)||2\ @1
kes |ka||2

Next, define the set S’ =Z*\ S and note that &(K;) = 0 for all k € §’. If k € §' and x; = 0 then
x; =0 for all />k. Hence assume that x;#0 for all ke S For keS, we have |[Ng x
(KB /IINxi |3 = 0. Therefore, it follows from (21) that (10) holds.

<p

Theorem 1

Assume there exists K, € R™*"* such that 4; = 4 + BK, is asymptotically stable, let R € R™*™
be positive definite, and let P € R™*™ be the positive-definite solution to

=ATPA+ R 22

Let the control be given by (2) with the gain update (5) and with {,},c,+ satisfying (9). Then
lim x; =0 (23)
k—o00

Proof

If S is empty, the result follows from (iV) of Lemma 1. Hence assume S is not empty and
consider the Lyapunov candidate V(x;) = x} Px; + ||Kk||F Then using (22) and (iii) of Lemma 1,
we have

V(xer1) — V) =xp, Poeet — X3 P+ [|Kp g — [1KelE
< Xy Pyt — X Py
= (Asx; + ak)TP(Asxk + &) — le"bck
=x; (AT PAs — P)xy + &] Pey + 2¢] PAsxy,
= — kaxk + CkPSk + 2skPAgxk
< = xp Ry + 2|\Nexl L INAgxil |, + [INecll3

where N € R™"" satisfies NTN = P. Thus,
V(xiet) = Vi) < = xg Reg + 20INexl b INAN ™ Naglly + Vel 3

< — xR + 2N el LIINASN Il INxi Ly + [IN x5

— Xp R + 20max (NAN )Nl o |Nxello [Nl + 1N eell3
Now, since NTN = P, (22) implies
L, = AT4, + R (24)
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where A, = NAN~" and R=N-TRN! is positive definite. Thus, omax(4s) < 1. Therefore,
V(xir1) — V) < — xR + 2/ NelloINxelly + [INel3 (25)

Let 0 > 0. By (v) of Lemma 1, there exists a positive integer ks such that ||Neg||, /|| Nxk|l, < d for all
k > ks. Then for k > ks we can write
V(xie1) = V) < — x; Ry + 20]|Nxel[3 + 67| Nag 3
< —x{[R— (20 4 6*)Pxs (26)

Now choose & sufficiently small such that R—(28 + 6%)P is positive definite. Next, for k > ks,
define the translated system

%, = (A +BK)%, k=0 (27)

where k = k — ks and X; éxkayé' Using (26), it follows from Theorem 6.3 in Reference [27] that,
for the translated system (27) with initial condition Xy = xy,, fckT[R — (26 4+ *)P)&; — 0 as k —
oo. Hence lim;_ X; = 0, and thus lim;_,x; = 0.

The following result provides an alternative step size that guarantees decrease of the cost
function J;. This result provides a one-step backward horizon interpretation for the gain update
law (5).

Proposition 1

Let &:(Ky)#0 and define

s IBTPe (KD
nk - T2 (28)
INBBT Per(Ki)x |l
Then the following statements hold:
(i) #} is positive and minimizes Ji(Kj1(1;)) with minimum value
XL |BY Per(Kp)||3
DKo 1) = (k) — B Lo Rl 29)

2|INBBT Pey (K] Il
(1) Je(Kir1(np)) <Ji(Ky) if and only if i, € (0, 255). Furthermore, Ji(Kiy1(n;)) = Ji(Ky) if and
only if either n, = 0 or u; = 2n}.
(ii1) If & (Ky) #0, then 1’[;5<ﬁk
(iv) If & (Kx) #0 and n, = 1, then n} = 7.
Proof
To prove (i), use (14) to write

|- ,
Ji(Ky) = 5x}K{BTPBkak (30)
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Using (12) and (14) we obtain

Ji(Ki1(ny)) = %xgkk+l(’7k)TBTPBkk+l (n)xi
=Ji(Ky) + %(xzxk)z[ng(z(BTPBffkak]ﬂ;zc — xpxlo K (B'PBY Kixi
= J(Ke) + e xINBBPBR o I — <D |BTPBR cxln,
= J4(K0) + 5t — 20DINBE P (K] I}

1
= Je(Ke) + el — )" = P JINBB' Per(Kix I (31)

As in the proof of Lemma 1, part (ii), it follows that »} globally minimizes (31) and satisfies (29)
The proof of (ii) is analogous to the proof of Lemma 1, part (iii).
To prove (iii), let C =[v  B"PBuv]", where v= (BTPB)'/?Kx;. Since det(CCT)>0 we have

UTU[UT(BTPB)zlJ] — (UTBTPBU)2 >0 (32)
Since ¢;(Kj)#0, it follows that Kixi #0, x, %0 and v#0. Therefore,
«  UBPBy vl
M= x v (BTPB)*v  x[ x0T BTPBy

= Tk (33)
To prove( iv), let n, = 1. Then BTPB is a scalar and (33) holds with equality.

Remark 1

Note that Ky is computed using the knowledge of x; and x| at time k + 1. The updated
gain Kj, is used to propagate the state from x;.| to x5.2.

To compute the updated gain matrix K, we need the gradient direction of the cost function
Jr as well as a step size 7, to move along this direction. To compute the step size #; that
minimizes the current cost J;. (K1), it can be seen from the definition of J; and g; that we
require knowledge of the state x;., at time k£ + 1. Since x;., is not available at time & + 1, we
instead minimize the prior cost Ji(Kj+ ) with respect to the updated gain matrix K. However,
the prior cost J;(K}) has already been incurred by using Kj to move from x; to x;,;. Therefore
minimizing Ji(Ki+1) is a one-step backward horizon cost optimization. Note that »} may not
satisfy (9), and thus, there is no guarantee of (23). Theorem 1 guarantees stability for an open
interval around the larger step size #; which minimizes the norm of the distance between K|
and K;. The relation between the step sizes is shown in Figure 1.

3. IMPLEMENTATION

As an application of Theorem 1, consider the single-input system in companion form

A [O(nxl)xl lnxll’ 5 [0(11X])x]] 9
a b
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K Phase Space

Level Curves of Ji (K)

Maximum Decrement in J

N
Optimal Approach to Ks ™k

Maximum step size for Ji (K ) decrease Gradient Direction

Maximum step size for stabilit

Figure 1. Schematic diagram of the step sizes nfand #j in terms of the costs J; and Jr.

where a € R and b#0 € R. Define

By

O —1)x1
sign b

Letting K = %(aS — a), where a; € RV it follows that
Ay 0 1( ) Ay
Yay —a) =
b b as

where ag is chosen such that A is asymptotically stable. Since the choice of a; does not depend
on knowledge of either a or b, it follows that the solution P of the Lyapunov equation (22) can
be determined without knowledge of either a or b.

Similarly, we can implement the control law (2), (5) without knowledge of K for systems with
decoupled inputs. We require knowledge of the rows of 4 that are not assignable by an input.
We also require that B be of the form B = |b|By, where By is known. An example of such a

+
a
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system is the double companion form with decoupled inputs and coupled states

Onxt Ln Opscusn 0u—1x2
aq 1 0
A= B = b (35)
Onxt 1y Opxurn 0u—1x2
ar 0 1

where ay, aye R+ This system can be stabilized without knowledge of the row vectors ay, a>
or the matrix K.

4. INTEGRAL CONTROL
Integral control for rejecting constant disturbances can be incorporated into the algorithm as

follows. Consider the closed-loop system
Xk+1 = Ay, + Buy + d (36)

ur = Kixyp + v (37)

where de R" is an unknown constant disturbance. Assume that there exists K, such that
As = A + BK, is asymptotically stable, and also that there exists v such that Bvg = —d.
From (37) it follows that

up = KXy (38)
where K; =[K; v;]and x; =[x} 1]7, and thus the closed-loop system can be written as
Xe1(Kp) = (A + BROX + d (39)
where AA[LA ﬂ, B= [Ig] and d = {g] )
Next, define
ex(Ki) = X (Ky) — (v + d) (40)

where A; = A + BK with K, =[K, uvs]. Note that

N X1 (K) — Asxe
Sk(Kk) = [ (41)
0
which can be calculated using 4y and a measurement of x;.
To derive the adaptive constant disturbance rejection law, we define the cost functions
N I
i) = 56; (Ri) Pex(K ) (42)
T =012
Tk 2| — K| 3)

where P is positive definite.
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Lemma 2 Consider the gain update law

N - aJ, - Srs o
Ria(n) = K — | = Ki — BT Pen(R)x] (44)
Kz,
where 7, € R and keZt. Let N satisfy NTN = P. Then the following statements hold:
(1) If ex(Ky) = 0, then Kiyyi(n,) = Ky for all n, e R .
(i1) If &(Ky)#0, then 7, given by

o s
= —NM ““"({{")UZT ; (45)
|B" Pey (K )Xy I
is positive and minimizes J;(K;. (7)) with
s . Ney(Kpll3
TiRirie) = Ji(R) — Bl (46)

|BTPer(Ki)%] I}
 (ii)) Suppose &(Ky) #0. Then Ji(K11(n,)) <Ji(Ky) if and only if 5, € (0, 27;). Furthermore,
J(Ki1(1)) = Ji(Ky) if and only if either 1, = 0 or i, = 27 _ ;

Let {n;}re+ be a sequence of positive real numbers, let Ko e R™*™. let {K;},~, be the

sequence generated by (5), and let S = {k € Z* : &(K;) #0}. Then the following statements hold:
(iv) if S is nor empty and

sup 7—1‘— ‘<1 47)
keS Mk
then
i Ve KDl (48)
k=oc  ||NXk||,
Proof

The proof is identical to the proof of Lemma 1.
Theorem 2
Assume there exists K, € R™*™such that 4, =4 + BK, is asymptotically stable, let R e R
be possible definite, and let P € R™*"™ be the positive-definite solution to
P=A!PA,+R (49)

Define P = {Ig 0 } with 1> 0. Let the control be given by (38) with gain update (44) and with

22
{4} ke satisfying (47). Then
lim x; =0 (50)

k—00

Proof
From (48) in Lemma 2, it follows that for all 6 > 0, there exists a positive integer /; such that
New(K,
INe(Rol, s
N Xl
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for all k> I5. Using (41), (51) and the definition of N, it follows that

N 0 Xi+1 — Asxk N 0 -)Ck
<9 ) (52)
0 2 0 5 0 A1 [1]],
or
Nxj1 — NASN ™ Ny Nx; |
<9 (53)
0 2 Z 4112
Thus,

Nxgi1 — AsNxy
0

<O\/IINxell3 + 2% < S(lINxe | + 2) (54)

2

where, A, = NAN !, or
[N 1 — AgNacg ||, < O(|INce || + 2) (55)
Next, define
Hu = 0+ Gmax(/as) (56)

and note from (49) that gmax(As) < 1. We choose 6 such that u< 1, and thus, from (55), it follows
that, for all re Z™,

r—1

Nl <+ 04y 4 (57)
=
Thus,
. oA
lim sup [[Nxj/[l ST, (58)
r—00 —Hu

for all > 0 such that u<1 and for all /> 0. Hence,

lim sup [|Nxgr[l, = 0 (59)
rF—00
which implies that
lim [N /Iy = 0 (60)

and thus we obtain (50).

5. NUMERICAL EXAMPLES
In this section we illustrate the adaptive stabilization algorithm by means of a numerical
example. We consider a two-input example. At time £ = 30 the matrix 4 changes from 4, which

is open-loop stable, to 45, which is open-loop unstable. The controller is unaware of this change.
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The system is given by

0 1.0000 0 0 0 0
—0.1634 —0.1443 0.0294 —-0.0140 1 0
Ay = , B= (61)
0 0 0 1.0000 0 0
—0.2261 —-0.0585 —0.1165 —0.1793 0 1
0 1.0000 0 0
0.2486 —1.4897 0.3135 —-2.0251
Ay = (62)
0 0 0 1.0000
0.5290 0.3435 0.7582 —-0.6919
0 1.0000 0 0
0.2000 0.2000 0.1300 0.1600
As = (63)
0 0 0 1.0000

0.1000 0.1500 0.3000 0.3000

with xo =[78.26 52.42 —8.71 —96.30]" and the system is perturbed to the state
x30 =[—12.32 3.4 81 —7.965]". The simulation was run with N, = fix. Figure 2 shows
the open-loop and closed-loop performance using the adaptive disturbance rejection algorithm
of Section 2. Figure 3 shows # for the same simulation.

6. EXPERIMENTAL RESULTS

In this section we implement the discrete-time adaptive algorithm with integral control for
angular positioning of a Maxon brushless DC motor. The objective is to rotate a steel disc
mounted on the shaft through a prescribed angle. The motor is driven in torque mode by a
Copley Controls amplifier, which receives a voltage command from the controller. The disc
inertia, motor inertia, motor torque-current ratio and current amplifier gain are all unknown.
The controller is implemented on a dSPACE DS1103 system as a C-coded Simulink S-function.

Let the angular position of the disc be denoted by 0(f) and define the state vector

. [0t . . . .
x(t) = [ 0-8]. The system dynamics are given by the continuous-time state space model
0

Kummeolor
J

0 1
x(¢) = 0 o x(t) +

] V@ + ¢) (64)

where V() is the voltage input to the current amplifier, ¢ is an unknown constant input bias,
Kamp 18 the amplifier gain, Knoor i the torque constant of the motor, and J is the total inertia of
the disc and the motor armature.
Defining %" éKamp Kmotor/J and discretizing (64) using a zero-order hold equivalent at a
sampling rate of 7, we obtain
Xk+1 = Axy + BV + B¢ (65)
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i ll T] i [%TW]
A= , B= (66)
0 1 AT

We note that #" is unknown, and that the disc angular position and angular velocity are fed
back to the controller to allow full-state-feedback control. The control objective is to

where

. . 0 . .
asymptotically drive the system to a reference state x;er = { (r)ef} , that is, to rotate the disc to an

angular position 0.
Next, we note that the reference state satisfies the constant state tracking condition

(4 — L, )Xrer + Butrer = 0 (67)
with u.; = 0. Subtracting (67) from (65) we obtain
X1 — Xref = A(Xg — Xper) + BVi + B (68)
or
eir1 = Aex + BV + B (69)

where the error state e, =x; — xrof. Defining d = B¢, we obtain
epr1 = Aey + Buy + d (70)

We observe that (70) has the same form as (36), and hence we can use the adaptive integral
control algorithm of Theorem 2, which implies limj_,~e; = 0.

The control algorithm is implemented as follows. First, we specify 4 to calculate P. Let
Ks =[Kjs Kj). Then, from (66) it follows that

1+ Toy T+12

A=A+ BK, = (71)

o 1+ o

where oy =TH'K;s and o, =TA4 K. The coefficients of the second-order characteristic

polynomial of 45 depend on oy and «,, and thus, we can specify o; and o, to ensure that A

is asymptotically stable even though " is unknown. The constants o; and o, are chosen such

that the eigenvalues of A correspond to a damping ratio of 0.85 and a natural frequency of

10rad/s with 7' = 0.01s. 4 is used to determine P and to calculate ¢. /A is chosen to be 0.001.
Next, from (66) we note that

B = by
1

T

2] (72)
where by=T". # is assumed to be positive, and, although by is unknown, the adaptive
algorithm is robust to uncertainty in by with Figures. 4-7 showing results of two tests with by
chosen to be 1 and 50.

7. CONCLUSIONS

In this paper we derived a discrete-time adaptive stabilization algorithm and proved closed-loop
attractivity with respect to the plant states. Single and multiple input cases were simulated
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Figure 4. Angular position of disk for by = 1. Solid line: 0y, dashed line: Oy¢.
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Figure 5. Controller gains for by = 1. Solid line: Ky, dashed line: Ky, dash-dot line: vy.
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Figure 6. Angular position of disk for by = 50. Solid line: 0, dashed line: O,s.
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Figure 7. Controller gains for by = 50. Solid line: Ky, dashed line: K, dash-dot line: vy.
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numerically for unstable and abruptly varying plants, and experimental results were obtained on
a motor positioning system. Future work will involve extensions to output feedback.
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