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Lyapunov-based backward-horizon adaptive stabilization
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SUMMARY

In this paper we develop a discrete-time adaptive stabilization algorithm based on a one-step backward-
horizon cost criterion. By optimizing the cost with respect to the update step size, we obtain a gain
update law that guarantees convergence of the plant states. The convergence proof is based on a
modified Lyapunov technique. We extend the algorithm to include integral control for rejecting
constant disturbances and we present an experimental application to DC motor positioning system.
Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although there is no precise definition of adaptive control, one can say intuitively that an
adaptive controller operates by adjusting parameters in response to the behaviour of the plant.
For continuous-time systems, direct adaptive control algorithms have been developed based on
Lyapunov methods [1–5]. The proofs of stability and convergence often depend on the existence
of a reference stabilizing controller (called a ‘dummy gain matrix’ in Reference [3, p. 67]),
although knowledge of a stabilizing controller is not needed. For output feedback, these results
are generally limited to minimum phase systems with known relative degree.

Direct adaptive control algorithms have also been developed for discrete-time systems
[1, 4–13]. However, unlike the continuous-time case, these discrete-time results are based on
RLS or LMS algorithms rather than Lyapunov methods. In particular, the approach developed
in Reference [6] is based on a convergence result called the Key Technical Lemma (Lemma 6.2.1,
pp. 181–182, [12]) which can be applied to RLS or projection-based adaptive control methods.
This approach is extended to certain classes of non-minimum phase plants in References [14, 15]
and to plants with disturbances in Reference [16]. Extensions of this approach to smooth
stabilization with unknown high frequency gain are given in References [17, 18].
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Lyapunov synthesis for adaptive control is more straightforward in continuous time because
the Lyapunov candidate can usually be chosen such that the derivative is linear in the error
states [19]. Nevertheless, Lyapunov techniques have been used for discrete-time direct adaptive
control algorithms in References [20–23]. The work in References [20, 21] is based on an RLS
approach for model-reference adaptive control in which a cost function based on past input–
output data is minimized with respect to the current controller parameters. Such an approach is
retrospective in the sense that it optimizes controller performance based on past data. A
conceptually similar approach is used in Reference [22], where the controller update gradient is
based on a window of past data. In Reference [23], a one-step-ahead cost function is used to
determine the optimal control signal; however, implementation of this algorithm depends on the
choice of two positive-definite matrices that need to satisfy an a priori unverifiable stability
condition. In addition, the Lyapunov function for stability analysis of the update law in
Reference [23] is based on a parameter identification problem and thus does not explicitly
involve the states of the plant and controller.

In this paper, we develop an alternative approach for full-state feedback based on a modified
Lyapunov technique and an adaptive step size. We begin by considering an update law for the
feedback gain matrix based on minimizing a time-dependent cost function that involves the state
at the current time step. The gradient of the cost function with respect to the gain matrix at the
previous time step provides an update direction, while the step-size in the gradient direction is
chosen such that the distance from the updated gain matrix to the optimal gain is minimized.
This optimization is a one-step backward-horizon procedure because the current gain matrix,
which affects the state at the next time step, is updated based on the prior cost function
involving the current state. An analogous step size is used in References [24–26] within the
context of Reference [6], and also in Reference [22] as a key element in an adaptive disturbance
rejection algorithm.

We present the main results in Section 2. Implementation issues are discussed in Section 3. In
Section 4, we augment the adaptive stablization controller with an integrator to reject step
disturbances. Numerical examples with single input and multiple input plants are presented in
Section 5, experimental results are given in Section 6, and conclusions are in Section 7.

2. ADAPTIVE STABILIZATION ALGORITHM

Consider the discrete-time system

xkþ1 ¼ Axk þ Buk ð1Þ

where xk 2 Rnx ; uk 2 Rnu and k ¼ 0; 1; . . . denotes the time step. We assume that the pair (A, B) is
stabilizable and rankðBÞ ¼ nu. Furthermore, we assume there exists Ks 2 Rnu�nx such that
As ¼

4 Aþ BKs is asymptotically stable and known. However, we do not assume that we have
sufficient knowledge of A and B to actually determine Ks. Therefore, our objective is to
determine a full-state-feedback control law of the form:

uk ¼ Kkxk ð2Þ

such that the origin of the closed-loop system (1), (2) is attractive with respect to xk : The
adaptive gain matrix Kk is updated at each time step k to yield the next gain matrix Kkþ1:
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In certain cases these assumptions can be satisfied with minimal knowledge of the system
parameters. For instance, for a single input system in companion form, we do not require
knowledge of the last row of A. Additional details as well as a multiple input example are given
in Section 5.

To derive an adaptively stabilizing control law, we consider the one-step cost function

JkðKÞ ¼
4 1

2
eTk ðKÞP ekðKÞ ð3Þ

where ekðKÞ ¼
4 xkþ1ðKÞ � xkþ1ðKsÞ; xkþ1ðKÞ ¼ ðAþ BKÞxk ; the state at time k þ 1 when the gain

matrix K is used at time k, and P 2 Rnxn is a positive-definite matrix. Note that xkþ1ðKsÞ ¼ Asxk :
We also define

#JJkðKÞ ¼
4 jjK � Ksjj2F ð4Þ

Let smaxðAÞ denote the maximum singular value of A, let In denote the n� n identity matrix, and
let Z+ denote the set of nonnegative integers.

Lemma 1

Consider the gain update law

Kkþ1ðZkÞ ¼ Kk � Zk
@Jk
@K

����
Kk

¼ Kk � ZkB
TP ekðKkÞxTk ð5Þ

where Zk 2 R and k 2 Zþ: Let N 2 Rnx satisfy NTN ¼ P : Then the following statements hold:
(i) If ekðKkÞ ¼ 0; then KkþlðZkÞ ¼ Kk for all nk 2 R:
(ii) If ekðKkÞ=0; then #ZZk given by

#ZZk ¼
jjNekðKkÞjj22

jjBTP ekðKkÞxTk jj
2
F

ð6Þ

is positive and minimizes #JJkðKkþ1ðZkÞÞ with minimum value

#JJkðKkþ1ð#ZZkÞÞ ¼ #JJkðKkÞÞ �
jjNekðKkÞjj

4
2

jjBT P ekðKkÞxTk jj
2
F

ð7Þ

(iii) Suppose ekðKkÞ=0: Then #JJkðKkþ1ðZkÞÞ5 #JJkðKkÞ if and only if Zk 2 ð0; 2#ZZkÞ: Furthermore,
#JJkðKkþ1ðZkÞÞ ¼ #JJkðKkÞ if and only if either Zk ¼ 0 or #ZZk ¼ 2#ZZk :
Let fZkgk2zþ be a sequence of positive real numbers, let K0 2 Rnu�nx ; let fKkg

1
k¼1 be the

sequence generated by (5), and let S¼4 fk 2 Zþ : ekðKkÞ=0g: Then the following statements hold:
(iv) If S is empty, then

lim
k!1

xk ¼ 0 ð8Þ

(v) If S is not empty and

sup
k2S

Zk
#ZZk

� 1

����
����51 ð9Þ
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then

lim
k!1

jjNekðKkÞjj
jjNxk jj

¼ 0 ð10Þ

Proof

To prove (i) let ekðKkÞ ¼ 0: Then (5) implies Kkþ1ðZkÞ ¼ Kk for all Zk : To prove (ii), define

#KKk ¼
4
Kk � Ks ð11Þ

and rewrite (5) as

#KKkþ1ðZkÞ ¼ #KKk � ZkB
TPekðKsÞxTk ð12Þ

Now using (1), (2) we can write

xkþ1ðKkÞ ¼ ðAs þ B #KKkÞxk ð13Þ

which implies

ekðKkÞ ¼ B #KKkxk ð14Þ

From (12) and (14) it follows that

#JJkðKkþ1ðZkÞÞ ¼ jjK̂Kkþ1ðZkÞjj
2
F

¼ jj #KKk � ZkB
TP ekðKkÞxTk jj

2
F

¼ #JJkðKkÞ þ jjBTPB #KKkxkxTk jj
2
FZ

2
k � 2trðBTPB #KKkxkxTk #KKT

k ÞZk

¼ #JJkðKkÞ þ jjBTPB #KKkxkxTk jj
2
FZ

2
k � 2jjNB #KKkxk jj22Zk

¼ #JJkðKkÞ þ jjBTP ekðKkÞxTk jj
2
FZ

2
k � 2jjNekðKkÞjj22Zk

¼ #JJkðKkÞ þ ZkðZk � 2#ZZkÞjjBTPekðKkÞxTk jj
2
F

¼ #JJkðKkÞ þ ððZk � #ZZkÞ
2 � #ZZ2kÞjjB

TP ekðKkÞxTx jj
2
2 ð15Þ

To minimize JkðKkþ1ðZkÞÞ; we proceed as follows. By (14), ekðKkÞ=0 implies #KKkxk=0 and
xk=0. Hence #KKkxkxTk=0: Since BTPB is non-singular, it follows that jjBTP ekðKkÞxTk jj

2
F ¼

jjBTPB #KKkxkxTk jj
2
F=0: Therefore #ZZk can be defined by (6) and Zk ¼ #ZZk minimizes #JJkðKkþ1ðZkÞÞ with

(7).
To prove (iii) assume #JJkðKkþ1ðZkÞÞ � #JJkðKkÞ50: Then by (15)

ZkðZk � 2#ZZkÞjjBTP ekðKkÞxTk jj
2
F50 ð16Þ

which implies 05Zk52#ZZk : Conversely, 05Zk52#ZZk implies (16), which implies #JJkðKkþ1

ðZkÞÞ � #JJkðKkÞ50 by (15). Setting #JJkðKkþ1ðZkÞÞ ¼ #JJkðKkÞ in (15) yields Zk ¼ 0 or Zk ¼ 2#ZZk :
To prove (iv) let ekðKkÞ ¼ 0 for all k 2 Zþ. This implies xkþ1 ¼ Asxk for all k 2 Zþ: Since AS is

asymptotically stable, it follows that (8) holds.
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To prove (v), define

g¼4 sup
k2S

Zk
#ZZk

� 1

����
���� ð17Þ

By (9), g51; hence Zk 2 ½ð1� gÞ#ZZk ; ð1þ gÞ#ZZk � ð0; 2#ZZkÞ for all k 2 S.Hence Zk=0 and Zk=2#ZZk :
Furthermore, as in the proof of (ii), jjBTP ekðKkÞxTk jj

2
F=0 and Zk52#ZZk : Now let k 2 S:

Using (6) and (15) we have

jj #KKkþ1ðZkÞjj
2
F � jj #KKk jj2F ¼ ZkðZk jjB

TP ekðKkÞxTk jj
2
F � 2jjNekðKkÞjj22Þ

¼ ZkðZk � 2#ZZkÞjjBTP ekðKkÞxTk jj
2
F

50 ð18Þ

Since S is not empty, there exists a positive integer n > 0 such that ekðKnÞ=0: Let r0 > n and,
for all r > r0, define the non-empty set Sr ¼

4 fk : 04k4r and ekðKkÞ=0}. For r > r0; it follows
from (18) that

jj #KK0jj2F5 jj #KK0jj2F � jj #KK rþ1jj2F

¼
Xr

k¼0

ðjj #KKk jj2F � jj #KKkþ1jj2FÞ

¼
X
k2Sr

Zkð2#ZZk � ZkÞjjB
TP ekðKkÞxTk jj

2
F

> 0 ð19Þ

Let r > r0; let k 2 Sr; and consider the function gðZÞ ¼ Zð2#ZZk � ZÞ defined on the interval
L ¼ ½ð1� gÞ#ZZk ; ð1þ gÞ#ZZk�: Since gð�Þ is quadratic, it follows that

ð1� g2Þ#ZZ2k ¼ min
Z2L

gðZÞ ¼ gðð1� gÞ#ZZkÞ ¼ gðð1þ gÞ#ZZkÞ

Hence,

Zð2#ZZk � ZÞ5ð1� g2Þ#ZZ2k for all Z 2 ½ð1� gÞ#ZZk ; ð1þ gÞ#ZZk� ð20Þ

Using (6) and (20), we can rewrite (19) as

jj #KK0jj
2
F5 ð1� g2Þ

X
k2Sr

jjNekðKkÞÞjj42
jjBTP ekðKkÞxTk jj

2
F

¼ ð1� g2Þ
X
k2Sr

jjNekðKkÞÞjj
4
2

jjBTP ekðKkÞxTk N
TN�Tjj2F

5 ð1� g2Þ
X
k2Sr

jjNekðKkÞÞjj
4
2

jjNBjj2FjjNekðKkÞjj22jjNxk jj
2
2jjN�1jj2F

5 ð1� g2Þ
X
k2Sr

jjNekðKkÞÞjj22
jjNBjj2FjjNxk jj

2
2N

�1jj2F
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or X
k2Sr

jjNekðKkÞjj
2
2

jjNxk jj22
4b

where b¼4 jj #KK0jj2FjjNBjj
2
FjN

�1jj2F=ð1� g2Þ: Letting r ! 1 yieldsX
k2S

jjNekðKkÞjj
2
2

jjNxk jj
2
2

4b ð21Þ

Next, define the set S0 ¼4 Zþ\ S and note that ekðKkÞ ¼ 0 for all k 2 S0: If k 2 S0 and xk ¼ 0 then
xl ¼ 0 for all l5k: Hence assume that xk=0 for all k 2 S0. For k 2 S0; we have jjNek �
ðKkÞjj22=jjNxk jj

2
2 ¼ 0: Therefore, it follows from (21) that (10) holds.

Theorem 1

Assume there exists Ks 2 Rnu�nx such that As ¼
4 Aþ BKs is asymptotically stable, let R 2 Rnx�nx

be positive definite, and let P 2 Rnx�nx be the positive-definite solution to

P ¼ AT
s PAs þ R ð22Þ

Let the control be given by (2) with the gain update (5) and with fZrgk2Zþ satisfying (9). Then

lim
k!1

xk ¼ 0 ð23Þ

Proof

If S is empty, the result follows from (iv) of Lemma 1. Hence assume S is not empty and
consider the Lyapunov candidate V ðxkÞ ¼ xTk Pxk þ jj #KKk jj2F: Then using (22) and (iii) of Lemma 1,
we have

V ðxkþ1Þ � V ðxkÞ ¼ xTkþ1Pxkþ1 � xTk Pxk þ jj #KKkþ1jj2F � jj #KKk j2F

4 xTkþ1Pxkþ1 � xTk Pxk

¼ ðAsxk þ ekÞ
TP ðAsxk þ ekÞ � xTk Pxk

¼ xTk ðA
T
s PAs � P Þxk þ eTk P ek þ 2eTk PAsxk

¼ � xTk Rxk þ eTk Pek þ 2eTk PAsxk

4 � xTk Rxk þ 2jjNek jj2jjNAsxk jj2 þ jjNek jj22

where N 2 Rnx�nx satisfies NTN ¼ P . Thus,

V ðxkþ1Þ � V ðxkÞ4 � xTk Rxk þ 2jjNek jj2jjNAsN�1Nxk jj2 þ jjNek jj22

4 � xTk Rxk þ 2jjNek jj2jjNAsN�1jjFjjNxk jj2 þ jjNek jj22

4 � xTk Rxk þ 2smaxðNAsN�1ÞjjNek jj2jjNxk jj2jjNxk jj2 þ jjNek jj22

Now, since NTN ¼ P ; (22) implies

Inx ¼ #AAT
s
#AAs þ #RR ð24Þ

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2003; 17:67–84

R. VENUGOPAL, V. G. RAO AND D. S. BERNSTEIN72



where ÂAs ¼
4
NAsN�1 and #RR¼4 N�TRN�1 is positive definite. Thus, smaxð #AAsÞ51: Therefore,

V ðxkþ1Þ � V ðxkÞ4� xTk Rxk þ 2jjNek jj2jjNxk jj2 þ jjNek jj22 ð25Þ

Let d > 0: By (v) of Lemma 1, there exists a positive integer kd such that jjNek jj2=jjNxk jj25d for all
k > kd. Then for k > kd we can write

V ðxkþ1Þ � V ðxkÞ5 � xTk Rxk þ 2djjNxk jj22 þ d2jjNxk jj22

5 � xTk ½R� ð2dþ d2ÞP �xk ð26Þ

Now choose d sufficiently small such that R}ð2dþ d2ÞP is positive definite. Next, for k > kd;
define the translated system

#xxk̂kþ1 ¼ ðAþ BKkÞ #xxk̂k ;
#kk50 ð27Þ

where k̂k ¼ k � kd and #xxk̂k ¼
4 xkdþ #kk: Using (26), it follows from Theorem 6.3 in Reference [27] that,

for the translated system (27) with initial condition #xx0 ¼ xkd ; #xxT#kk ½R� ð2dþ d2ÞP � #xxk ! 0 as #kk !
1: Hence lim #kk!1 #xxk ¼ 0; and thus limk!1xk ¼ 0:

The following result provides an alternative step size that guarantees decrease of the cost
function Jk : This result provides a one-step backward horizon interpretation for the gain update
law (5).

Proposition 1

Let ekðKkÞ=0 and define

Znk ¼
jjBTPekðKkÞjj

2
2

jjNBBTP ekðKkÞxTk jj
2
F

ð28Þ

Then the following statements hold:
(i) Znk is positive and minimizes JkðKkþ1ðZkÞÞ with minimum value

JkðKkþ1ðZnk ÞÞ ¼ JkðKkÞ �
xTk xk jjB

TP ekðKkÞjj
4
2

2jjNBBTP ekðKkÞxTk jj
2
F

ð29Þ

(ii) JkðKkþ1ðZkÞÞ5JkðKkÞ if and only if Zk 2 ð0; 2Znk Þ: Furthermore, JkðKkþ1ðZkÞÞ ¼ JkðKkÞ if and
only if either Zk ¼ 0 or Zk ¼ 2Znk :

(iii) If ekðKkÞ=0; then Znk4#ZZk :
(iv) If ekðKkÞ=0 and nu ¼ 1; then Znk ¼ #ZZk :

Proof

To prove (i), use (14) to write

JkðKkÞ ¼
1

2
xTk #KKT

k B
TPB #KKkxk ð30Þ
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Using (12) and (14) we obtain

JkðKkþ1ðZkÞÞ ¼
1

2
xTk #KKkþ1ðZkÞ

TBTPB #KKkþ1ðZkÞxk

¼ JkðKkÞ þ
1

2
ðxTk xkÞ

2½xTk #KKT
k ðB

TPBÞ3 #KKkxk�Z2k � xTk xk½x
T
k K

T
k ðB

TPBÞ2 #KKkxk�Zk

¼ JkðKkÞ þ
1

2
xTk xk jjNBB

TPB #KKkxkxTk jj
2
FZ

2
k � xTk xk jjB

TPB #KKkxk�jj
2
2Zk

¼ JkðKkÞ þ
1

2
xTk xkðZk � 2Znk ÞjjNBB

TP ekðKkÞxTk jj
2
F

¼ JkðKkÞ þ
1

2
xTk xk½ðZk � Znk Þ

2 � Zn2k �jjNBBTP ekðKkÞxTk jj
2
F ð31Þ

As in the proof of Lemma 1, part (ii), it follows that Znk globally minimizes (31) and satisfies (29)
The proof of (ii) is analogous to the proof of Lemma 1, part (iii).
To prove (iii), let C ¼ ½v BTPBv�T; where v¼4 ðBTPBÞ1=2 #KKkxk. Since detðCCT Þ50 we have

vTv½vTðBTPBÞ2v� � ðvTBTPBvÞ250 ð32Þ

Since ekðKkÞ=0; it follows that #KKkxk=0; xk=0 and v=0: Therefore,

Znk ¼
vTBTPBv

xTk xkv
TðBTPBÞ2v

4
vTv

xTk xkv
TBTPBv

¼ #ZZk ð33Þ

To prove( iv), let nu ¼ 1: Then BTPB is a scalar and (33) holds with equality.

Remark 1

Note that Kkþ1 is computed using the knowledge of xk and xkþ1 at time k þ 1: The updated
gain Kkþ1 is used to propagate the state from xkþ1 to xkþ2:

To compute the updated gain matrix Kkþ1 we need the gradient direction of the cost function
Jk as well as a step size Zk to move along this direction. To compute the step size Zk that
minimizes the current cost Jkþ1ðKkþ1Þ; it can be seen from the definition of Jk and ek that we
require knowledge of the state xkþ2 at time k þ 1: Since xkþ2 is not available at time k þ 1; we
instead minimize the prior cost JkðKkþ1Þ with respect to the updated gain matrix Kkþ1: However,
the prior cost JkðKkÞ has already been incurred by using Kk to move from xk to xkþ1. Therefore
minimizing JkðKkþ1Þ is a one-step backward horizon cost optimization. Note that Znk may not
satisfy (9), and thus, there is no guarantee of (23). Theorem 1 guarantees stability for an open
interval around the larger step size #ZZk which minimizes the norm of the distance between Kkþ1

and Ks. The relation between the step sizes is shown in Figure 1.

3. IMPLEMENTATION

As an application of Theorem 1, consider the single-input system in companion form

A ¼
0ðnx�1Þ�1 Inx�1

a

" #
; B ¼

0ðnx�1Þ�1

b

" #
ð34Þ
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where a 2 R1�nx and b=0 2 R: Define

B0 ¼
4

0ðnx�1Þ�1

sign b

" #

Letting Ks ¼ 1
bðas � aÞ; where as 2 R1�nx ; it follows that

As ¼ Aþ BKs ¼
A0

a

" #
þ

0

b

" #
1
bðas � aÞ ¼

A0

as

" #

where as is chosen such that As is asymptotically stable. Since the choice of as does not depend
on knowledge of either a or b, it follows that the solution P of the Lyapunov equation (22) can
be determined without knowledge of either a or b.

Similarly, we can implement the control law (2), (5) without knowledge of Ks for systems with
decoupled inputs. We require knowledge of the rows of A that are not assignable by an input.
We also require that B be of the form B ¼ jbjB0; where B0 is known. An example of such a

Figure 1. Schematic diagram of the step sizes Znkand #ZZk in terms of the costs Jk and #JJk :
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system is the double companion form with decoupled inputs and coupled states

A ¼

0n�1 In 0n�ðnþ1Þ

a1

0n�1 In 0n�ðnþ1Þ

a2

2
666664

3
777775 B ¼ jbj

0n�1�2

1 0

0n�1�2

0 1

2
666664

3
777775 ð35Þ

where a1; a22 Rlxð2nþ2Þ: This system can be stabilized without knowledge of the row vectors a1; a2
or the matrix Ks.

4. INTEGRAL CONTROL

Integral control for rejecting constant disturbances can be incorporated into the algorithm as
follows. Consider the closed-loop system

xkþ1 ¼ Axk þ Buk þ d ð36Þ

uk ¼ Kkxk þ vk ð37Þ

where d2 Rn is an unknown constant disturbance. Assume that there exists Ks such that
As ¼

4 Aþ BKs is asymptotically stable, and also that there exists vs such that Bvs ¼ �d.
From (37) it follows that

uk ¼ *KKk *xxk ð38Þ

where *KKk ¼
4 ½Kk vk � and xk ¼

4 ½ xTk 1 �T; and thus the closed-loop system can be written as

*xxkþ1ð *KKkÞ ¼ ð *AAþ *BB *KKkÞ *xxk þ *dd ð39Þ

where *AA¼4
A 0
0 1

� �
; *BB¼4

B
0

� �
and *dd ¼4

d
0

� �
.

Next, define

ekð *KKkÞ ¼
4
*xxkþ1ð *KKkÞ � ð *AAsxk þ *ddÞ ð40Þ

where *AAs ¼
4 *AAþ *BB *KK s with *KK s ¼

4 ½Ks vs �: Note that

ekð *KKkÞ ¼
xkþ1ðKÞ � Asxk

0

" #
ð41Þ

which can be calculated using As and a measurement of xk.
To derive the adaptive constant disturbance rejection law, we define the cost functions

Jkð *KKkÞ ¼
4 1

2
eTk ð *KKkÞ *PPekð *KKkÞ ð42Þ

*JJkð *KKkÞ ¼
4
�� *KKk � *KK s

�� ����2
F

ð43Þ

where P is positive definite.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2003; 17:67–84

R. VENUGOPAL, V. G. RAO AND D. S. BERNSTEIN76



Lemma 2 Consider the gain update law

*KKkþ1ðZkÞ ¼ *KKk � Zk
@Jk
@ *KK

����
*KKk

¼ *KKk � Zk *BB
T *PPekð *KKkÞ *xxTk ð44Þ

where Zk 2 R and k2Z+. Let *NN satisfy *NNT *NN ¼ *PP: Then the following statements hold:
(i) If ekð *KKkÞ ¼ 0; then *KKkþ1ðZkÞ ¼ *KKk for all Zk 2 R .
(ii) If ekð *KKkÞ=0; then #ZZk given by

#ZZk ¼
jj *NNekð *KKkÞjj22

jj *BBT *PPekð *KKkÞ *xxTk jj
2
F

ð45Þ

is positive and minimizes #JJkð *KKkþ1ð#ZZkÞÞ with

#JJkð *KKkþ1ð#ZZkÞÞ ¼ #JJkð *KKkÞ �
jj *NNekð *KKkÞjj42

jj *BBTP ekð *KKkÞ *xxTk jj
2
F

ð46Þ

(iii) Suppose ekð *KKkÞ=0: Then #JJkð *KKkþ1ðZkÞÞ5 #JJkð *KKkÞ if and only if Zk 2 ð0; 2#ZZkÞ: Furthermore,
#JJkð *KKkþ1ðZkÞÞ ¼ #JJkð *KKkÞ if and only if either Zk ¼ 0 or Zk ¼ 2#ZZk :
Let fZkgk2zþ be a sequence of positive real numbers, let *KK0 2 Rnu�nx : let f *KKkg

1
k¼1 be the

sequence generated by (5), and let S¼4 fk 2 Zþ : ekð *KKkÞ=0g: Then the following statements hold:
(iv) if S is nor empty and

sup
k2S

Zk
#ZZk

� 1

����
����51 ð47Þ

then

lim
k!1

jj *NNekð *KKkÞjj2
jj *NN *xxkjj2

¼ 0 ð48Þ

Proof

The proof is identical to the proof of Lemma 1.

Theorem 2

Assume there exists Ks 2 Rnu�nxsuch that As ¼
4
Aþ BKs is asymptotically stable, let R 2 Rnx�nx

be possible definite, and let P 2 Rnx�nx be the positive-definite solution to

P ¼ AT
s PAs þ R ð49Þ

Define *PP¼4
P 0

0 l2

� �
with l > 0: Let the control be given by (38) with gain update (44) and with

fZkgk2zþ satisfying (47). Then

lim
k!1

xk ¼ 0 ð50Þ

Proof

From (48) in Lemma 2, it follows that for all d > 0; there exists a positive integer ld such that

jj *NNekð *KKkÞjj2
jj *NN *xxk jj2

5d ð51Þ
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for all k > ld: Using (41), (51) and the definition of *NN; it follows that

N 0

0 l

" #
xkþ1 � Asxk

0

" #�����
�����

�����
�����
2

5d
N 0

0 l

" #
xk

1

" #�����
�����

�����
�����
2

ð52Þ

or

Nxkþ1 � NAsN�1Nxk

0

" #�����
�����

�����
�����
2

5d
Nxk

l

" #�����
�����

�����
�����
2

ð53Þ

Thus,

Nxkþ1 � #AAsNxk

0

" #�����
�����

�����
�����
2

5d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjNxk jj22 þ l2

q
5dðjjNxk jj2 þ lÞ ð54Þ

where, #AAs ¼
4 NAsN�1; or

jjNxkþ1 � #AAsNxk jj25dðjjNxk jj2 þ lÞ ð55Þ

Next, define

m¼4 dþ smaxð #AAsÞ ð56Þ

and note from (49) that smaxð #AAsÞ51: We choose d such that m51; and thus, from (55), it follows
that, for all r 2 Zþ;

jjNxkþr jj25mr þ dl
Xr�1

j¼0

mj ð57Þ

Thus,

lim sup
r!1

jjNxkþr jj24
dl

1� m
ð58Þ

for all d > 0 such that m51 and for all l > 0: Hence,

lim sup
r!1

jjNxkþr jj2 ¼ 0 ð59Þ

which implies that

lim
r!1

jjNxkþrjj2 ¼ 0 ð60Þ

and thus we obtain (50).

5. NUMERICAL EXAMPLES

In this section we illustrate the adaptive stabilization algorithm by means of a numerical
example. We consider a two-input example. At time k ¼ 30 the matrix A changes from A1; which
is open-loop stable, to A2; which is open-loop unstable. The controller is unaware of this change.
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The system is given by

A1 ¼

0 1:0000 0 0

�0:1634 �0:1443 0:0294 �0:0140

0 0 0 1:0000

�0:2261 �0:0585 �0:1165 �0:1793

2
666664

3
777775; B ¼

0 0

1 0

0 0

0 1

2
666664

3
777775 ð61Þ

A2 ¼

0 1:0000 0 0

0:2486 �1:4897 0:3135 �2:0251

0 0 0 1:0000

0:5290 0:3435 0:7582 �0:6919

2
666664

3
777775 ð62Þ

As ¼

0 1:0000 0 0

0:2000 0:2000 0:1300 0:1600

0 0 0 1:0000

0:1000 0:1500 0:3000 0:3000

2
666664

3
777775 ð63Þ

with x0 ¼ ½78:26 52:42 � 8:71 � 96:30�T and the system is perturbed to the state
x30 ¼ ½�12:32 3:4 8:1 � 7:965�T: The simulation was run with Zk ¼ #ZZk : Figure 2 shows
the open-loop and closed-loop performance using the adaptive disturbance rejection algorithm
of Section 2. Figure 3 shows #ZZk for the same simulation.

6. EXPERIMENTAL RESULTS

In this section we implement the discrete-time adaptive algorithm with integral control for
angular positioning of a Maxon brushless DC motor. The objective is to rotate a steel disc
mounted on the shaft through a prescribed angle. The motor is driven in torque mode by a
Copley Controls amplifier, which receives a voltage command from the controller. The disc
inertia, motor inertia, motor torque-current ratio and current amplifier gain are all unknown.
The controller is implemented on a dSPACE DS1103 system as a C-coded Simulink S-function.

Let the angular position of the disc be denoted by yðtÞ and define the state vector

xðtÞ ¼4
yðtÞ
’yyðtÞ

� �
. The system dynamics are given by the continuous-time state space model

xðtÞ ¼
0 1

0 0

" #
xðtÞ þ

0

KampKmotor

J

" #
ðV ðtÞ þ fÞ ð64Þ

where V ðtÞ is the voltage input to the current amplifier, f is an unknown constant input bias,
Kamp is the amplifier gain, Kmotor is the torque constant of the motor, and J is the total inertia of
the disc and the motor armature.

Defining K¼4 Kamp Kmotor=J and discretizing (64) using a zero-order hold equivalent at a
sampling rate of T ; we obtain

xkþ1 ¼ Axk þ BVk þ Bf ð65Þ
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Figure 2. Open-loop and closed-loop performance from numerical simulation. Dashed line: open-loop,
solid line: closed-loop.

Figure 3. #ZZk from numerical simulation.
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where

A¼4
1 T

0 1

" #
; B¼4

KT 2=2

KT

" #
ð66Þ

We note that K is unknown, and that the disc angular position and angular velocity are fed
back to the controller to allow full-state-feedback control. The control objective is to

asymptotically drive the system to a reference state xref ¼
4 yref

0

� �
; that is, to rotate the disc to an

angular position yref :
Next, we note that the reference state satisfies the constant state tracking condition

ðA� Inx Þxref þ Buref ¼ 0 ð67Þ

with uref ¼ 0: Subtracting (67) from (65) we obtain

xkþ1 � xref ¼ Aðxk � xref Þ þ BVk þ Bf ð68Þ

or

ekþ1 ¼ Aek þ BVk þ Bf ð69Þ

where the error state ek ¼
4 xk � xref : Defining d ¼4 Bf; we obtain

ekþ1 ¼ Aek þ Buk þ d ð70Þ

We observe that (70) has the same form as (36), and hence we can use the adaptive integral
control algorithm of Theorem 2, which implies limk!1ek ¼ 0:

The control algorithm is implemented as follows. First, we specify As to calculate P . Let
Ks ¼ ½K1s K2s�: Then, from (66) it follows that

As ¼ Aþ BKs ¼
1þ T a1 T þ Ta2

2

a1 1þ a2

" #
ð71Þ

where a1 ¼
4 TKK1s and a2 ¼

4 TKK2s: The coefficients of the second-order characteristic
polynomial of As depend on a1 and a2; and thus, we can specify a1 and a2 to ensure that As

is asymptotically stable even though K is unknown. The constants a1 and a2 are chosen such
that the eigenvalues of As correspond to a damping ratio of 0.85 and a natural frequency of
10 rad/s with T ¼ 0:01 s. As is used to determine P and to calculate ek. l is chosen to be 0.001.

Next, from (66) we note that

B ¼ b0
T
2

1

" #
ð72Þ

where b0 ¼
4 TK: K is assumed to be positive, and, although b0 is unknown, the adaptive

algorithm is robust to uncertainty in b0 with Figures. 4–7 showing results of two tests with b0
chosen to be 1 and 50.

7. CONCLUSIONS

In this paper we derived a discrete-time adaptive stabilization algorithm and proved closed-loop
attractivity with respect to the plant states. Single and multiple input cases were simulated
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Figure 4. Angular position of disk for b0 ¼ 1: Solid line: yk ; dashed line: yref :

Figure 5. Controller gains for b0 ¼ 1: Solid line: K1k ; dashed line: K2k ; dash-dot line: vk :
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Figure 6. Angular position of disk for b0 ¼ 50: Solid line: yk ; dashed line: yref :

Figure 7. Controller gains for b0 ¼ 50: Solid line: K1k ; dashed line: K2k ; dash-dot line: vk :
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numerically for unstable and abruptly varying plants, and experimental results were obtained on
a motor positioning system. Future work will involve extensions to output feedback.
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