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In this paper we develop an approach to designing reduced-order multirate estimators. A discrete-time
model that accounts for the multirate timing sequence of measurements is presented and is shown to have
periodically time-varying dynamics. Using discrete-time stability theory, the optimal projection approach
to fixed-order (i.e., full- and reduced-order) estimation is generalized to obtain reduced-order periodic
estimators that account for the multirate architecture. It is shown that the optimal reduced-order filter
is characterized by means of a periodically time-varying system of equations consisting of coupled Riccati
and Lyapunov equations. A novel homotopy algorithm, based on a Newton correction scheme, is also
presented which allows solutions to periodic difference Riccati equations.
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Nomenclature

n X n, I, X n matrices

n, X n,, n, X I, g X n, matrices
expected value

A, C(k)
A, (k), B.(k), C.(k)
€

]

I, 0.« 0, = r X ridentity matrix, r X s zero
matrix, 0, x,

k, o = discrete-time indices

L = g X n matrix

n, L, n, = positive integers, 1 = n, = n

A =n+n,

R = g X q positive-definite matrix

R, Rr>s, R = real numbers, r X s real matrices,
%r X1

X, ¥, Xy Ve = n-, li-, n.-, g-dimensional vectors

p0O = spectral radius

0O, 0! = transpose, inverse

I. Introduction

I N practical applications, aerospace systems often involve
sensors operating at different sampling rates. To properly
use such data, a multirate filter or state estimator must carefully
account for the timing sequence of the incoming data. The
purpose of this paper is to develop a general approach to full-
and reduced-order steady-state multirate estimation.

Despite the widespread usage of Kalman filters and state
estimators, the research literature on multirate filtering and
estimation is rather limited. Notable exceptions include Refs.
1-4 which address the multirate problem. A common feature
of these papers as well as Refs. 5-7 is the realization that the
multirate sampling process leads to a periodically time-varying
discrete-time dynamic model. Hence with suitable reinterpreta-
tion, results on multirate estimation can also be applied to single
rate or multirate problems involving systems with periodically
time-varying dynamics. Such connections will be more fully
explored in a future paper. Similarly, extensions to the multirate
feedback control problem are also outside the scope of this
paper. The interested reader is referred to Refs. 8-12 for further
discussions on periodic and multirate control.

For generality in our development, we consider both full-
and reduced-order filters. In the discrete-time case this problem
was considered in Ref. 13 whereas sampled-data aspects were
addressed in Ref. 14. Reference 15 discusses the motivation
for implementing reduced-order estimators and, along with Ref.
16, contains an extensive bibliography relating to the reduced-
order problem. In the full-order, strictly proper estimator case
our results essentially correspond to Refs. 2 and 3.

The approach of the present paper is the Riccati equation
technique developed in Ref. 16. There it was shown that optimal
reduced-order, steady-state estimators can be characterized by
means of an algebraic system of equations consisting of one
modified Riccati equation and two modified Lyapunov equa-
tions coupled by a projection matrix 7. The coupling via the
projection 7 illustrates the fact that three matrix equations char-
acterize the optimal reduced-order state estimator with intrinsic
coupling between the operations of optimal estimator design
and optimal estimator reduction.

In Ref. 13 the discrete-time problem was addressed without
any reference to sampled-data design. Furthermore, the discrete-
time model was assumed to be time-invariant and steady-state
reduced-order estimators were sought. In the present paper,
however, the analog-to-digital (A /D) conversions are employed
within a multirate setting to obtain periodically time-varying
dynamics. The estimator is thus assigned a corresponding dis-
crete-time periodic structure to account for the multirate mea-
surements. It is shown that the optimal reduced-order multirate
estimator is characterized by a periodically time-varying system
of three equations consisting of one modified Riccati equation
and two modified Lyapunov equations corresponding to each
intermediate point of the periodicity interval. Because of the
time-varying nature of the problem, the necessary conditions

for optimality now involve projections corresponding to inter-
mediate points of the periodic interval.

The contents of this paper are as follows. In Sec. Ii, the
statement of the reduced-order multirate estimation problem is
presented. Lemma 1, which gives the central result of Sec. II,
shows that under the assumption of cyclostationary disturbances
the error covariance equation reaches a steady-state periodic
trajectory under periodic dynamics. In Sec. III, Theorem 2
presents necessary conditions for optimality which characterize
solutions to the multirate estimation problem. In Sec. IV, using
the identities of Van Loan,”? we derive formulas for integrals
of matrix exponentials arising in the continuous-time/sampled-
data conversion. To illustrate these results we describe a numeri-
cal algorithm in Sec. V for solving the design equations and
apply the algorithm to an illustrative numerical example.
Finally, Sec. VI gives some conclusions and discusses future
extensions.

II. Reduced-Order Multirate Estimation Problem

In this section we state the fixed-order, sampled-data,
multirate estimation problem. In the problem formulation the
sample intervals A and the estimator order n, are fixed, and
the optimization is performed over the estimator parameters
[A.(), B.(), C.(-)]. For design tradeoff studies #, and n, can
be varied, and the problem can be solved for each pair of values
of interest. Finally, we assume that the plant dynamics A is
asymptotically stable. The case in which A may contain unstable
modes (e.g., rigid body dynamics) is significantly more involved
and is deferred to a future paper. For details on the unstable
reduced-order estimation problem see Ref. 16.

Consider the nth-order system

i) = Ax(t) + wi (1), tel0,® (1)

where A is stable, with multirate sampled-data measurements

y(t) = Cltx () + wa(ty), k=1,2... 2

Then design an n.th-order (1 = n, =n) sampled-data estimator
x,(ty + 1) = A, (t)x. (1) + B.(t)y(ts),

0<t; <t <-+- 3)

ye(t) = Co(t)xe(te) “

t € [te, tist) 5)

that minimizes the least-squares, steady-state estimation-error
criterion

JIALOL B, CO) & lim % [ ((Lx(6)

ye(t) = ye(tk)9

= Y ()} TR{Lx(s) = y.(s)}] ds ©)

In Eq. (6) the matrix L identifies the linear combinations Lx
of states x whose estimates are desired. The key feature of this
problem is the time-varying nature of the output equation (2)
that represents sensor measurements available at different rates.
Figure 1 provides a typical multirate timing diagram for a three-
sensor model. For generality, we do not assume that the sample
intervals h, & ,., — t, are uniform (note the sample times for
sensor 3 in Fig. 1). However, we do assume that the overall
timing sequence of intervals [#, f;+y], k=1, 2,...,is periodic
over [0, «), where N represents the periodic interval. Note that
heonw = hi, k=1,2,... .Since different sensor measurements
are available at different times t,, the dimension [, of the mea-
surements y () may also vary periodically. Finaily, in subse-
quent analysis the estimator (3) and (4) is assigned periodic
gains corresponding to the periodic timing sequence of the
multirate measurements.

In the problem formulation, w(¢) denotes a continuous-time,
white noise process with non-negative-definite intensity V €
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Fig.1 Multirate timing diagram for sampled-data estimation.

Grn*r whereas w(1,) denotes a variable-dimension, discrete-
time white noise process with positive-definite covariance
Vu(t,) € R4*'. We assume wy(1,) is cyclostationary, that is,
V2(tk +N) = Vl(tk)’ k= lo 2’ e

In what follows we shall simplify the notation considerably
by replacing the real-time sample instant #, by the discrete-time
index k. With this minor abuse of notation we replace x(#,) by
x(k), x.(t) by x,(k), y(t) by y(k), wi ) by wi(k), A, (%) by
A, (k) [and similarly for B,(*) and C,(")], C(#) by C(k), and
V() by Va( k). The context should clarify whether the argument
denotes k or ¢, With this notation our periodicity assumption
on the estimator implies A, (k + N) = A, (k), k =1,2.
and similarly for B,(-) and C,(-). Also, by assumption, C (k +
Ny=Ck),k=12,....

Next, we model the propagation of the plant over one time
step. For notational convenience define

hy
Hk) & fok et ds

Theorem 1. For the reduced-order multirate estimation prob-
lem, the plant dynamics (1) and the least-squares state-estimation
criterion (6) have the equivalent discrete-time representations

x(k + 1) = Alk)x (k) + wi(k) )
y(k) = Ck)x(k) + wa(k) ®

Je[Az(')a Be(')’ Ce(')] = 8@ + [l(l_l;n é

K hy
o> [ 1Lewx@) =y (O R®
k=1

X [Le*x(k) — y.(k)] ds €))

where
. 5
A Ak é 2 -
Ak) & ethe A lim - th
hy X3
X fkf e"VleAT’LTRL drds, R(k) & LR (10)
o Jo hy

and w|(k) is a zero-mean, discrete-time white noise process
with

Ewilkwi(k)} = V,(k) an

Vi(k) & fok AV, e ds

Note that by the sampling periodicity assumption, A(k + N)
=A(k),k=1,2....The proof of this theorem is a straightfor-
ward calculation involving integrals of white noise signals and
hence is omitted. See Ref. 14 for related details.

The above formulation assumes that a discrete-time multirate
measurement model is available. One can assume, alternatively,
that analog measurements corrupted by continuous-time white
noise are available instead, that is, y(t) = Cx(z) + wy(#). In
this case one can develop an equivalent discrete-time model
that employs an averaging-type A/D device'*!*?

1 %+t

k) = L
yk) el

y(t) dt (12)
It can be shown that the resulting averaged measurements
depend on delayed samples of the state. In this case the equiva-
lent discrete-time model can be captured by a suitably aug-
mented system. For details see Refs. 14 and 19.

Remark 1. The equivalent discrete-time, least-squares estima-
tion-error criterion (9) involves a constant offset 8. which is a
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function of sample rates and effectively imposes a lower bound
on the sampled-data performance due to the discretization pro-
cess. (As will be shown by Lemma 1, due to the periodicity
of , 8. is a constant.)

Next, we combine Egs. (3), (4), (7), and (8) to form the
augmented equivalent discrete-time periodic system

Xk + 1) = A®k)xKk) + wik) (13)
where
N x(k) - A(k) 0
*(k) & [xeu«)]’ At) & [Be<k>0(k) Ae(k)]

Ak +N)=AKk), k=12 ...

The augmented disturbance

s | Wi ]
wik) 2 [Be(k)wmo (15
has non-negative-definite covariance
. Vitk)  Via(k)BI(K) ]
é 1
vl 2 [Be(k)vlfz(k) B.(kyV,(k)BI(ky|  (1®

where Vi;(k) & €[w(k)wl(k)] denotes the noise correlation
between the plant disturbance and measurement noise.

The state estimation error criterion (9) can now be expressed
in terms of the augmented second-moment matrix. The follow-
ing result is immediate.

Proposition 1. For given [A,(+), B.(*), C.(*)] the second-
moment matrix

Q(k) & g[x(k)ET(k)] )
satisfies
Ok + 1) = Ak)Q(K)AT (k) + V(k) (18)

Furthermore,

K
LIA() B, CoO0 = B + lim 0 S [QORM] (19)
K== K k=1

where

R, (k) R.:(k)}

RL(K) R (k) 20)

R & [
and

h,
Ri(k) & fkeA’sLTR(k)LeM ds
0

Ryy(k) & —H"(k)LTR(k)C. (k)
Ra(k) & CI(k)RC. (k)

Remark 2. Note that Eq. (18) is a periodic Lyapunov equation.
Relevant references include Refs. 21-25.

We now show that the covariance Lyapunov equation (18)
reaches a steady-state periodic trajectory as K — . For the
next result we introduce the parametrization, k = a + BN,
where the index a satisfies | < o < N, and B=12....

We now restrict our attention to estimators having the property
that the estimator transition matrix over one period

D, () 2A(a+N—- DA, (a +N-2)---4A,(0) 2D

is stable for a = 1, ..., N. Note that since A, () is required
to be periodic, the eigenvalues of ®,, (cx) are actually indepen-
dent of a.. Hence, it suffices to require that ®,,(1)=A,(NA, NV
— 1) - -+ A1) is stable. Next, defining the plant transition
matrix over one period

P, () 2A@+N- DA +N~-2)--- A(a) (22)
we see that

D, (o) = edtv+ -1, a=1,...,N (23)
Since A is assumed to be (continuous-time) stable, it follows that
®, () is (discrete-time) stable. Finally, we define the transition
matrix over one period for the augmented system (13) by

(LA +N-DA@+N=-2)-- A (29)
Since A (-) is lower block triangular and ®,(-) and ®,,(-) are
stable, it follows from the structure of &, (a) that d, () is also
stable fora =1, ..., N.

Lemma 1. For given [A,(k), B.(k), C,(k)] the covariance

Lyapunov equation (18) reaches a steady-state periodic trajec-
tory as k — o, that is,

lim [Q(k), Otk + 1), ..., Ok + N = )]
=[0(), @@+ 1),..., 0@ + N — 1] (25)

In this case the covariance O (k) defined by Eq. (17) satisfies

Oa + 1) = AP (AT (a) + V(a), a=1,...,N
(26)
where
O+ 1 =0 27

Furthermore, the quadratic least-squares error criterion (19) is
given by

—_ 1 \ 2 3]
J A () B.(), C.()] =8+ Ne Z:. [@(@R(x)] (28)
where

)

>

N
1 Lfap 4 ATrp 1
= — ’ ‘LTRL dr ds 29
Ntr ; M fo foe Viet'L dr 29)
Proof: The proof is given in Appendix A. O

ITI. Necessary Conditions for the Reduced-Order
Multirate Estimation Problem
In this section we obtain necessary conditions that character-
ize solutions to the reduced-order multirate estimation problem.
Derivation of these conditions requires additional technical
assumptions. Specifically, we further restrict [A, (), B, (*), C,(*)]
to the set

© 2 {[A.(), B.(), C.()] : D, (o) is stable and
(@, (), B, (). C,, ()] is minimal, « = 1,...,N} (30)
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where

B,(@) & [A. (0 + N=- DA (@ +N-2)
<A a + DB (@),A(a + N— DA, (aa + N—2)
cA(oe+2)B,(a+ 1),..:,B,(a + N—-1)] 3D

C.lao+N—DA,(a+N—-2): A, ()

C,,,(a)é C,(a+N—2)A,(a:+N—3)-'-Ae(ot) (32)

C.()

As can be seen from Appendix B, the set & constitutes sufficient
conditions under which the Lagrange multiplier technique is
applicable to the reduced-order multirate estimation problem.
This is similar to concepts involving the moving equlllbrxum
for periodic Lyapunov/Riccati equations discussed in Refs. 23
and 24. Specifically, the formulas for the lifted isomorphism
(31) and (32) are equivalent to assuming the stability of A()
along with the reachability and observability of [A.(-), B.(*),
C.(*)] (Refs, 10 and 23). The asymptotic stability of the transi-
tion matrix <I> () serves as a normallty condition which further
implies that the dual P(a) of O(a) is non- negatlve-deﬁmte
Furthermore, the assumption that [®,,(a), B, (@), C,{a)] is
controllable and observable is a nondegeneracy condition which
implies that the lower right n, X n, subblocks of O(a) and
P (o) are positive definite thus yielding explicit gain expressions
for A,(a), B.(a), and C,(a).

To state the main results we require some additional notation
and a lemma concerning pairs of non-negative-definite matrices.
See Ref. 26 for details.

Lemma 2. Let Q P be n X n non-negative-definite matrices
and assume rank QP = p,. Then there exist n, X n matrices
G, T and an n, X n, invertible matrix M, unique except for a
change of basis in R, such that

QP = G™MT (33a)
6™ = (33b)

Furthermore, the n X n matrices

T4 G'T, T, 81, -1 34)

are idempotent and have rank n, and n — n,, respectively.
The following results give necessary conditions that charac-

terize solutions to the reduced-order multirate estimation prob-
lem. For convenience in stating this result, define the notation

V(@) & C(@Q(@)CT (@) + Va(a)
Q.(a) 2 A(@) Q(@)CT(@) + Vip(e) (35)
L) & (1/h,)LH ()
for arbitrary Q(a) € R**"and a = 1, , N.

Theorem 2. Suppose {A.(*), B.(*), C ( )] e © solves the
reduced-order multirate estimation problem. Then there exist
n X n non- negatlve-deﬁmte matrices Q(a), Q(a) and P ()
such that, fora =1,...,N,A,(a), B.(o0) and C, () are given by

A, (@) = [ + D[A(@) ~ Q. (Vi (@C@)IG (@) (36)
D@, ()V3 () 37

C.(@) = LG (o) (38)

B.(o) = '(a +

and such that Q(a), Q(e), and P(a) satisfy

Qa + 1) = A()Q (@A ()
+ Vi@ — Q. (V' (@Qi(e) + 7. (e + 1)
X [A@Q(@AT (@) + Q. (@)Vi ()@ (e))
X2l (o + 1) (39)

Q@+ 1) = 7(a + DIA(@Q(@AT ()
+ 0 (V@RI (a + 1) (40)

P(@) = 1T ([{A(@) = Q.()VZ(@)C(x)}T
X P(a + D{A(@) — Q. (Vi ()C ()}
+ (UN)Y{ LT (a)RL () }]1(cr) 41)

rank O() = rank P(o) = rank Q(@)P(a) = n, (42)

Furthermore, the minimal cost is given by

_a.1 %
mem&wmuﬂ—8+NuZuQm)

+ Q(@)}R () — Q()LT(a)RL()] 43)
Proof: The proof is given in Appendix B. O
Theorem 2 presents necessary conditions for the reduced-

order multirate estimation problem. These necessary conditions
consist of a system of one modified Riccati equation and two
modified Lyapunov equations coupled by projection matrices
T(a), @ = 1, ..., N. As expected, these equations are periodi-
cally time varying over the period 1 =< o = N in accordance
with the multirate nature of the measurements. As discussed
in Ref. 15 the fixed-order constraint on the estimator gives rise
to the projection T which characterizes the optimal reduced-
order estimator gains. In the multirate case, however, it is inter-
esting to note that the time-varying nature of the solution
involves multiple projections corresponding to each of the inter-
mediate points of the anOdlCl[y interval.

Remark 3. As in the linear time-invariant case™" to obtain
the full-order multirate Xalman filter result, set n, = n. In this
case, (@) = G(@) =TNa + 1) =L foralla =1, ..., N.
Furthermore, in this case Eqgs. (40) and (41) are superfluous
and can be omitted. Thus, as expected the optimal full-order
multirate estimator is characterized by means of a single time-
periodic Riccati equation (observer Riccati equation) over the
period a = 1, , N. Specifically, for L = [,, the multirate
Kalman filter is characterized by

A (@) = A(@) — Q.(@)Vz (@)C(a) (44)
B.(@) = Q.()Vz(a) (45)
C.() = L() (46)

where O (a) satisfies

Q@+ 1) = A(@Q@AT(@) + V()
—~ Q.() Vi ()Qi(a) (47

Note that if the plant model is assumed to be time-invariant,
Eq. (47) collapses to the standard observer Riccati equation.
Alternatively, if we retain the reduced-order constraint and
assume time-invariant plant dynamics, Theorem 2 yields the
linear time-invariant, discrete-time optimal projection equations
for reduced-order estimation.*"

IV. Numerical Evaluation of Integrals Involving
Matrix Exponentials

To evaluate the integrals involving matrix exponentials
appearing in Theorem 1, we utilize the approach of Ref. 17.
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The idea is to eliminate the need for integration by computing
the matrix exponential of appropriate block matrices. Numerical
matrix exponentiation is discussed in Ref. 27.

Proposition 2. Consider the following partitioned matrix
exponentials of orders 3n X 3n, 2n X 2n, and (n + q) X (n
+ @), respectively

F| F2 F3 —A In On
0,, F4 F5 é €Xp On —A Vl ha
0, 0, Fs 0. 0, AT

Fr Fy] . . [-AT LTRL
[on F9]=°"P[ 0, a |k

Fio Ful, AT LT
[qun Iq]:exp[oqxn 0, h,

fora =1,...,N. Then

A(@ = Ff,  L(e) = (th,)F T,
Rl(a)=(1/hu)F9TFs, Vi(e) = F{F;

N
D T R S "
5= NZ. i tr L"RLFIF,

fora =1, , N.
The proof of this proposition involves straxghtforward manip-
ulations of matrix exponentials and hence is omitted.

V. Numerical Algorithm and Illustrative
Numerical Example

In this section we present a numerical algorithm using homo-
topic continuation techniques? for solving the design equation
(47) for the full-order multirate estimation problem and consider
an 111ustrat1ve numerical example. In the following we use the
notation Q, 2 Q(a).

To solve Eq. (47) fora = 1, ..., N, consider the equivalent
discrete-time algebraic Riccati equation®

Q = (pu+NaQa u+N¢x + Wa+Nu (48)

where

Do LA+ N—DA@+N=(i+ 1) A@G)
(49

(X+N>i, $a+N,u+N=1n2

and W, . y, is the reachability Gramian defined by

Woina
at+tN-|

4 % (PaiminilVy,

i=a

~ Q. Vi LIl v} (50)

Next we form the homotopy map for Eq. (48) as follows:

(1 =BEg = @iy QuB)Plina
+ Wa+N,u(B) - Qa(B) (51)

where E,, is the error in Eq. (48) with current approximation for
Q.fora=1,...,N;B e [0, 1] is the homotopy parameter; and
Wa +Na (B)

at+tN-1

A5 @BeeninlVy — Qu®ViBIQLEBIPI v v}

where
Vi, (B) & C:Q:(B)CT + V5,
Q. (B) 2 A, Q:BCT + Vy,

Differentiating Eq. (51) with respect to 8 and using the
approach of Ref. 28 gives the Newton correction equation

AQ(a) = AAQ (AT + E, (52)

where
AL D yari[Al@ = Qfa) Vi(a)C ()]

Note that Eq. (52) is a discrete-time algebraic Lyapunov equa-
tion,

Algorithm 1. To solve the design equation (47), carry out the
following steps.

1) Initialize Q(a) fora = 1, , N.

2) Compute the error Ej in Eq (48) If E, satisfies the final
tolerance then stop.

3) Solve Eq. (52) to obtain a Newton homotopy correction.

4) Let Q(a) « Q(a) + AQ (o).

5) Propagate Eq. (47) over the period.

6) Compute the error E, in Eq. (48). If E, satisfies some
preassigned tolerance then go to step 7 else reduce AQ () and
g0 to step 4.

7) If E, satisfies the final tolerance then stop else go to step 3.

For illustrative purposes consider a simply supported Euler-
Bernoulli beam. The partial differential equation for the trans-

verse deflection w(x, t) is given by

2
m(x) d W(;gv:, t) - 6 [EI( )(3W—M] + f(x, 1)
(53)
w(x, ) =0 =0, El(x )6 W(x’t) —or 0

where m(x) is the mass per unit length of the beam, EI(x) is
the flexural rigidity with E denoting Young’s modulus of elastic-
ity and 7 (x) denoting the moment of inertia about an axis normal
to the plane of vibration and passing through the center of the
cross-sectional area. Finally, f(x, 7) is a distributed disturbance
acting on the beam. Assuming uniform beam properties, the
modal decomposition of this system has the form

ween =3 Wogn, [ mwiwar=

1
2 rux
Wex) = LS

where, assuming uniform proportional damping, the modal
coordinates g, satisfy

L
4.(1) + 200,d,(1) + 0ig,(1) = [ fr W, (x)

(54)
r=1,2,...

For simplicity assume L = w and m = EI = 2/ so that
2/mL = 1. Furthermore, we assume two sensors located at x
= 0.55m and x = 0.65m are sampling at 60 Hz and 30 Hz,
respectively. Also,it is assumed that a white noise disturbance
of unit intensity acts on the beam at x = 0.45w. As inputs to
the estimator design we chose to weight the performance of
the beam displacement at x = 0.65m. Finally, modeling the
first five modes and defining the plant states as x = [q,, 41,
. .» g5, gs]7, the resulting state-space model is
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. 0
A= blf):cllt-dlsalg[ —o?

—ZC(.O,

C= 09877 0 -0.3090 0
~10.8910 0 -0.8090 0
L =10.8910 0 -—0.8090 O

D, =1[0 09877 0 0309 O

0.01
Vz = [ 0

For n, = 10, discrete-time single rate and multirate estimators
were obtained from Egs. (44—47) using Theorem 1 for continu-
ous-time to discrete-time conversions. Different measurement
schemes were considered, and the resulting designs are com-
pared in Figs. 2 and 3. The results are summarized as follows.
Figures 2 and 3 show simulation plots for error states 7 and 8,

Table 1 Design schemes

Measurement scheme Optimal cost

One 30-Hz sensor at x = 0.657 1.000 X 1073
Two 30-Hz sensors at x = 0.557 and x = 0.65T 6.3313 x 107*
One 60-Hz sensor at x = 0.65w 43110 x 10~
Two 60-Hz sensors at x = 0.557 and x = 0.657 2.1775 X 107*
Multirate scheme (30-Hz and 60-Hz sensors) 2.4286 X 107*
0.06 v T T — - v — — ¥
\ i Multirate ——

0.04
002 b |

ol
-0.02
-0.04 |
-0.06 |
-0.08

0 20 40 60 80 100 120 140 160 180 200

Fig.2 Error state 7 vs sample number.

1.5 T . v
Multirate ——

0 20 40 60 80 100 120 140 160 180 200
Fig.3 Error state 8 vs sample number.

1
:I, (.0,‘=l'2, i=1,...,5,

—0.8900 0

{ = 0.005
—0.8910 0 05878 0 07071 O
—0.1564 0 09511 0 -0.7071 O
-0.1564 0 09511 0 -=0.7071 0]

—0.5878 0 0.7071]7

:l, R=01

in the presence of zero mean unit intensity white noise input
disturbances, respectively. Finally, five designs were compared
using the performance criterion (43). The results are summa-
rized in Table 1.

It is interesting to note that the multirate architecture gives
the least cost for the cases considered with the exception to
the two 60-Hz sensor scheme which is to be expected. In this
case, the improvement in the cost of two 60-Hz sensor scheme
over the multirate scheme is minimal. However, the multirate
scheme provides sensor complexity reduction over the two 60-
Hz sensor scheme.

V1. Conclusion

This paper has considered the reduced-order estimation prob-
lem for multirate systems. An equivalent multirate discrete-
time representation was obtained for the given continuous-time
system. Optimality conditions were derived for the problem
of optimal reduced-order, multirate estimation. Furthermore, a
novel homotopy continuation algorithm was developed to
obtain numerical solutions to the full-order design equations.
Future work will use these results to develop more sophisticated
numerical algorithms for reduced-order, multirate estimator
design.

Appendix A: Proof of Lemma 1
It follows from Eq. (18) that

vec Ok + 1) = [Ak) ® A(k)vec O (k) + vec V(k) (Al

where X denotes Kronecker product and vec is the column
stacking operator.”® Next, define the notation g (k) £ vec Q (k),

A(k) & A(k) ® A(k), and v(k) & vec V(k), so that
gk + 1) = dA(k)qk) + v(k) (A2)
It now follows with k = a + BN that

qk + BN) = ®(a + BN, D)g(1)
a+BN -1
+ Z ®(a + BN, i + (i) (A3)

i=1
where
®la + BN, i + 1)
Ada+BN-Dd(a+BN—=2)---sdi+ 1)

Xa+BN>i+1l, da+pNa+BN)=1I2 (Ad
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Next, note that

atBN-1
2 ®(a + BN, i + Dv(i)
i=1
N+(a—1)
= 2 ®(a + BN, i + 1v(i)

i=1

IN+t(a-1)
+ z ®(a + BN, i + Lv()
i=N+a
WN+Ha@-1)
+ Z d(a + BN, i + D (i)
i=2N+a
BN+ (a— 1)
b 4 Z ®(a + BN, i + Dv(i) (AS5)

i=@-N+a

Using the identities ®(a + BN, 1) = ®B(a + N, 1) and P(a
+ BN, a + yN) = ®* (a0 + N, a), it now follows that Eq.
(A5) is equivalent to

a+pN-1
Z ®(a + BN, i + Dv(i)
i=1
N+{a=1)
= @8 (@ + N, o) 2 ®(a + N, i + 1)
i=1
N+(@-1)
+ @52 (@ + N, ) Z d(a + N, i + 1)
N+(@=-1)
+ @3 (@ + N, @) Z (o + N, i + Dv(i)
N+(@a—1) _
bt z ®d( + N, i + 1v(E) (A6)

which implies that

a+BN-1
Z ®(a + BN, i + (i)

i=1

a=1
=@B-! z ®(a+ N, i+ ()
i=1

+ I+ P+ P+ +DPET]
N+(@-1)

X z ®(a + N, i + D) (A7)

where ®, £ ®(a + N, ). Since p(®,) < 1 it follows from
Egs. (A3) and (A7) that

lim g(a + BN)
ke N+@-1)
=(I—d)"" z O + N, i + 1) (A8)

i=a
which shows that the second moment converges to a steady-

state periodic trajectory.
To prove Eq. (28), rewrite Eq. (28) as

J.[A(), B.(), C.()]

K
=8, + lim —llétr Z} [O ()R ()] (A9)

Because of the periodicity of the closed-loop second-moment
matrix Q(-) we obtain

J.IA.(), B.(), C.())

1 S . s
= +-1r S [O@R@®] (A10)
N Z a

Appendix B: Proof of Theorem 2

To optimize Eq. (28) subject to constraint Eq. (26) over the
open set @ form the Lagrangian

LIA (), B.(a), C.(), O(a), Pl + 1), ]
N

| -
tr Z {)\ 7 [Q@R(@)] + [(A()Q (@)AT(a)

a=1

>

+

V(e — O(a + 1)P(a + 1)]} (B1)

where the Lagrange multipliers A = 0 and Pla +1)
e QrnX0n+n) o =1, ... Nare notall zero. Thus, we obtain

0L _ irnp - s o 5
0@ AT(@P(a + DA() + N NR(a) P(a)(Bz)
a=1,...,N
Setting [0%£/30 (a)] = 0 yields
P(o) = AT(@)P(a + DA(w) + MI/N)R(e) B3
a=1,...,N
Next, propagating Eq. (B3) from « to a + N yields
P@)=AT(@)---AT(@+N—-1)
X P(@A@+N—-1) A
+ MUN)AT(@) - -AT(a + N—2)
X Rla+N—DA@@+N—2) - A(a)
+AT(@) - AT(@ + N=3)R(a+N—-2)
XA@+N—=3)--A(@) + -+ R@)] (B4)

Note that since A(x + N — 1) - - - A(a) is assumed to be
stable, A = 0 implies P(a@) = 0, « = 1, ..., N. Hence, it can
be assumed without loss of generality that A = 1. Furthermore,
P(a), a = 1, ..., N is non-negative definite. _

Now partition the (n + n,) X (n + n,) matrices Q(a) and
P(a)inton X n,n X n,, and n, X n, subblocks as

A _ 0 () Qul® ~ _ Pi(a) Pple)
Q(“)'[Q.’z(oo Qz(a)]’ Pl [P.S(a) P2(a>]

Thus, with A = 1, the stationary conditions are given by

k4

Bat A@Q(@A (@) + V(o) = Q(a + 1) =0 (BS)

AF
0A (o)

+ Py(a + DB ()C()Qn(@)
+ Py(a + DA (0)Q:(a) =0 (B6)

= Ph(a + DA(@Q2(a)
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o
0B, (o)

+ Py(a + DB.(@)C(@)Q1(@)C7(a)
+ Py(a + DA (@)@ (a)CT (@)
+ Ph(@)Vin(@) + Py(a + DB.()Vi(a) =0 (B7)

= Ply(a + DA(@)Q()CT(e)

i

@ —R()L(@)Qn(a) + R(@)C.(@)Q:() =0 (B8)

fora = 1, ..., N. Expanding Eqs. (26) and (B3) yields
0=A@Q (WA (@) + Vi(@) = Qe+ 1) (B

0= A0, (@)CT(@)Bl(e) + A(@Qu(@A(x)
+ Vi(@Bi(@) — Qula + 1) (B10)

0 = B.(0)C()Q ()CT()B(e)
+ A, (@)Qh(@)CT(@)BI(@) + B.()C(a)Qn(o)A(e)
+ A (@)Q2(wA () + B ()V2(e)BI()
= Q(at D) (B11)

0=AT(P,(a + DA(®)
+ CT(@BI(@)PT(a + DA ()
+ AT(@)P 2 (a0 + DB ()C ()
+ CT(@)B{(0)P2(a + 1B ()C(a)
+ (UN)R () — P (o) (B12)

0 =AT(@P (o + DA, (o)
+ CT()BT(@)P,(a + DA, () + (I/N)Rz (@)
— Pp(a) (B13)

0= AT()P,(a + DA, () + (I/N)R,(a}— Py () (B14)
Lemma 3. Q,(o) and P,(c) are positive definite for @ = 1,

B P’roof By a minor extension of the results from Ref. 30,
Eq. (B11) can be written as
Qi@+ 1)

= [A.(®) + B.(@)C()Q 12 ()Q3()]Q2(c0)

X [A.(@) + B()C (@)@ (@)QF(@)]”

+ B ()Vy(@)Bi(®), a=1,...,N (B15)
where Q,'(a) is the Moore-Penrose or Drazin generalized
inverse of Q,(c). Next, propagating Eq. (B15) from a to a +
N yields

Q:() = A (e + N —1) - Au(@)Q:(AL(w)
ccAL@+N-D+A,(a+N-—-1
Ao+ DB (Vi (@B(@AL( + 1)
AT+ N-D+A,(a+N—-1
s A (o + B (a + DVay(a + DBNa + DAL(a +2)
AL+ N-1)
++-+B(@a+N-DVy(@a+N-1)
X Bl + N — 1) (B16)

where A, () £ A, (") + B.(-)C(-)@12()Q,'(*). Next, note that
the controllability of [P, (), B.(a)] implies that [P, (o),
B..(0)V¥%()] is also controllable, where
q)e.rrl(a) é Aes(a +N - I)Ae:(a +N - 2)
XAyl + N=3)--As(a)

Bu(@) 2 [As(a+ N—1) - As(a + DB.(a),

Ao+ N=1 - A (o + 2)
“B,(a+1),...,B,(a + N—1)]
V() & block-diagonal
[Va(a), Vil + 1), ..., Vy(a + N — 1)]
Next, using the given notation, Eq. (B16) becomes
01(0) = @, (W02 ()P, () + Bu(@)Vy()Bl ()  (BIT)
Now, since ®,,, () is stable and B..()V,,(1)BL(-) is non-negative
definite, Lemma 12.2’ (p. 282, Ref. 31) implies that (") is
positive definite. Using similar arguments we can show that
Py(-) is positive definite.
Since QZ(a)’ Pl(a)v Vl(a)a Rl(a)v VZ:I (a)’ and RZa ((l), for o
=1,..., N, are invertible Eqs. (B6-B8) can be written as
A 0) = —P5'(a + DPT(a + DA(@)Qn()Q7' ()
~ B.(@)C(a)Q n(a)Q7 ' (@) (B18)
B.(@) = —P7'(a + DPh(a + DQ.()Vii()  (B19)
C.(@) = L@ u@Q3'(@) (B20)

fora=1,...,N. Now, fora = 1,..., N, define n, X n, n,
X n,, and n, X n matrices

G(o) 2 Q7' (@Qh(w),  M() & Q:(a)P1(e)

I(a) & —P;'(0)Ph ()
and the n X n matrices
Q(@) & 01(a) — Qu()Q7'(@Qh(e)
P(a) & Pi(e) = Pip()P7 ()P (e)
0@ 2 Qn()Qi ()Qh(w)
P(a) & Pu(0)P7'(0)PTa(e)

Next, fora = 1, ..., N, computing I'(a + 1) - [Eq. (B10)]
— [Eq. (B11)] = 0 and G(a) - [Eq. (B13)] + [Eq. (B14)] =
0 yields

—P;'o + DPL(a + DQpla + D@5 a + 1) =1, (B21)

=Py ()PL ()@ ()Q7 (@) = I, (B22)

Note, @(a), P(a), P(@), and Q(a), fora = 1, ..., N, are non-
negative definite. Next, note that with the preceding definitions
(B21) and (B22) are equivalent to Eq. (33b), and Eq. (33a)
holds. Hence, T(a) = GT(c)['() is idempotent, i.e., 75(a) =
(o), fora = 1, ..., N. Sylvester’s inequality yields Eq. (42).
Note also that
O() = 10, Pl = Pe(a)

The components of 0 (o) and P(a) can now be written in terms
of Q(a), P(a), @ (), P(a), G(e), and I'(ax) as
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0@ =0+ 0@, Pi(x) =P+ Pa)

On(@) = 0@I"(@, Pula)=-P@G ()

0:(@ = T@Q@I (@), Pya) = G@P()G (o)

The expressions (36-38) follow from Eqs. (B6-B8) by using
the preceding identities. Substituting these expressions for
A.(a), B.(a), and C,(a) in Egs. (B9-B14) it follows that Eq.
(B11) =T'(a + 1) - [Eq. (B10)] and Eq. (B14) = —G () * [Eq.
(B13)]. Hence, it follows that Eqs. (B11) and (B 14) are superflu-
ous and can be omitted. Thus, Eqs. (B9-B14) reduce to

0=A@Q()AT(®) + A(@Q()AT ()
+Vi) - Qa+1)— Q0+ 1 (B23)

0= [A(@Q(@AT(@) + Q. (V7 (x)QT(c)
- 0@+ DI T+ 1) (B24)

0=[{A(@) — Q()V()C(@)} P(a + 1){A(x)
= Q. (@V()C(@} + (UN)LT(@RL () (B25)
- P()]G7 (@)

Next, computing Eq. (B23) + G" (a« + DI'(a + 1) - [Eq.
(B24)]1G(a + 1) — [Eq. (B24)]1G (o + 1) — {[Eq. (B2)]G(a
+ 1)}Y = 0, yields Eq. (39). Finally Eqs. (40) and (41) are
obtained by computing G"(e + 1)I'(e + 1) - [Eq. (B24)]G («
+ 1) =0 and I'" ()G () - [Eq. (B25)]T(ax) = 0, respectively.
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