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Robust Stability and Performance via Fixed-Order 
Dynamic Compensation with Guaranteed Cost Bounds* 

Dennis  S. Berns te in t  and  Wass im M. Haddad~: 

Abstract. A feedback control-design problem involving structured plant parame- 
ter uncertainties is considered. Two robust control-design issues are addressed. The 
Robust Stability Problem involves deterministic bounded structured parameter 
variations, while the Robust Performance Problem includes, in addition, a qua- 
dratic performance criterion averaged over stochastic disturbances and maximized 
over the admissible parameter variations. The optimal projection approach to 
fixed-order dynamic compensation is merged with the guaranteed cost control 
approach to robust stability and performance to obtain a theory of full- and 
reduced-order robust control design. The principle result is a suff• condition 
for characterizing dynamic controllers of fixed dimension which are guaranteed to 
provide both robust stability and performance. The sufficient conditions involve 
a system of modified Riccati and Lyapunov equations coupled by an oblique 
projection and the uncertainty bounds. The full-order result involves a system of 
two modified Riccati equations and two modified Lyapunov equations coupled by 
the uncertainty bounds. The coupling illustrates the breakdown of the separation 
principle for LQG control with structured plant parameter variations. 

Key words. Robust stability, Robust performance, LQG control, Dynamic com- 
pensation, structured uncertainty. 

1. Introduction 

The direct me thod  of L y a p u n o v  has p roven  to be an effective a p p r o a c h  to robus t  
analysis  and  design of feedback cont ro l  laws. References [B1],  [B2],  [BCL] ,  [BG2] ,  
[CL] ,  [CP] ,  [ER] ,  [GB] ,  [H] ,  [KB] ,  [ K B H ] ,  [L] ,  [ P H ] ,  [TB] ,  and  [ V W ]  comprise  
a representa t ive  col lect ion of  the l i te ra ture  in this area.  In  per forming  robus t  
synthesis there ar~ two pr incipal  issues, namely ,  s tabi l i ty  robus tness  and perfor-  
mance  robustness .  Stabi l i ty  robustness  addresses  the p r o b l e m  of  guaran tee ing  
s tabi l i ty  of  the c losed- loop  system for p lan t  pe r tu rba t i ons  within a specified class 
of  uncertainties.  In  add i t i on  to guaran tee ing  robus t  s tabi l i ty ,  it is often desi rable  to 
minimize the wors t -case  pe r fo rmance  deg rada t i on  within a given robus t  s tabil i ty 
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range. Although both robust stability and performance are of interest in practice, 
most of the literature involving quadratic Lyapunov functions deals only with the 
problem of robust stability. A notable exception is the early work of Chang and 
Peng [CP] which also provides bounds on worst-case quadratic performance within 
full-state feedback control design. 

The contribution of this paper is a methodology for designing controllers which 
provide both robust stability and robust performance over a prescribed range of 
structured plant parameter variations. The feedback law is in the form of a fixed- 
order (i.e., full- or reduced-order) strictly proper dynamic compensator. The overall 
approach is based upon the merging of two distinct control-design techniques, 
namely, the guaranteed cost control approach to robust performance ECP] and the 
optimal projection approach to fixed-order dynamic compensation [BH3], [HBI. 
The principal motivation for our approach is to permit greater flexibility in the 
design of robust feedback laws by providing an alternative to full-state feedback 
and full-order dynamic compensation. 

The guaranteed cost control approach [CP] adopted in this paper utilizes a 
performance bound to provide robust performance in addition to robust stability. 
Here, robust performance refers to a guaranteed bound on the worst-case value of 
the expectation of a quadratic cost criterion over a prescribed uncertainty set. This 
quadratic criterion is precisely the standard cost functional of linear-quadratic- 
Gaussian (LQG) control theory. By bounding the worst-case value of this criterion 
over a specified range of plant uncertainties, we effectively bound the variances of 
specified states and control signals. 

To bound the worst-case closed-loop performance, we require a bound on the 
effect of plant uncertainties on the steady-state closed-loop covariance matrix. The 
form of the guaranteed cost control bound utilized herein was originally motivated 
by the effect of multiplicative white noise on the state covariance [B2], [BG2]. Since 
this bound is differentiable with respect to the covariance matrix and compensator 
gains, it permits optimal design via first-order necessary conditions. This approach 
is not possible using the nondifferentiable bound ordinally proposed in [CP]. An 
alternative differentiable bound proposed in [PHI for full-state feedback has been 
extended to fixed-order dynamic compensation in [BH1]. 

In this paper the guaranteed cost technique is used to bound the closed-loop 
performance and characterize robustly stabilizing controllers. This performance 
bound is then interpreted as an auxiliary cost which is to be minimized by the choice 
of compensator gains. The actual performance for a given realization of the parame- 
ter uncertainty is thus guaranteed to lie below this bound. Assuming stabilizability 
(disturbability), the robust performance bound automatically implies robust sta- 
bility. The auxiliary cost and the Lyapunov equation constraint together form the 
Auxiliary Minimization Problem. Since the Auxiliary Minimization Problem is 
a nonconvex mathematical programming problem with differentiable data, it is 
amenable to first-order necessary conditions. 

One feature of this approach is that since the necessary conditions are obtained 
for the Auxiliary Minimization Problem rather than the origina~l problem, extremals 
are guaranteed to provide both robust stability and performance. Note that this is 
true for every extremal of the Auxiliary Minimization Problem whether it corre- 
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sponds to a local minimum, local maximum, or otherwise. Of course, the global 
minimum is most likely to provide the best worst-case performance over the robust 
stability range. In a, ny case, necessary conditions for the Auxiliary Minimization 
Problem effectively serve as sufficient conditions for robust stability with a guaran- 
teed performance bound. 

This paper presents a rigorous development of sufficient conditions for robust 
stability and performance via fixed-order dynamic compensation. These sufficient 
conditions are in the form of a coupled system of algebraic matrix equations 
consisting of two modified Riccati equations and two modified Lyapunov equa- 
tions. The coupling is due to the optimal projection, which characterizes reduced- 
order controllers, and the uncertainty bounds, which account for the effect of 
parameter uncertainties on the performance functional. When the compensator 
order is constrained to be equal to the dimension of the plant and the uncertainty 
bounds are absent, the equations specialize to the usual pair of separated Riccati 
equations of steady-state LQG theory. 

We emphasize that our approach is constructive in nature rather than existential. 
Our sufficient conditions provide explicit formulae for robust, fixed-order feedback 
gains when the Auxiliary Minimization Problem has a solution, and in this case our 
constructive conditions are complementary to existential results on robust sta- 
bilizability. The existence of a solution to the Auxiliary Minimization Problem and 
associated design equations depends upon stabilizability via fixed-order controllers 
and on the sharpness of the quadratic Lyapunov bounds. The stabilizability prob- 
lem has been studied using independent methods (see, e.g., [BHK-I), while the 
conservatism of the bounds is considered in [BH2]. Here we state a local exis- 
tence result for solvability of the design equations which assumes only nominal 
stabilizability. 

The contents and scope of this paper are as follows. In Section 2 we state the 
robust stability and performance problems for fixed-order dynamic compensation 
with plant parameter uncertainty. In Section 3 a modified Lyapunov equation 
is introduced whose solution, when it exists, is guaranteed to bound the steady- 
state closed-loop covariance over the specified range of plant uncertainty. A per- 
formance bound is then given in terms of the covariance bound. In Section 4 we 
view the performance bound as an auxiliary cost and consider the problem of 
minimizing the auxiliary cost subject to the modified Lyapunov equation and a 
definiteness condition as side constraints. These side constraints have the property 
that all admissible 'elements provide robust stability and performance (Proposition 
4.1). In Section 5 the uncertainty set and bound for constructing the modified 
Lyapunov equation are given concrete forms. Specifically, the uncertainty set has 
the form of an ellipsoidal region in parameter space while the modified Lyapunov 
equation includes additional linear terms to bound the uncertainty. A sufficient con- 
dition involving Kronecker sums and products implies the existence of a unique, 
nonnegative-definite solution to the modified Lyapunov equation. Section 6 pre- 
sents the first-order necessary conditions (Theorem 6.1) for the Auxiliary Mini- 
mization Problem under minor additional technical conditions to ensure the appli- 
cability of the Lagrange multiplier technique. As discussed above, these necessary 
conditions are in the form of extended optimal projection equations. A partial 
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converse of the necessary conditions shows that solutions of these algebraic equa- 
tions provide, by construction, a solution of the original modified Lyapunov equation. 
This result is combined in Section 7 (Theorem 7.1) with a stabilizability assumption 
to guarantee robust stability with a robust performance bound. In addition, we state 
an existence result for local solvability of the design equations by applying a result 
from [R1] and [R21 (Theorem 7.2). To draw connections with standard LQG. 
theory, in Section 8 we specialize Theorem 7.1 to the full-order case. In contrast to 
the pair ofseparated Riccati equations of standard LQG theory, the full-order result 
in the presence of plant parameter variations is given by a coupled system of four 
modified Riccati/Lyapunov equations. In Section 9 the theory is illustrated by 
means of an example due to Doyle I'D]. This problem was also considered in [BG1] 
before the robustness theory developed herein was available. H~nce this paper can 
be viewed as the rigorous mathematical foundation which legitimizes the heretofore 
ad hoc robustness approach of [BGII.  

Notation. 

E 
I . (  )r, 0,• 0, 
Zli,j) 
G , |  
5 r , ~ r , p  r 

Z I < Z 2 ,  Z t < Z 2  
A., Ac~ 
RI,R2 
R12 

w~(-), w2(-) 

v12 
~(.), 

Note: All matrices have real entries 

expected value 
r x r identity matrix, transpose, r x s zero matrix, 0, • 
(i, j)-element of matrix Z 
Kronecker sum, Kronecker product [B3] 
r x r symmetric, nonnegative-definite, positive-definite 

matrices 
Z2 - Z~ ~ N ' , Z  2 -- Z~ e P', Z I , Z  2 ~ 5" 
A + (~/2)I., A~ + (~/2)Lo 
state, control weighting matrices; R~ E N n, R 2 ~ P'~ 
n x m cross-weighting matrix; R~ - Rt2R 2-1R~ > 0 

CdR2CoA 
n,/-dimensional white noise 
intensity of wl('), w2('); VIe ~", V 2 e pl 
n x I cross intensity of wx(. ), w2(. ) 

w,,., 7,[,% 
B~w2(')_J B~V2Br~ J 

2. Robust Stability and Robust Performance Problems 

In this section we state the Robust Stability Problem and Robust Performance 
Problem. Both problems involve a set q / c  R" • x R ~ • " x R ~ • * x R ~ • = of uncer- 
tain perturbations (AA, AB, AC, AD) of the nominal system matrices (A, B, C, D). 
The goal of the Robust Stability Problem is to determine a fixed-order, strictly 
proper dynamic compensator (Ac, Bo, Cr which stabilizes the plant for all variations 
in q/. In this section and the following section no explicit assumptions are required 
for the set q/.. In Section 5 the structure of variations in q/will be specified. 



Robust Stability and Performance 143 

Robust Stability Problem. 
closed-loop system consisting of the nth-order controlled plant, 

Yc(t)*= (A + AA)x(t) + (B + AB)u(t), t E [0, ~), 

measurements 
y(t) = (C + AC)x(t) + (D + AD)u(t), 

and ncth-order dynamic compensator 

~r = Ar162 + Br 

u(t) = Ccxr 

is asymptotically stable for all (AA, AB, AC, AD) ~ ~.  

For fixed nr < n determine (Ar Be, Cc) such that the 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The Robust Performance Problem involves, in addition, white plant disturbances 
and measurement noise. The goal of this problem is to determine a fixed-order, 
strictly proper compensator (A c, Be, Co) which minimizes the worst-case value over 
the uncertainty set qg of a steady-state average quadratic performance criterion. 

Robust Performance Problem. For fixed nc < n, determine (Ac, Be, Cr such that, 
for the closed-loop system consisting of the n th-order controlled and disturbed plant 

Yc(t) = (A + AA)x(t) + (B + AB)u(t) + w x (t), t ~ [0, ~), (2.5) 

noisy measurements 

y(t) = (C + AC)x(t) + (D + AD)u(t) + w2(t), (2.6) 

and ncth-order dynamic compensator (2.3), (2.4), the performance criterion 

J(Ac, Bc, Co) ~ 

sup lim sup E[xV(t)Rlx(t) + 2xT(t)Rleu(t) + uT(t)Rzu(t)] (2.7) 
(AA, AB, AC, AD) r ~ t ~  

is minimized. 

Remark 2.1. The cost functional (2.7) is identical to the standard LQG criterion 
with the exception of the supremum for evaluating worst-case quadratic perfor- 
mance over q/. No~  that (2.7) can also be written in terms of an averaged integral, i.e., 

J(Ac, Bc, Cc) = 

sup lim sup 1E { ~  [xV(s)Rlx(s )+2xr(s )Rlzu(S)+Uv(s)R2u(s)]ds} .  
(AA,AB, AC, AD)r t~oo t 

For practical application, the cost (2.7) provides the means for minimizing the 
variances of selected state variables and control signals. This can be achieved by 
appropriate selection of the matrices R1 and R2 which serve as design weights. For 
robust performance the goal is to minimize the worst-case variances of selected 
variables over the plant uncertainty. 
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For each uncertain variation (AA, AB, AC, AD) ~ q/, the undisturbed closed-loop 
system (2.1)-(2.4) can be written as 

k(t) = ( 2  + AX)s t e [0, oo), (2.8) 
where 

2( 0 a__ F x(t) l 2 A_ I A BC~ ~, I r AA ABCc 1 
Lxo(t)l' _BoC Ar + B~DCJ A2  ~ ._B~AC B~ADCoJ" 

Similarly, the disturbed closed-loop system (2.3)-(2.6) can be written as 

k(t) = (A + AA)2(t) + O(t), t e [0, oo), (2.9) 

where the closed-loop disturbace O(t) has intensity Ve I~1 ~. 

3. Sufficient Conditions for Robust Stability and Performance 

In practice, steady-state performance is only of interest when the undisturbed 
closed-loop system (2.8) is robustly stable over q/. The following result, which 
expresses the performance in terms of the steady-state closed-loop second-moment 
matrix, is immediate. 

Lemma 3.1. 
(AA, AB, AC, AD) e q/. Then 

J(A~, B~, Co) = sup tr Qa2R, 
(AA, AB, AC, AD) ~ at/ 

where O.a~ ~ l im,~ E[~(t)~r(t)] ~ N; is the unique solution to 

o = (2  + A2)O~ + 0 ~ ( 2  + A2) ~ + ~. 

Let (Ar Be, Cr be given and assume the system (2.8) is stable for all 

(3.1) 

(3.2) 

Remark 3.1. When q/is compact, "sup" in (3.1) can be replaced by "max." 

The key step in guaranteeing robust stability and performance is to replace the 
uncertain terms in the covariance Lyapunov equation (3.2) by a bounding function 
D. Note that since AXis independent of Ar the bounding function need only depend 
upon B~ and Co. 

Theorem 3.1. Let D: I~ ~ x R "=• x IRm• ~ Si  be such that 

A2~ + ~A2  T <_ r~(.~, Be, Co), 

(AA, AB, AC, AD)eql, (..~,Bc, Co) e N~ x R"~ x R m• (3.3) 

and, for given (Ac, Be, Co), assume there exists .~ ~ ~ satisfying 

0 = Aa + .~2 T + fl(~ Be, Co) + V.. (3.4) 
Then 

(2 + aA. [ ~ +  n(a, Be, Co) - 02.9. + aa2T)] '/~) 
(AA, AB, AC, AD) 6 q/, (3.5) 

is stabilizable, 
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if and only if 

+ AA  is asymptotically stable, (AA, AB, AC, AD) �9 q/. (3.6) 

In this case, 
0a,i < -~, (AA, AB, AC, AD) E ~, (3.7) 

where O.a2 is oiven by (3.2), and 

J(A,, Bo, C~) < tr .~/~. (3.8) 

Proof. First note for clarity that in (3.3) .~ denotes an arbitrary element of ~/~ since 
(3.3) holds for all .~ �9 IN a, while in (3.4) .~ denotes a specific solution to (3.4). Now 
for (AA, AB, AC, AD) �9 og, (3.4) is equivalent to 

0 = (,4 + A,,~).~ + .~(A + AA r) + f~(.~, B~, C~) - (AA.~ + .~A,~ r) + I7. (3.9) 

Hence, by assumption, (3.9) has a solution .~ ~ I~/~ for all (AA, AB, AC, AD) E q/and, 
by (3.3), f~(.~, Be, Co) - (A~.~ + .~AA r) is nonnegative definite. Now if the stabiliz- 
ability condition (3.5) holds for all (AA, fiB, AC, AD) ~ a#, it follows from Lemma 
12.2 of [W] that A + AA is asymptotically stable for all (AA, AB, AC, AD) E q/. 
Conversely, if A + A,,~ is asymptotically stable for all (AA, AB, AC, AD) ~ q/, then 
(3.5) holds. Next, subtracting (3.2) from (3.9) yields 

0 = (X + zxX)(.~ - # ~ )  + (a - O~a)(/i + ~X) ~ + f~(-~, Bo, c~) - (A~_~ + .~AX~'), 

or, equivalently, since ,,~ + AAis asymptotically stable for all (AA, AB, AC, AD) ~ ~, 

- O ~  = f o  e('i+a'i)'[f~('~' Be, C:) - (A,4.~ + .~A,~r)]e ('~+aj)~' dt > O, 

which implies (3.7). The performance bound (3.8) is now an immediate consequence 
of (3.7). �9 

Remark 3.2. In applying Theorem 3.1 it may be convenient to replace condition 
(3.5) with a stronger condition which is easier to verify in practice. Clearly, (3.5) is 
satisfied if 17 + f~(.~, Be, Co) - (A.4.~ + .~A.z~ T) is positive definite for all (AA, AB, 
A C, AD) e ~ This will be the case, for example, if either V is positive definite or strict 
inequality holds in (3.3). Also, it follows from Theorem 3.6 of [W] that (3.5) is 
implied by the stronger condition 

(,4 + AA, l ~1/2) is stabilizable, (AA, AB, AC, AD) ~ q/. (3.10) 

Remark 3.3. The covariance bound (3.7) can also be used to analyze the effect of 
disturbances on specified state variables. For example, if E I e R q• then (3.7) 
implies 

El < [ E l  q•176 /0  / (3.11) 
[Ex O q •  On~215 -- L .o• 

so that the right-hand side of (3.11) serves as a bound on selected state variances. 
For control-design purposes we effectively set R 1 = E~E 1. Similar remarks apply 
to obtaining bounds on the variances of control signals. 
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4. The Auxiliary Minimization Problem 

The key step in our development involves consideration of the performance bound 
(3.8) in place of the actual worst-case performance J(Ar B~, C~). This leads to the 
following problem. 

Auxiliary Minimization Problem. Determine (.~, A~, B,, Co) which minimizes 

j(a) ,  Ao, B~, Co) ~ tr .~/~ (4.1) 

subject to (3.4) and 
".~ �9 N ~. (4.2) 

The relationship between the Auxiliary Minimization Problem and the Robust 
Stability and Performance Problems is straightforward as shown by the following 
observation. 

Proposition 4.1. I f  (.~, Ac, Be, Cc) satisfies (3.4) and (4.2) and the stabilizability 
condition (3.5) holds, then A + AA is asymptotically stable for all (AA, AB, AC, AD) �9 
~ and 

J(Ac, B~, C~) < J(.~, Ar B~, C~). (4.3) 

Proof. Since (3.4) has a solution .~ e N~and the stabilizability condition (3.5) holds, 
the hypotheses of Theorem 3.1 are satisfied so that robust stability with robust 
performance bound (3.8) is guaranteed; (4.3) is merely a restatement of (3.8). �9 

Several comments are in order. Since the auxiliary cost (4.1) is an upper bound 
for the actual cost (2.7), it is clearly desirable to minimize (4.1) over .~ and the 
controller gains. Note, however, that the Auxiliary Minimization Problem is a 
nonconvex mathematical programming problem on a noncompact set. Hence exis- 
tence of solutions and sufficient conditions for global optimality cannot be obtained 
without imposing additional restrictive assumptions. To develop nonrestrictive 
results, we proceed in Section 6 by deriving necessary conditions for optimality 
which require no further assumptions except that ~ be differentiable and that the 
minimization be performed over an open set. In the next section we construct a 
bound f~ which possesses the required smoothness. 

5. Uncertainty Structure and the Guaranteed Cost Bound 

Having established the theoretical basis for our approach, we now assign explicit 
structure to the set q/and bounding function f~. Specifically, the uncertainty set q/ 
is assumed to be of the form 

f p P P = (aA, aB, AC, aD): aA = E aB = E = E 
i=1 i=1 i=1 

AD = ,=x ~ a,D,, ,=:Z a~2/~i 2 < 1}, (5.1) 
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where for i =  1 . . . . .  p: A i e R  "• B i e r  "• , C~eR Ix" and D i e R  Ix" are fixed 
matrices denoting the structure of the parametric uncertainty; ct i is a given positive 
number; and tr~ is an uncertain real parameter. Note that the uncertain parameters 
tri are assumed to l~e in a specified ellipsoidal region in R p. The closed-loop system 
(2.8) thus has structured uncertainty of the form 

(5.2) 
i=1 

where 

BoC, BcD, CoJ i = 1 . . . . .  p. 

The uncertainty set q/is general in the sense that no explicit assumptions such as 
the matching conditions used in [BCL] will be made with regard to the structure 
of A~, Bi, C~, and D~. We do, however, require (as is evident from (5.1)) that the 
uncertain parameters th appear linearly in the off-nominal perturbations which is 
more confining than matching assumptions. Note that the symmetry of the uncer- 
tainty set entails no loss of generality by requiring only a redefinition of the nominal 
plant matrices. 

In order to obtain explicit gain expressions for (Ar Bo, Co) in Section 6, we shall 
require one additional technical assumption. Specifically, we assume that, for each 
i ~ { 1, . . . ,  p}, at most one of the matrices B i, Ci, and D~ is nonzero. This condition 
thus implies that a given uncertain parameter tr~ may appear explicitly in both AA 
and AB, or both AA and AC, or both AA and AD, or only AA, but not (say) in both 
AB and AD. Thus we can account partially (but not totally) for correlated parameter 
uncertainties in different plant matrices. If a given uncertain parameter does arise 
in both (say) AB and AD, then it must be represented by two distinct uncertain 
parameters. If this assumption is not imposed, then optimality conditions can still 
be derived, but at the expense of closed-form gain expressions. 

For the structure of q/as specified by (5.1), the bound f~ satisfying (3.3) can now 
be given a concrete form. 

Proposition 5.1. Let ct be an arbitrary positive scalar. Then the function 

p 

i=1 

satisfies (3.3) withfll given by (5.1). 

(5.3) 

Proof. Note that 

P 

o <_ Y. [(~112a,1~,)I~ - ( ~ , / ~ ' / ~ ) . ~ , ] - ~ E ( ~ l ~ 2 a i / ~ i ) I ~  - ( ~ i / ~ / ~ ) . 4 , 3  T 
i = 1  

P P P 

i=1 i=1 i=1 

which, since ~f=l tr2/ct2 < 1, implies (3.3). 

Remark 5.1. Note that the bound f~ given by (5.3) consists of two distinct terms. 
The first term ~.~ can be thought of as arising from an exponential time weighting 
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of the cost, or, equivalently, from a uniform right shift of the open-loop dynamics 
[AM]. The second term a -~ ~I'=~ c t2 ,~-~[  arises naturally from a multiplicative 
white-noise model [BG1], [BG2], [B]. Such interpretations have no bearing on the 
results obtained here since only the bound f/defined by (5.3) is required. Note that 
the bound (5.3) is valid for all positive ct. A similar bound was also considered in 
[KB]. 

or, equivalently, 

With f~ defined by (5.3), the modified Lyapunov equation (3.4) becomes 
p 

0 = ,44 + .~,~T + a.~ + a- ,  ~ 42~,.~,~? + I7 (5.4) 
i = l  

i 

o = + + + (5.5) 
i = l  

where 
[ A, 8co 

(5.6) 

and 7~ ~ 42/~c Note that (5.5) is equivalent to 

0 = d vec .~ + vec I 7, (5.7) 

where "vec" is the column-stacking operation defined in [B3] and s,r is defined by 

i =1  

Next, using the bound f~ given by (5.3) and q/given by (5.1) we present a result 
which guarantees the existence of a nonnegative-definite solution to (3.4) or, equiv- 
alently, (5.5) for a given controller (A~, B~, Co). For the converse we view 17 as an 
arbitrary element o f / ~ .  

Proposition 5.2. Let (Ac, Bc, Co) be given and let a > O. l f  d is asymptotically stable, 
then there exists a unique ~ x ~ .~ satisfying (5.5) and,furthermore, .~ > O. Conversely, 
if for all 17~ N ~ there exists .~ > 0 satisfying (5.5), then M is asymptotically stable. 

Proof. Since (5.5) is equivalent to 

.~ = _ vec-1 [ ~ - 1  vec 17], (5.8) 

existence and uniqueness hold. To prove that .~ is nonnegative definite, we rewrite 
(5.8) as 

"~ = J o  vec-1 [e~'z vec 17] dt (5.9) 

and show that the integrand is nonnegative definite for all t ~ [0, oo). (Note that the 
following argument does not require that ~r be stable). Using the Lie exponential 
product formula, the exponential in (5.9) can be written as * 

e ~r = lim exp (.4, ~ .4,)t exp 7~(A~ | A~)t . (5.10) 
k"*oo i=1 



and 

it follows that 
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For convenience, let S and N be r x r matrices with N > 0. Since (see [B3]) 

vec -x I-(S | S) vec N] = SNS T >_ 0 (5.11) 

(S k | Sk)(S | S) = S k+l | S k+~, (5.12) 

vec-l[e s| vec N] = ~ (k!)-lSkNS kT > O. (5.13) 
k=O 

Furthermore, 

vec -x [e s~s vec N] = vec -1 [(e s | e s) vec N] = eSNe sT > O. (5.14) 

Applying (5.13) and (5.14) alternately with (5.10) and using induction on k it follows 
that the integrand of (5.9) is nonnegative definite. To prove the converse, note that 
it follows from (5.5) that .~ satisfies 

.~ = vec -1 [e ~ '  vec .~] + f l  vec-I [e~'s vec I7] ds, t ~ E0, oo) .  (5.15) 

Since the integral term on the right-hand side of (5.15) is nonnegative definite, is 
bounded from above by .~, and 17~ N ~ is arbitrary, it follows that d is asymptoti- 
cally stable. �9 

Proposition 5.2 shows that a solution of (5.5) exists as long as ct I . . . . .  ap are 
sufficiently small so that d remains stable for some ct > 0. The following result 
characterizes values of 11 . . . .  , ctp for which ,~r is asymptotically stable. Let I1'11 
denote an arbitrary vector norm and its induced matrix norm. 

Proposition 5.3. Let (Ac, Be, Cc) be given, assume A is asymptotically stable, and 
let ~, ~1 . . . . .  ctp > O. I f  

(,4~,4)-l(ot]~2q-i~=lyiAi| < 1 ,  (5.16) 

then there exists .~ ~ [~ satisfying (5.5) and d is asymptotically stable. 

Proof. Define {.~k}~~ where -~o satisfies 

0 = ,~.~o + .~o.~r + 9, 

and "~k+l satisfies 

0 = ,~ak+, + ak+l , ' i  T + f~(ak, 8o, co) + 9. 

Note that "~k > 0, k = 1, 2 . . . . .  Hence it follows that 

vec .~+~ - vec -~k = - (A ~ "4)-~ [vec a(-~k, Bo, Co) - vec O(.~k-1, Bo, C~)] 

and thus 

[Ivec'~k+~--vec'~k[[ < ( A ~ ' 4 ) - 1 (  ~tI~+ ,=i ~ Y"4~| [Ivec'~k--vec'~k-ll[" 
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Using (5.16) it follows that .~ __4 limk-.~ -~k exists. Thus .~ > 0 satisfies (5.5). Further- 
more, since I?e N ~ can be considered arbitrary, Proposition 5.2 implies that ~r is 
asymptotically stable. �9 

6. Necessary Conditions for the Auxiliary Minimization Problem 

The derivation of the necessary conditions for the Auxiliary Minimization Problem 
is based upon the Fritz John form of the Lagrange multiplier theorem. Application 
of this theorem requires that we further restrict (.~, Ac, Be, C~) to the open set 

6* ~ {(.~, Ao, B~, C~): .~ e P~, ~r is asymptotically stable, 

and (Ac, Be, Co) is controllable and observable}. 

As will be seen, the constraint (.~, Ar Be, C~) ~ 6 a is not required for either robust 
stability or robust performance since Proposition 4.1 shows that only (3.4), (3.5), 
and (4.2) are needed. Rather, the set Y constitutes sufficient conditions under which 
the Lagrange multiplier technique is applicable to the Auxiliary Minimization 
Problem. Specifically, the condition .~ > 0 replaces (4.2) by an open set constrain',, 
the asymptotic stability of d serves as a normality condition which further implies 
that the dual ~' of -~ is nonnegative definite, and (Ac, B~, Cr minimal is a non- 
degeneracy condition which implies that the lower right nr x nc subblocks of.~ and 
~' are positive definite thus yielding explicit expressions for B c and Cr Note that by 
Proposition 5.2 the condition that d be asymptotically stable also implies that (5.5) 
has a unique, nonnegative solution. Finally, we point out that the stabilizability 
condition (3.5) and stability condition (3.6) play no role in determining solutions of 
the Auxiliary Minimization Problem. 

In order to state the main results we require some additional notation and a 
lemma concerning pairs of nonnegative-definite matrices. For a real n x n matrix 
Z define the set of real diagonalizing matrices 

~(Z)  _a {~ ~ R,• ~ - IZ~  g is diagonal}, 

and, for a pair of n x n symmetric matrices, X, Y define the set of real contra- 
grediently diagonalizing matrices 

~g(X, Y) __4 {q~ E 9(XY):  q~-IX~p-T and q~Ty~ are diagonal} 

and the subset of real balancing transformations 

~(X,  Y) ~ {V ~ ~(X, Y): V - I X ~  -T = qJTY~F}. 

Of course, a necessary condition for ~(X,  Y) to be nonempty is that X, Y, and 
X Y all have the same rank. Note that in general 

~(X,  Y) = if(X, Y) = ~(XY) .  (6.1) 

Obviously, a diagonalizable matrix is either invertible (has no zero eigenvalues) or 
has semisimple zero eigenvalues. Hence if ~ (Z)  • O,  then th} group generalized 
inverse Z * exists as a special case of the Drazin generalized inverse [CM].  Note 
that we limit our consideration to diagonalizable matrices with real eigenvalues. 
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Also, note  that there is no assumption here that Z is symmetric. Of  course, when Z 
is symmetric the group,  Drazin, and M o o r e - P e n r o s e  generalized inverses coincide. 

Lemma 6.1. Let ~., P �9 N" and let r = rank O-/$. Then the following statements hold: 

(i) ~/5 has nonneoative eigenvalues. 
(ii) cO(O-,/~) r ~ .  

(iii) O-/3 is diagonalizable. 
(iv) The n x n matrix 

(v) 

(vi) 

=  O-p),O-p 

is idempotent, i.e., z is an oblique projection, and 

rank �9 = r. 

There exist G, F �9 R r• and invertible M �9 R "• such that 

O-P = GTMF, 

FG T = I,. 

I f  G, F e R ~ • and M �9 R r • ~ satisfy (6.4) and (6.5), then 

rank G = rank F = rank M = r, 

(O.P)* = G'M-W, 

z = GTF, 

zG r = G v, F~ = F. 

(6.2) 

(6.3) 

(vii) 

able with positive eigenvalues. 
(viii) I f  rank O- = rank P = r, then ~(O-, P) # ~ and 

Proof. See Appendix A. 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

The matrices G, F �9 R "• and M �9 ~r• satisfying (6.4) and (6.5) are unique 

A triple (G, M, F) satisfying (6.4) and (6.5) with G, F �9 R '• M �9 R '• and 
r = rank O-P is called a projectivefactorization of O-/3. In particular,  we set r = no. 
Fur thermore ,  define the complementary  project ion 

z.t & I ,  - z, (6.12) 

and, for arbi t rary Q, P, O-,/~ �9 R" • ", G, F �9 R " • Bc �9 R "o • t, Cc �9 R" • % and ~ > 0, 
defin e the following notation:  

P 
v2, ~- v2 + E r,[C,(Q + O-)C[ + n, coi'o-r'rc[n?], 

t= l  

P 
R2~ & R2 + E y,[BT,(p + .P)B, + DTBr~GPGrB~D,], 

i= l  

(6.10) 

(6.11) 

except for a change of  basis in R'. Furthermore, all such M are diagonaliz- 
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P 
^ T T T Qs ~- Q CT + I"12 + ~ ~,[A,(Q + Q)C T + A,O.r C'~D, ], 

i = l  

P 

P, ~ BTp + RT2 + E Y,[BT~( P + P)A, -- DTBTGPA,], 
i=i 

A.Q ~-- A, - Q,V~'C, Ap ~- A, - BR~P, .  

The above definitions are for convenience in stating the necessary conditions for 
the Auxiliary Minimization Problem. This result provides explicit formulae for 
extremals (0), Ac ' Be, C~) of the Auxiliary Minimization Problem. A partial converse 
shows that this form of the necessary conditions represents no loss of generality with 
regard to the constraint equation (5.5). i 

Theorem 6.1. 

(I) Suppose (.~, Ac, Br Cr ~ ~ solves the Auxiliary Minimization Problem with 
ql given by (5.1) and ~ given by (5.3). Then there exist Q, P, Q., /3 ~ N" 
such that, for some projective factorization (G, M, F) of 0./3, (.~, Ao, Br Cr 
are given by 

.~ = [QFQ Q FQQF;TI, (6.13) 

Ac = F(A -- BR2)P ~ - Q~V~IC + Q,V~IDR2)P~)G x, (6.14) 

Bo = rQ, Vs (6.15) 
Cc -1  T = - R 2 s P ~ G ,  (6.16) 

and such that Q, P, Q, and/3 satisfy 

P 

0 = A~Q + QA T + I/1 + ~ y,[AiQA T + ( A , -  B,R-~)Ps)O.(A ~ - BiR'~Ps) T] 
i=1 

-1  T -1  T T -Q~v2, Qs + t.Q~v2~ O,t• (6.17) 
P 

0 = ATp + PA.  + R~ + ~. ~,[ATpAi + (A, - Q~V~C,)T/3(A, - Q,V~IC,)] 
i =1  

T - 1  T T - 1  - P, R,,Ps + t• Re, P,t l ,  (6.18) 

o A O. + + -' - '  = O . , V 2 ,  Q ,  - (6.19) 

0 ATo/3 + /3Ao + p T n ~ p  ~ T r -1 = - t• R2, P,t• (6.20) 

rank 0 = rank/3 = rank 0/3 = he. (6.21) 

Furthermore, the auxiliary cost is given by 

J(.~, Ao, Bo, Cc) 

= tr[(Q + Q)Rx - 2 R l e R ~ P , Q  + pTR~Rr (6.22) 

(II) Conversely, if there exist Q, P, Q,/3 E N" satisfying (6.17)-(6.21) with B~ and 
C~ given by (6.15) and (6.16), then (.~, A~, Br Cc) given by (6.13)-(6.16) satisfy 
(4.2) and (5.5) with J(.~, Ar Be, C~) given by (6.22). 
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Proof. See Appendix B. �9 

Remark 6.1. Theorem 6.1 presents necessary conditions for the Auxiliary Minimi- 
zation Problem which explicitly characterize extremal quadruples (.~, Ar B~, Co). 
These necessary conditions consist of a system of two modified Riccati equations 
and two modified Lyapunov equations coupled by both the optimal projection z 
and uncertaitlty bounds. If the uncertainty bounds are deleted, then the resuls of 
[HB] are recovered. 

Remark 6.2. When solving (6.17)-(6.21) numerically, the uncertainty terms can 
be adjusted to examine tradeoffs between performance and robustness. Specifically, 
the bounds cq and the structure matrices A i, Bi, C~, and D~ appearing in V2s, R2~, Qs, 
and P~ can be varied systematically to determine the region of solvability of (6.17)- 
(6.21). 

Remark 6.3. Although (6.17)-(6.21) appear formidable, they are, in fact, quite 
numerically tractable. For related problems involving coupled Riccati equations, 
homotopic continuation methods have been shown to be effective [KLJ], [MB]. 
Similar algorithms for solving (6.17)-(6.21) have been developed in [GH], JR1], 
and [R2], while iterative algorithms are discussed in [G2], [GV], and ICY]. 

Remark 6.4. Because of the presence of Be and Cr in the definitions of V2,, R2s , Qs, 
and Ps, the optimality conditions (6.17)-(6.20) are coupled with the gain expressions 
(6.15) and (6.16) for Be and Cr When the problem is specialized to the case Di = 0, 
i =  1 . . . . .  p, this coupling disappears and (6.17)-(6.20) can be solved without 
reference to the gain expressions (6.15) and (6.16). 

7. Sufficient Conditions for Robust Stability and Performance 

In this section we combine Theorem 3.1 with Theorem 6.1 (II) to obtain our main 
result guaranteeing robust stability and performance. 

Theorem 7.1. Assume there exist Q, P, Q., P e N ~ satisfying (6.17)-(6.21) with 
Be and C c given by (6.15) and (6.16). Then, with (.~, Ac, B~, Co) given by (6.13)- 
(6.16), (,,~+ AA, I-./7 + ~(.~, B~, Co) - (AA.~ + .~A/~'r)] 1/2) is stabilizable for all 
(AA, AB, AC, AD) ~ ag if and only if A + AA is asymptotically stable for all 
(AA, AB, AC, AD) ~ q/. In this case, the performance (2.7) of the closed-loop system 
(2.9) satisfies the bound 

J(A~, B~, Cc) <_ trE(Q + Q)gl - 2R12g2~PsO. + PX~R2slR2R2~P~Q]. (7.1) 

Proof. The converse portion to Theorem 6.1 implies that .~ given by (6.13) is 
nonnegative definite and satisfies (5.5) or, equivalently, (3.4). It now follows from 
Theorem 3.1 that the stabilizability condition (3.5) is equivalent to the asymptotic 
stability of,4 + A,4 for all (AA, AB, AC, AD) e q/. In this case Proposition 4.1 yields 
robust stability and performance. The robust performance bound (7.1) is a restate- 
ment of (4.3) utilizing (6.22). �9 
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Note that Theorem 7.1 is constructive in nature rather than existential. Speci- 
fically, Theorem 7.1 involves a coupled system of modified Riccati /Lyapunov 
equations (6.17)-(6.21) whose solutions, when they exist, are used explicitly to 
construct the dynamic feedback gains (6.14)-(6.16) which are guaranteed to 
provide both robust stability and performance. The following existence result 
concerns the solvability of (6.17)-(6.21). Let nu denote the dimension of the un- 
stable subspace of the plant dynamics rnatrix A. 

Theorem 7.2. Assume nc > nu, RI > 0, V 1 > 0, suppose the nominalplant, i.e., (2.1), 
(2.2) with cq = O, i = 1 . . . .  , p, is stabilizable and detectable and, in addition, is 
stabilizable by means of  an n~th-order strictly proper dynamic compensator (2.3), (2.4). 
Then there exist ~l, . -., ~v > 0 such that if a i �9 [0, ai), i = 1 , . . . ,  p, then (6.17)-(6.21) 
have a solution Q, P, Q, P �9 N ~ for which (Ar Bo, Cc) given by (6.14)-(6.16) solves the 
Robust Stability Problem with robust performance bound (6.22). 

Proof. From Theorem 3.1 of [RI-I and [R2] it follows that there exists a solution 
to (6.17)-(6.21) which stabilizes the nominal plant. By continuity there exists a neigh- 
borhood over which robust stability with performance bound (6.22) holds. �9 

Theorem 7.2 is an existence result which guarantees solvability of the sufficiency 
conditions over a range of parameter uncertainties. The actual range of uncertainty 
which can be bounded and the conservatism of the performance bound are, of 
course, problem dependent. 

8. Specialization to Full-Order Dynamic Compensation 

To draw connections with standard full-order LQG theory, we specialize the results 
of Sections 6 and 7 to the full-order case, i.e., n c = n. As discussed in [HB], in the 
full-order case G = F -1 and thus G = F = z = I, and z• = 0 without loss of gen- 
erality. To develop further connections with standard LQG theory assume 

R12 = 0, 1/'12 = 0, D = AD = 0. (8.1) 

Since AD = 0 we write (AA, AB, AC) in place of (AA, AB, AC, AD). Also, for arbi- 
trary Q, P, (~,/3 e R" • and a > 0 define the following notation: 

p P 

r &- V2 + E ~,Ci(Q + O.)C?, R2, ~ R2 + ~. YiB.r, (e  +/3)B,, 
i= l  i = 1  

P P 

Q, ~-- QC r + ~ r, Ai(Q + O.)C T, /3, ~- BTp + E r,B?(P +/3)A,,  
i = i  iffil 

Theorem 8.1. Let nc = n, assume (8.1) is satisfied, and assume there exist Q, P, 0., 
/3 �9 N" satisfying 

P 
0 = A ,Q + QA T + V, + ~. y,[AiQA T + ( a , -  B,R~t,/3,)Q(A, ~ B,R~'ta6,) T] 

iffil 

^ A 1 ^  T -- Q, V2s Q,, (8.2) 
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P 
0 = ATe + PA, + R, + Z ~,[A~PA, + ( A , -  Q,V~ICi)Xfi(A , -- Q,I~2~Ci)] 

i=l 

-/~r/~ 2~x/~,, ~, (8.3) 
^ ^ _ I ^ T  0 = A,O + O.A~ + Q, V2, Q~, (8.4) 

0 = + P, Q + PJ ;IP,, (8.5) 

and let (~, Ar B~, Cr be 9iven by 

Ar = A - B/~]2/3s - ( ~ f l ~ l C ,  (8.7) 

Be = 0s[~2~ 1, (8.8) 

Cc = - /~~/~.  (8.9) 

Then, (.4 + AA, [9 + f2(.~, Br C~) - (AA.~ + .~AXT)I/2]) is stabilizable for all 
(AA, AB, AC) ~ q//f and only if A + AA is asymptotically stable for all (AA, AB, AC) 

ql. In this case the performance of the closed-loop system (2.9) satisfies the bound 

J(Ar Be, C~) < tr[(Q + Q)R1 + fir~R22R2R~P,O_]. (8.10) 

Proof. The proof follows from the reduced-order case given in Appendix B. �9 

Remark 8.1. Theorem 8.1 presents sufficient conditions for robust stability and 
performance for full-order dynamic compensation. These sufficient conditions com- 
prise a system of two modified Riccati equations and two Lyapunov equations 
coupled by the uncertainty bounds. This coupling illustrates the breakdown of 
regulator/estimator separation and shows that the certainty equivalence principle 
is no longer valid for the LQG result with real-valued structured plant parameter 
variations. If, however, the uncertainty terms Ai, Bi, Ci are set to zero, it can be seen 
that (8.4) and (8.5) drop out, while (8.2) and (8.3) reduce to the standard separated 
Riccati equations of LQG theory. 

9. Illustrative Numer ica l  E x a m p l e  

To demonstrate ttae above results we present an illustrative numerical example. 
The example chosen was originally used by Doyle [D] to illustrate the lack of a 
guaranteed gain margin for LQG controllers. This example was also considered in 
['BG1] for a preliminary robustness study. Define 

n = 2 ,  m = l = p = l ,  

A--J10 : ] ,  B=E01],  C- - [1  

A t = [  0 0 : 1 '  B x = [ ~ l ,  C ~ = [ 0  

0], D = 0, 

0], D 1 -- 0, 
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I~176 ~176 R I =  VI= 60 60 ' R12= V12= ' R 2 =  V2=l"  

Note that the system is open-loop unstable and becomes unstabilizable at a 1 = - 1. 
As can easily be seen using root locus, a strictly proper stabilizing controller must 
be of at least second order. Hence we consider (6.17)-(6.21) with nc = n and thus 
z• = 0. Using algorithms described in rGH] and {R 1-[, controllers were obtained for 
(c~, ~1) = (0.1, 0.1), (0.4,0.2), and (1.6, 0.4). Figure 1 compares the guaranteed robust 
stability region to the actual robust stability region. Note that the design approach 
yields greater stability than is guaranteed a priori. This phenomenon is not sur- 
prising since even the LQG result may provide arbitrarily high levels of robustness 
for particular problems while failing to guarantee even minimal robustness for all 
problems. These results thus demonstrate the ability of the theory to robustify the 
LQG result. Interestingly, the form of the actual stability region mimics the classical 
6 dB downward/infinite dB upward gain margin of full-state-feedback LQR con- 
trollers. Finally, Figure 2 compares guaranteed closed-loop performance to actual 
closed-loop performance over the guaranteed closed-loop robust stability region. 
Controller gains are given in Table 1. 
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Table 1 

(=, =,) ,4~ Bo Co 

I--14.917 1.0 ] F1,9,7l 
(0.1,0.1) L-85.177 3.9657 L79.959_] [-15.2182 -4.9657-1 

1.0 F -17"963 _4.4614] [ 18"9631 (0.4,0.2) L- 133.65 [_127.05 ] [-6.6011 -5.4614] 

F --47.813 1.0 ] F 48"8131 
(1.6, 0.4) [_- 1087.3 --6.5463 [_1073.5 _J [-- 13.766 --7.5463] 

Acknowledgment. We wish to thank Jill M. Straehla for preparing the manu- 
script version of this paper and Scott W. Greeley for carrying out the numerical 
computations. 

Appendix A. Proof of  Lemma 6.1 

(i) Clearly 0 t  3 and ,/~1/2~/:~1/2 have the same nonzero eigenvalues. Since ~i/2~}~1/2 is 
A ~  

nonnegative definite, QP has nonnegative eigenvalues. 
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(ii) The resultfollows from Theorem 6.2.5 of [RM],  p. 123. See also Theorem 4.3 
of[G1] .  

(iii) This result follows from (ii) and (6.1). 
(iv) This result follows from the definition of the group generalized inverse (see 

[CM]). Alternatively, let (~15 = WDW -1, where W ~ ~((~/3), D = diag(dl . . . . .  d,). 
Then ((~15)# = WD#W -1, where D(~ 0 = 1/di ifdi d: 0, and D(~ 0 = 0, ifd i = 0, i = 1, 
. . . ,  n. Hence 015(0P) # = 'PE'P -~ is idempotent, where E is a diagonal matrix with 
r ones and n - r zeros on the diagonal. Clearly, (6.3) is valid. 

(v) Without loss of generality choose W in the preceding argument so that 
D = block-diag(/), 0,_,), where/)  = diag(~ 1 . . . . .  a~,), a~ i > 0, i = i . . . . .  r. Hence 

'P /5 ^ ^  O, x (n-,) ~/-1, 

and thus (6.5) holds with 

G = [~ 0,• T, M = B, F = [-I, 0 , •  

(vi) Sylvester's inequality and (6.4) imply that 

r = rank (~15 _< {rank G, rank M, rank F} < r, 

which yields (6.6). The expression (6.7) for ((~15) # follows directly from the definition 
of the group generalized inverse. Furthermore, (6.2), (6.5), and (6.7) imply (6.8), while 
(6.5) and (6.8) imply (6.9). 

(vii) Let both (G, M, F) and an identically dimensioned triple (G, M, f~) satisfy 
(6.4). Then it is easy to verify that G = S-1G, ~I = SMS -~, and I" = SF, where 
S = r 'G T and S -1 = I-G T. 

(viii) It follows from (ii) that there exists W ~ C~(Q, p) such that 

O,x(.-,) WT ' = w _ T F  D# O,x(.-,) W-l, 
LO(n-r) x r 

where D o and D.~ are positive diagonal. Define 

0r x (n-r) *=wI(DoDfl)I/4" In--r 1 
L Oin_r) x, 

so that 

~-IQ*-T=~T15uxJ-----[(DoDp)l12L 0(n-') x,  0 '  x (n-')10n-r 

and thus W ~ ~(0 ,  15) �9 Finally, (6.10) and (6.11) are immediate. 

Appendix B. Proof of Theorem 6.1 

To optimize (4.10) over the open set Sa subject to the constraint (5.5), form the 
Lagrangian # 

.o~(~, A=, B=, C=, ~ ,  2 ) - t r  ~L.~/~ + [A~.~ + .~A"~ + ~ y, Ai.~A~ + I 7 ] ~ ,  (B.1) 
i=1 ) 
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where the Lagrange multipliers 2 > 0 and ~ ~ R a• are not both zero. We thus 
obtain 

O.~ i=1 

Setting 0.~e/O.~ = 0 yields 

o = + + + (B.3) 
i=! 

or, equivalently, 
~r vec ~ = - ) .  vec/~. 

Since sr is assumed to be stable, ~r is invertible, and thus 2 = 0 implies ~ = 0. 
Hence, it can be assumed without loss of generality that 2 = 1. Furthermore, it 
follows from Proposition 5.2 with ~ ,  P replaced by zr T,/~ that ~ is nonnegative 
definite. 

Now partition ~ x ~ .~, ~ into n x n, n x no, and n c x nr subblocks as 

LQ,, Q2J P,~ P2A' 
and define the positive-definite matrices 

p 

Vzs ~- V 2 + ~ Y,[C,Q,C T + D,C~QzCJDT], 
i=1 

P 

n2s ~ R2 + E 7i[BrP' B' + DTB, Tp2Br �9 
i=1  

Thus, the stationarity conditions for Ao, Be, Co are given by 

a ~  

OAc 

aBo 

O..W 

OC~ 

- -  = P~zQ12 + P2Q2 = O, 

= PzBr + (P~zQ1 + P2QI~)c T 

+ P 1/12 + ~:i(AiQxC~ + AiQx2C~D i ) = O, 
i=l 

- -  = R2sCcQ2 + BT(P1QIz + P12Q2) 

(B.4) 

(B.5) 

Q 12 T T T 

i=1 

Expanding (5.5) and (B.3) yields 

0 = .4~Q~ + Q~A~ + BCoQI~ + Q,x~CTB T 
p 

r T T r T r V 1, (B.7) + ~, y i[AiQ1Ar + BiCcQxzAi + AiQ12CdBi + BiCcQzC~Bi ] + 
i=1  
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0 = A~Q12 + Q12Ae~ + Q12C~DTB~ + Qx CTB~T + BCoQ2 
P 

+ ~ y~[A,QtC~B ~ + A~QI2C~D~B~] + V12B T, (B.8) 
i = l  

/')T p T R T  0 Ae.Q2 + Q2Ae x. + BeCQ~2 + ~2,~ ~e + BeDCeQ2 

+ Q2 C~DTB~ + Be V2~B~, (B.9) 

r 0 A~P 1 + P1A~ + ,.. ue-t2 + P12BeC 
p 

+ E Yi[A~P1 A, + C~B~P~2A, + A~P12BeCi + C?B~P2BcC,] + R1, (B.10) 
i=1 

0 =  W A~P12 + P12Ac~ -F Pt2BcDCc + PtBCe + CTB~P2 .i 
p 

+ ~ ?,[A~P~B, Ce + A~P~2BeD, Ce] + R12Co, (B.11) 
i=1 

0 = AVr + P2Ae. + C[BTpt2 + P~2BCr + C[DTB[P2 + P2BeDCr 

+ C[R2~C,. (B.12) 

Lemma B.1. Q2 and P2 are positive definite. 

Proof. By a minor extension of results from [A], (B.9) can be rewritten as 

0 = (Ac: + B, DCr + Br 

+ Qa(A~, + BeDCr + Br T + BcV2~B[, 

where Q~ is the Moore-Penrose or Drazin generalized inverse of Qz- Next note 
that since (Ar B~) is controllable then, by Theorem 3.6 of [W'l, (Ac~ + Br + 
Br Be V~/~ a) is also controllable. Now, since Q2 and Be V2,~ [ are nonnegative 
definite, it follows from Lemma 12.2 of[W], that Qa is positive definite. Using (B.12), 
similar arguments show that P2 is positive definite. �9 

Since R2~, Va~, Q2, and P2 are invertible, (B.4)-(B.6) can be written as 

-P~P[2QI2Q2 ~ = Ino, (B.13) 

Be = _p;1  t(p~2Q 1 + P2QL)C �9 

+ P~ v~ + ~,,(A:2~C," + A,Q~2C~D, ) V; ~, (B.14) 

C~ = -R2-~ tBT(p1Q12 + P12Q2) 

+ RT2 + Yi(B{P1Ai+D~B~PI2Ai) Qt2 Q~R. (B.15) 
i = l  

Now define the n x n matrices 

Q z~ Q1 -- Q~2Q2~Q~, p A_ p~ __ Px2P~,pv2 ' 

O. ~- Q,2Q~IQI2, fi ~- P, ePf'PT2, 

~_ - Q t 2 Q [ I p ; ~ p ~ 2  , 
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and the n, x n, n~ x n,, and no x n matrices 

G ~- Q21Qr~2, M & Q2P2, F & -P~lprx 2. 

Note that z = Ga.l*. 
Clearly, Q, P, Q, and/3 are symmetric and 0 and 6 are nonnegative definite. To 

show that Q and P are also nonnegative definite, note that Q is the upper left-hand 
block of the nonnegative-definite matrix .~.~.~v, where 

.~ = V In - - Q 1 2 Q 2 1 1  

/ 0,,• I,. _]" 

Similarly, P is nonnegative definite. 
Next note that with the above definitions, (B.13) is equivalent to (6.5) and that 

(6.4) holds. Hence �9 = GTF is idempotent, i.e., z 2 = ~. Furthermore, it is helpful to 
note the identities 

O = ax2 G = GTQT12 = GTQ2 G, ,6 = - P , 2 r  = - r r e r 2  = U P 2 r ,  (B.16) 

zG T = G r, F~ = F, (B.17) 

0 = zQ, /~ = ,rz, (B.18) 

0,6 = - Q , 2 P L .  (B.19) 

Using (B. 13) and Sylvester's inequality, it follows that 

rank G = rank F = rank Q12 = rank Ptz = n,. 

Now using (B.16) and Sylvester's inequality yields 

nr = rank Qt2 + rank G -  n~ < rank O -< rank Q12 = nr 

which implies that rank O = no. Similarly, rank/3 = no, and rank O,6 = nr follows 
from (B. 19). The components of .~ and .~ can be written in terms of Q, P, Q, P, G, 
and F as 

Q~ = Q + 0, p~ = p + ,6, (B.20) 

Q12 = O Va', PI: = --/3GT, (B.21) 

Q2 = FQ Fr, P: = G,rG v. (B.22) 

The expressions (6.13), (6.15), and (6.16) follow from the definition of .~, (B. 14) and 
(B.15). Substituting (B.20)-(B.22) into (B.7)-(B.12) yields 

p 

o = A ,Q  + QAI  + v~ + Y, ~,,[A,QM + (a, - B,R~2P~)O(A, - n, Ri2e,)a.] 
i=1 

+ ApQ + 0A~, (B.23) 

- 1  T T 0 = [ApQ + 0(GTAc, F + Q~V~XC) r + Q, V2, Q , ] F  , (B.24) 

- 1  T T 0 = F[(GTAc, F + Q,V~IC)O + 0(GTAc, F + Q,V~IC) T + Q, V2, Q , ] F  , (B.25) 

P 
0 = ATp + PA,  + R 1 + ~,, ~,[ATpA, + ( A , -  Q,V~IC~)Tp(A~ - Q,V~tC~)] 

i=l 
+ A~/3 + `6AQ, (B.26) 
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0 = [A~P + P(GrA, F + BR[~P,) + P~RL'P,]GL (B.27) 

0 = G[(GrAo, F + BR2X~Ps)r/3 +/3(GrAo, F + BR~Ps) + P~R~P~]G v. (B.28) 

Next, computing either F(B.24)-(B.25) or G(B.27)-(B.28) yields (6.14). Substitut- 
ing this expression for Ao into (B.23), (B.24), (B.27), and (B.28) it follows that 
(B.25) = F(B.24) and (B.28)= G(B.27). Thus, (B.25) and (B.28) are superfluous 
and can be omitted. Next, using (B.23)+ GrF(B.24)G- (B.24)G- [(B.24)G] z 
and GTF(B.24)G - (B.24)G - [(B.24)G] v yields (6.17) and (6.19). Using (B.26) + 
FrG(B.27)F-(B.27)F - [(B.27)F] r and FrG(B.27)F-(B.27)F- [(B.27)F] v yields 
(6.18) and (6.20). 

Finally, to prove the converse we use (6.13)-(6.21) to obtain (5.5) and (B.3)-(B.6). 
Let Ac, Bo, Co, G, F, ~, Q, P, (~,/3, .~ be as in the statement of Theo'rem 6.1 and define 
Qt, Qt2, Q2, P1, P12,/'2 by (B.20)-(B.22). Using (6.5), (6.15), and (6.16), it is easy to 
verify (B.5), (B.6). Finally, substitute the definitions of Q, P, Q, t3, G, and z into 
(6.17)-(6.20), reverse the steps taken earlier in the proof, and use (6.13)-(6.16) along 
with (6.5) and (6.8)-(6.11) to obtain (5.5) and (B.3). Finally, note that 

-~= d + Q[In l"Tl, 

which show that .~ > 0 thus verifying (4.2). �9 
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