
Systems & Control Letters 9 (1987) 423-431 423 
North-Holland 

Robust, reduced-order, nonstrictly proper state 
estimation via the optimal projection equations 
with Petersen-Hollot bounds 

Wassim M. H A D D A D  
Department of Mechanical Engineerin~ Florida Institute of Technology, Melbourne, FI 32901, USA 

Dennis S. B E R N S T E I N  * 

Harris Corporation, Government Aerospace Systems Division, MS 22/4848, Melbourne, FL 32902, USA 

Received 10 March 1987 
Revised 11 June 1987 

Abstract: A state-estimation design problem involving parametric plant uncertainties is considered. An error bound suggested by 
recent work of Petersen and Hollot is utilized for guaranteeing robust estimation. Necessary conditions which generalize the optimal 
projection equations for reduced-order state estimation are used to characterize the estimator which minimizes the error bound. The 
design equations thus effectively serve as sufficient conditions for synthesizing robust estimators. An additional feature is the 
presence of a static estimation gain in conjunction with the dynamic (Kalman) estimator, i.e., a nonstrictly proper estimator. 

Keywords: Robust Kalman filter, Error bounds, Reduced-order state estimation. 

I. Introduction 

As is well known [2,5-8,11,14,15] optimal filters based upon nominal parameter values may be severely 
degraded in the presence of parameter deviations. Thus, it is desirable to obtain robust state estimators 
which provide acceptable performance over the range of parametric uncertainty. The approach of the 
present paper is related to the guaranteed cost approach developed for control in [4,16] and applied to 
estimation in [11]. Specifically, the main idea is to bound the effect of the uncertain parameters on',the 
estimation error over the uncertainty range and then choose estimator gains to minimize the estimation 
bound. Thus the actual estimation error is guaranteed to lie below the prescribed upper bound. 

The technique used to determine minimizing estimator gains is based upon a generalization Of the 
optimal projection equations for reduced-order state estimation [1]. Thus the results of the present paper 
effectively extend the results of [1] to the case of system uncertainties. It should be noted that the optimal 
projection equations, which are necessary conditions for optimality, now serve as sufficient conditions for 
robust estimation by virtue of the fact that a bound on the estimation error is being minimized rather than 
the estimation error itself. The bound utilized in the present paper is an extension of the approach 
developed in [12,13] for constructing Lyapunov functions for full-state feedback and utillzed in [10] to 
characterize the structured stability radius. 

An additional feature of the present paper is the inclusion of a static feedback gain in conjunction ~ t h  
the dynamic estimator. Thus the results of the present paper represent a ~eneralization of standard results 
to the case of nonstrictly proper estimation. 
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2. Notation and definitions 

Note: All matrices have real entries. 
R, R ~×s, R r, E 
L,()  r 
S ~, N ~, p~ 
Z 1 _< Z 2, Za < Z 2 
n, l, 1, n e, p , q ;  
x , y , ~ , y e ,  Xe ,~  
A, AA; C, AC 
C , L , R  

Ae, Be, Ce, Do 

Z ,~X 

Wo('), Wl(') 
Vo, V~ 
go1 
¢,(.), ~" 

real numbers, r x s real matrices, R rxl, expected value. 
r x r identity matrix, transpose 
r x r symmetric, nonnegative-definite, positive-definite matrices. 
Z2 - ZI ~ N ~, Zz - ZI ~ P ~, Z~, Z2 ~ S r. 
positive integers; n + n e. 
n, l, l, q, n e, ~-dimensional vectors. 
n x n matrices; l x n matrices. 
I x  n matrix, q x n matrix, q x q matrix, R ~ P q. 
z e X he, n~X l, q X he, qX l matrices. 
A 01[ A 01 

A d, t B:C 0j- 
: R / . -  :RDed- d~DJR/. + d~DJm~od -I:RC~ + dTDJRco ] 

-CJRI. + CJRDed CJRCo ]" 
n /-dimensional white noise. 
intensity of w0(. ), wl(.);  V 0 E N", V1 ~ pt. 
n x I cross intensity of wo('),  wl(-). 

LBew,(-)/ [Berg BoV, BJ]" 

3. Robust estimation problem 

Let q / c  N "x" X R tx" denote the set of uncertain perturbations (AA, AC) of the nominal plant matrices A 
and C. 

Robust Estimation Problem. For fixed n e < n, determine (Ae, Be, Ce, De) such that, for the system 
consisting of the n-th-order disturbed plant 

2 ( t ) = ( A + Z i A ) x ( t ) + W o ( t ) ,  t ~ [ O ,  oo), (3.1) 

noisy and nonnoisy measurements 

y ( t )  = (C + A C ) x ( t )  + w 1 ( t ) ,  (3.2) 

fi( t ) = Cx( t ), (3.3) 

and n : th -order  nonstrictly proper state estimator 

Y~e( t) = Aexe( t) + Bey( t ) ,  (3.4) 

ye(t) = Cexe(t ) + Deft(t ), (3.5) 

the state-estimation error criterion 

J(Ae,  Be, Ce, De) a__ sup lim s u p E [ L x ( l )  - y e ( t ) ] T R [ L x ( t )  - y e ( t ) ]  (3.6) 
(AA, AC)~q,' t--*oo 

is minimized. 
Note that the augmented systen (3.1)-(3.5) can be written as 

x ( t )  = (A + z i ,4 )$( t )  + i f ( t ) ,  t ~ [0, oo), (3.7) 

where $ ( t )  _a [xa-(t), xer(t)]-r. The cost can be expressed in terms of the augmented second-moment matrix. 
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Proposition 3.1. For given ( Ae, Be, Ce, De) and ( A A, AC) ~ all the second-moment matrix 

O.a~'( t )&lF[~(t)~T(t)] ,  t ~ [ 0 ,  oo), 

satisfies 

~ad( t )  = (,4+A,,l){~aA(t) + O _ a d ( t ) ( A + A , 4 ) T +  I7", t ~  [0,oo). 

Furthermore, 

J ( A  e, B e, C~, De)= sup lira sup tr (~ad(t)/~. 
(AA, zlC)~q/ t~oo 
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(3.8) 

(3.9) 

(3.10) 

4. Sufficient conditions for robust performance 

Lemma 4.1. Suppose the system (3.7) is stable for all (AA, AC) ~ qA. Then 

J ( A  e, B e, C e, De)= sup tr (~a,~/~, (4.1) 
(zlA, ~c) E~' 

where ~ QaA ~ N is the unique solution to 

We now seek upper bounds for J(A¢, Be, Ce, De). 

Theorem 4.1. Let [2 : I%1 r' x R ":xl ---> S a be such that 

aXa+aaA- _< Be), (aA,  AC) ~ ql, (~,  Be)~lM'i X R "°xt, (4.3) 

and, for given ( Ae, Be, Ce, De) , suppose there exists .~ ~ N ~ satisfying 

0 = A.~ +.~A "r + I2(.~, Be) + 17", (4.4) 

and suppose the pair (I 7"1/2, A + A.~) is detectable for all ( A A, AC) ~ ag. Then A e is asymptotically stable, 
A + AA is asymptotically stable for all (AA,  AC) ~ all, 

{~ad-<-~, (AA, AC) ~ ok', (4.5) 

where O_ad satisfies (4.2), and 

J(  Ae, Be, Ce, De) < tr .~h. '(4.6) 

Proof. For all (AA, AC) ~ q/, (4.4) is equivalent to 

0 = (a..}- A2z~).~.~t..~(X+ AA)T.+- x/t(,~, Be , AA ) ..]_ V, (4.7) 

where 

,~ ( .~ , Be, A ,,I ) & O ( .~ , B e ) -  ( ~ A.~ + .~ a A"r ) . 

Note that by (4.3), '@(-~, B e, A A ) > 0  for all (AA, AC)~ q/. Since (#1/2, ,,~ + A,~) is detectable for all 
(AA, AC)~  q/, it follows from Theorem 3.6 of [17] that ((l,}+ ~(.~, Be, A,,~))W2, ,,~+ A,~) is detectable 
for all (AA, A c ) ~ q / .  Hence Lemma 12.2 of [17] implies ,,~+A,,~ is asymptotically stable for all 
(AA, AC) ~ q/. Since ,,1 + A,~ is lower block triangular, A e is asymptotically stable and A + AA is 
asymptotically stable for all (AA, AC) ~ ~.  Next, substracting (4.2) from (4.7) yields 
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or, equivalently, (since X + A,~ is asymptotically stable) 

a -  ~ = fo%<~+~".(~,  Be, ~x)  e'~ +~"' d, >_ 0, 

which implies (4.5). Finally, (4.5) and (4.1) yield (4.6). El 

5. Uncertainty structure 

The uncertainty set ¢/ is assumed to be of the form 

p 

~= (aA. aC)~a"×"xW×":aA= ~.D,M,N,E,. 
i = I  

' } 
- A C =  ~_,.FiMiNiEi, MiMir <_~., N/rN,.<_Ni, i - -1  . . . . .  p , 

i=1  
(5.1) 

where, for i --- 1,..  ".__z, P, D/~  R "xr', E i ~ R t'x" and F,. ~ R txr' axe fixed matrices denoting the structure of 
the uncertainty; M i ~ N ~' and N/~ N t' are given uncertainty bounds; and M i ~ R r'xs', N/~  R s,xt, are 
uncertain matrices. The closed-loop system thus has structured uncertainty of the form 

p 

zx,~ = E D,M,~L, (5.2) 
i~=l 

where 

[ l, 01 (s.3) D,~ LBoF, j 

The special case ~ -  2 - - / . t /L , ,  ~ .  ---- V?Iti is worth noting. 

Proposition 5.1. Let t~i, vi > O, i = 1 . . . . .  p. Then MiMi v <- IXi21r, and NiVNi < v21¢, i f  and only if  
amax(Mi) < t~i and am,x(Ni) < v i. 

Remark_5.1. q/given by (5.1) is directly related to the structured stability radius introduced in [10]. Setting 
p = 1, M 1 =/~alr,, r 1 = sl, N1 = Ir t and N 1 = 1~1 yields the setting of [10]. For a similar formulation, see 
[133. 

6. The Petersen-Hollot bound 

Given ¢ / a s  defined in (5.1), we now specify ~2 'satisfying (4.3). 

Proposition .6.1. The bound I2 given by 

P 

i=1  

satisfies (4,3) with all given by (5.1). 

(6.1) 
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Proof. For i = 1 . . . . .  p, 

o <_ 

< 1)iMil) ? +.~ff.iT~E,.~ - ( 1)i i iNiEi .~ + ~E,.TN,.T/iTD?). 

Summing over i yields (4.3). [] 

Remark 6.1. The bound (6.1) is used in [12] for unit-rank perturbations while a more general treatment 
appears in [13]. 

7. The auxiliary minimization problem 

Our goal is to minimize the error bound (4.6). 

Auxiliary Minimization Problem. Determine (.~, Ae, B,, C e, De)with ,q~ N~which minimizes 

,f(.~, A~, B e, Ce, De) & tr .~h 

subject to 

P 

o E + ¢', 
i=l  

and 

(121/2, A + A A )  is detectable, (AA,  AC) ~ qz. 

(7.1) 

(7.2) 

(7.3) 

Proposition 7.1. If (.~, Ae, Be, Ce, De) satisfies (7.2) and (7.3) with .~ >_ O, then A + A ~ is asymptotically 
stab&for all (AA,  AC) ~ ~ ,  and 

J( A e, Be, C e, De)<,,¢(.~, A e, B e, C e, De). (7.4) 

Proof. With ~2 given by (6.1), (7.2)is equivalent to (4.4). Hence, with (7.3), the hypotheses of Theorem 4.1 
are satisfied so that the augmented system is stable over ~ with estimation bound (4.6). Note that with 
(7.1), (7.4) is merely a restatement of (4.6). [] 

8. Necessary conditions for the auxiliary minimization problem 

Rigorous application of the Lagrange multiplier technique requires additional technical assumptions. 
Specifically, we further restrict (.~, Ae, Be, Ce, De) to the set 

5 a--a ((.~, A e, Be, Ce, De): .~ ~ P'~, ~ is asymptotically stable, (A e, B e, Ce)is controllable 

and observable, and C( Q 1 -  Q12Q~lQ~2) d T >  0), 

where ($  denotes Kronecker sum [3]) 

i=1 

and .~ is partitioned as in Appendix A. As shown in Appendix A, Qz is invertible since (Ae, Be) is 
controllable. The positive definiteness condition holds when C has full row rank and ,q is positive definite. 
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As can be seen from the proof of Theorem 8.1 in Appendix A, this condition implies the existence of the 
projection ~1 defined below. Note that 5 p is open. 

Remark 8.1. The constraint (.~, Ae, Be, Ce, De) ~ 5 p is not required for robust estimation. As will be seen 
from the proof of Theorem 8.1, the set 5 p constitutes sufficient conditions under which the Lagrange 
multiplier technique is applicable to the Auxiliary Minimization Problem. Specifically, asymptotic stability 
of ~ serves as a normality condition which further implies that the dual 9 ~ of .g satisfying (A.2) is 
nonnegative definite. Furthermore, (A e, B e, Ce) minimal is a nondegeneracy condition which implies that 
the lower right n e × n e subblocks of .~ and 9 ~ are positive definite. It is extremely important to emphasize 
that Proposition 7.1 shows that it is not necessary for guaranteed robust estimation that an admissible 
quadruple obtained by solving the necessary conditions actually be shown to be an element of 50. 

For arbitrary Q ~ R" x,  define the following notation: 

p P 
Via ~ V1 + Z F/~ 'F /T ,  Qa a Vo 1 + Q c  T + E D/M/F/T, 

i=1 i=1 
p p 

D ~= E D,~DT, e ~= E ~F£~,, AQ ~= A - QaV;.'C. 
i=l  i=1 

The following factorization lemma is needed for the statement of the main result. See [1] for details. 

Lemma 8.1. I f  O, f E N" and rank O f  = ne, then there exist n e x n G, F and n e x n e invertible M such 
that 

OP = GTMF, FG r = I,o. (8.1),(8.2) 

Furthermore, G, M and 1" are unique except for a change of basis in R % 

Since 4 t  3 is diagonalizable it has a group generalized inverse (Off) # = GTM-aF and 

~ O f ( O f )  # = ~ r  (8.3) 

is an oblique projection. Define the complementary projection .r~ ~ / , ,  - "r and call (G, M, F) satisfying 
(8.1) and (8.2) a projective factorization of Qf .  

Theorem 8.1. (.~, A e, B e, C e, De) ~ 5  a is an extremal of the Auxiliary Minimization problem with vii given 
by (5.1) if and only if  there exist Q, 0., f ~ N" such that .~, A e, Be, Ce, De are given by 

r ~ : J '  
& =  r ( A  - Q ~ E ' c  + QE)a  T, 

B. = / ' Q ~ ,  
C¢=L'rl . I .G T, 

De = LQdT(dQd T) - ' ,  

for  some projective factorization (G, M, F) of OP, and such that Q, O, f satisfy 

O = A Q + Q A T + V o + D + Q E Q _  -1 v -1 TT QaVi. Qa + r .  OaVi. Qa.ra. , 

0 = (A + QE)O + O(A  + Q E ) T +  OEO + QaV~.IQ T -~- .  QaV{-.IQT.r T , 

o = (AQ + Qe)Tf  + f (AQ + Oe)  + ,?.LTRL~,I - , I f f ~ L T R L , , . , . ,  

rank O = rank f = rank Of=no, 

(8.4) 

(8.5) 
(8.6) 
(8.v) 
(8.8) 

(8.9) 
(8.10) 
(8.11) 
(8.12) 
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where 

QC ( C Q d )  a / , , - ~ ,  (8.13) ~x T T - 1 ~ ,  '7"1.1_ ,r 1 ~ ~ , 

Theorem 8.1 (proved in Appendix A) presents necessary conditions for the Auxiliary Minimization 
Problem which explicitly characterize extremals (.~, Ae, Be, Ce, De). These necessary conditions consist of 
a system of two modified Lyapunov equations and one modified Riccati equation coupled by two oblique 
projections ~- and ~'1 and uncertainty terms. The projections "r and "r~ correspond to reduced estimator 
order and singular observation noise, respectively. 

Several special cases can immediately be discerned. For example, in the full-order estimator ease n e -- n, 
set T = I,  so that % = 0. Now the last term in each of (8.9)-(8.11) can be deleted and G and /" in 
(8.4)-(8.7) can be taken to be the identity. Furthermore, since Q and /3 now play no role in determining 
the optimal estimator, equations (8.10) and (8.11) are superfluous. If, furthermore, D~, E i and F/ are zero, 
then (8.9) reduces to the standard observer Riccati equation of steady-state Kalman filter theory. 
Alternatively, the case in which the static estimator gain D e is absent can be handled by ignoring (8.8) and 
setting ~ = 0. If, furthermore, the uncertainty terms are deleted then the results of [1] are recovered. 

9. Sufficient conditions for robust, reduced-order estimation 

The main result guaranteeing robust estimation can now be stated. 

Theorem 9.1. Suppose there exist Q, Q., /3 ~ N" satisfying (8.9)-(8.12), let A e, B e, C e, D e be given by 
(8.5)-(8.8), and suppose that(IT"l~2 .,~ + A ~)  is detectable for all ( A A, AC) ~ o~ with o~ given by (5.1). Then 
A e is asymptotically stable, A + AA is asymptotically stable for all (AA,  AC) ~ ql, and the estimation error 
satisfies the bound 

J (Ae ,  Be, Ce, De) < tr Q~'~±LTRL'cl±. (9.1) 

Proof. Theorem 8.1 implies .~ given by (8.4) satisfies (7.2). With the detectability assumption the result 
follows from Proposition 7.1. [] 

Remark 9.1. Note that if C = L then C e = 0 and the estimation bound (9.1) is zero since C~'1 ± = 0. This is, 
of course, to be expected since perfect estimation is achievable in this case. 

Remark 9.2. The problem of designing reduced-order, robust estimators for unstable systems remains an 
area for future research. 

Appendix A: Proof of Theorem 8.1 

Partition ~ x ~ .~, t~ into n × n, n X ne, and n e × n e subblocks as 

and define the n × n nonnegative-definite matrices 

Q & Q1 - Q12Q21QT2, P & P1 - P12P21P~, 

= Q12Q2 Q12, /3 & P12P~lP~, 

and the n e × n, n e × n e, n e × n matrices 

G& Q~aQ'~2 , M &  Q2p2, F& _p~- lp~.  

The existence of Q~-a and p f l  is shown below. 
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To optimize (7.1) over the open set 50', where 5 °, ~ ((.~, A e, B e, Ce, De) ~50: (7.3) is satisfied}, 
subject to the constraint (7.2), form the Lagrangian 

[ ( , )] se(a, Ae, Be, Ce, De)~tr Xak+ X a + ~ A - ~ +  Z b , ~ b ? + ~ U ~ L a +  ;" ~ , 
i = l  

where the multipliers h >__ 0 and ~ R ~xn are not both zero. We thus obtain 

P 

-~ =A-~+ ~ +  E ~ 7 ~ , L a ~ + ~ a g T ~ L  + xk.  
i=1 

Setting a.Z/8-q = 0 yields (' vec' is defined in [3]) 

a~a'vec ~ =  - X  vec R. 

Since ~ is assumed to be invertible, h = 0 implies @= 0. Hence, without loss of generality, set X = 1. 
Since, furthermore, ja~ is assumed to be asymptotically stable, @ is nonnegative definite. The stationarity 
conditions are given by 

P 
a---~=~a+aA-~ + E b , ~ b ? + a ~ T g L a +  ¢=  0, (A.1) a ~  

i = l  
P 

O, (A.2) 
i = l  

OSe = P~Q,2 + P2Q2 = O, (A.3) 
~Ae 

a£a 
3B e = P~Vol + ( P~aa + P2Q~2) CT + P2BeV1, = 0, (A.4) 

aC e = -RLQ12  + RDeCQ12 + RCeQ 2 -- 0, (A.5) 

0,.o~o---- _ R L Q ] ~ T  -I- R D e ~ Q I ~ T  + RCeQ~2~T = 0. (A.6) 
ODe 

Expanding (,4,.1) and (A.2) yields 

0 =AQ1 + QaAT+ D + Q1EQ1 + Vo, (A.7) 

~ ~ Zo, BL (A.8) 0- -AQ12+ Q1C B~ + Q12Ae + QaEQI2 + 

Q12C Be q_ r v 0 = BeCQ12 +AeQ 2 + T T T Q2Ae + BeVi~B e + QT2EQ12, (A.9) 

o = ?,2Ae + . : ? , ~  + C~B~?~ + e(t'~O_, + ?~QT~)T _ L~RCe + eTD~RCo, (A.10) 

o = ~'2ae + a~,P2 + CIrCe. (A.11) 

Nora that the (1,1) subblock of equation (A.2) characterizing Pa has been omitted from the above 
,equations since the estimator gains are independent of P1- Writing (A.9) as (see [1,9]) 

0 = ( A  e + B, CQ12Q~)Q 2 + Q2(Ae + BeCQ~2Q~) T + Q2(Q,2Q~)TEQi2Q~Q2 + BeV~aBTe 

where Q~ is the Moore-Penrose or D r a i n  generalized inverse of Q2, it follows from [17], Lemmas 2.1 
and 12.2, that Q2 is positive :definite. Similarly, (A.11) implies that P2 is positive definite. 

Next (8.4), (8.6)-(8.8) follow from the definition of .~, (A.4)-(A.6) by using the identities 
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C o m p u t i n g  e i ther  F ( A . 8 ) - ( A . 9 )  or  G(A.10)  + (A.11) yields  (8.5). I n s e r t i n g  (8 .5) - (8 .8)  i n t o  (A .7 ) - (A .11 )  
a n d  us ing  (A.7) + G T F ( A . 8 )  - (A .8 )G - (A .8G)  T a n d  G T F ( A . 8 )  - (A .8 )G - (A .SG)  T yie lds  (8.9) a n d  (8.10). 
Similar ly,  E T G ( A . 1 0 ) r -  ( A . 1 0 ) / ' -  (A.10/~) T yields (8.11). 

F ina l ly ,  the  p r o o f  c a n  be  reversed so tha t  (8 .5) - (8 .12)  y ie ld  ( A . 1 ) - ( A . 6 )  a n d  (7.2). See [9] for  detai ls .  O 
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