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SUMMARY

A state-space method for computing upper bounds for the peak of the structured singular value over
frequency for both real and complex uncertainties is presented. These bounds are based on the positivity and
Popov criteria for one-sided, sector-bounded and for norm-bounded, block-structured linear uncertainty.
These criteria are restated and used to derive upper bounds for the peak structured singular value by
equating the feasibility of a linear matrix inequality which involves a plant state-space realization to the
strict positive realness of a transfer function. Numerical examples are given to illustrate these upper bounds.
( 1998 John & Wiley Sons, Ltd.
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1. INTRODUCTION

Computation of the structured singular value for robust stability analysis is an intractable
problem. Hence, upper bounds for the structured singular value are used in practice. In particular,
the upper bounds of Reference 1 for complex uncertainty and Reference 2 for mixed real and
complex uncertainty are stated in terms of the frequency response of the plant transfer function,
and hence are evaluated at a finite set of frequencies.

Parametric model uncertainty is frequency dependent, while the frequency-dependent compon-
ent of unstructured model uncertainty can be absorbed into the plant model. Hence, the
reciprocal of the peak value of these upper bounds over frequency provides a lower bound for the
size of the smallest destabilizing perturbation. Thus, robustness is characterized by the peak of
these upper bounds.



In practice, it is often difficult to reliably compute the peak value of the upper bound over
frequency. For example, since plants with lightly damped modes have poles close to the
imaginary axis, a small perturbation can destabilize the system. Not surprisingly, it is often the
case that upper bounds for the structured singular value have sharp peaks. Since the grid of
frequencies near the peak must be dense, computing these upper bounds may be difficult to do
reliably.

In the case of real parameter uncertainty, the structured singular value may be discontinuous,
so that this problem may be more severe. One approach to this problem involves adding a small
amount of phase uncertainty to each uncertain real parameter.3 However, the phase uncertainty
increases the conservatism of the upper bound, and the essential problem of a sharp peak would
be likely to remain.

To demonstrate the potential difficulty with finding the size of the smallest destabilizing
perturbation using upper bounds, consider the nominal plant model

G(s)"
!0)25s#1
3s2#s#3

in a negative feedback interconnection with a real uncertain parameter d. Using the closed-loop
characteristic equation 3s2#(1!0)25d)s#(3#d)"0 yields

k (G ( ju))"G
1
3

if u"0

1
4

if u"J7
3

0 otherwise

while the upper bound of Reference 2 for real uncertainty yields k (G( ju)) exactly. However, since
the frequencies at which k is non-zero are not generally known a priori, frequency-dependent
upper bounds may not be reliable for determining the size of the smallest destabilizing perturba-
tion for problems with uncertain real parameters. Alternatively, applying the upper bound of
Reference 1 for complex uncertainty is conservative, as shown in Figure 1. Note that this is just
the Bode magnitude plot of G (s). Hence, the frequency at which the maximum occurs can be
computed as approximately 0)9375 rad/sec and the peak value can be computed as approximately
1)0437.

In Reference 4, frequency domain upper bounds for the structured singular value were derived
using the positivity and Popov criteria in the form of positive real tests for transfer functions
evaluated at each frequency. In the present paper, these positive real tests are rewritten in the form
of linear matrix inequalities (LMIs) that involve a realization of the plant transfer function.
State-space upper bounds for the structured singular value are derived using these LMIs and are
shown to provide upper bounds for the peak values of the frequency domain upper bounds. This
form of the state-space upper bounds is computationally attractive since the solution of each LMI
involves a convex optimization problem that can be solved efficiently using interior point
methods.5,6 Numerical examples are given to show that the state-space upper bounds are upper
bounds for the peak values of the corresponding frequency domain upper bounds, so that the
need for searching over frequency can be eliminated.

The results here are related to the work of several other researchers. The most noteworthy
contribution to the use of multipliers in robustness theory appears in References 7 and 8, where
the authors formulate robustness tests using the concept of passivity. In Reference 9, the authors
use multiplier theory to formulate a number of robustness tests for different kinds of uncertainty,
including real parameter uncertainty. The results presented in this paper are similar to those
results, but are more rigorously developed and are set in the context of the peak of the structured
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Figure 1. Complex k upper bound and real k for G(s)"~0>25s`1
3s2`s`3

singular value. The idea of computing the peak of the structured singular value to eliminate
a search over frequency is first given in Reference 10, where the peak of the structured singular
value for complex uncertainty given in Reference 1 is written. There has been little development of
this idea since then, one exception being the results presented in Reference 11, where the peak of
the structured singular value for complex uncertainty is formulated as a single optimization
problem rather than an optimization problem at each frequency. The results presented here
provide a much more straightforward and computationally simple procedure for the peak of the
structured singular value, and exploit multiplier theory to reduce the conservatism in the case of
real parameter uncertainty.

2. MATHEMATICAL PRELIMINARIES

In this section we introduce definitions and present results that will be used in later sections. First
we extend the notions of positive realness and strict positive realness to rational functions of
a complex variable whose numerator may have complex coefficients. These definitions will be
used to state robustness tests in the form of positive real tests that involve complex matrix
multipliers and scalings. Next, we extend the positive real lemma to this class of functions and
characterize strict positive realness in terms of both a frequency-domain condition on the transfer
function and an LMI involving its state-space realization.

Let Z(s)"C(sI!A)~1B#D, where A is a real matrix and B, C and D are complex matrices of
compatible dimensions. Note that Z(s) is a matrix of rational functions whose denominators have
real coefficients and whose numerators have complex coefficients. We shall refer to such functions
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as complex-rational functions. The quadruple (A, B, C, D) is a minimal realization of a
complex-rational function if the pair (A, B) is controllable (see Reference 12, Theorem 5—7) and
the pair (A, C) is observable (see Reference 12, Theorem 5—13).

Define the paraconjugate transpose of a complex-rational function Z(s) by Z J (s)¢Z*(!sN )
"B*(!sI!AT)~1C*#D*. If Z (s) is square, then H (s)¢Z(s)#Z J (s) is paraconjugate Her-
mitian, that is, H*(s)"H (!sN ) for all s3C (see Reference 13, Definition 2), and thus
H*( ju)"H ( ju) is Hermitian for all u3R. Next, a square, real matrix is Hurwitz if the real parts
of its eigenvalues are negative. Let the Hermitian part of a square, complex matrix X be denoted
by He X¢1

2
(X#X*), and note that He Z (s)"1

2
(Z(s)#Z J (s)) for all s"ju. Finally X'0

(X*0) denotes that the Hermitian matrix X is positive definite (non-negative definite).

Definition 2.1

An eigenvalue of A is semi-simple if its algebraic multiplicity equals the number of linearly
independent eigenvectors associated with it.

Definition 2.2

A square, complex-rational function Z(s)"C(sI!A)~1B#D, where A3Rn]n, B3Cn]m,
C3Cm]n and D3Cm]m are a minimal realization of Z(s), is positive real if A has no eigenvalues in
Re[s]'0, He Z (s)'0 for all s"ju such that ju is not an eigenvalue of A, and every imaginary
eigenvalue of A is semi-simple. Furthermore, Z(s) is strictly positive real if there exists e'0 such
that Z(s!e) is positive real.

Remark 2.1

The definition of strict positive realness in the literature varies, the most notable alternative to
Definition 2.2 being that Z(s) is strictly positive real if He Z (s)'0 for all s"ju. As we show later,
the definition used in this paper is a sufficient condition for this alternative, and we require our
definition for the results in this paper.

Remark 2.2

If Z (s)"C(sI!A)~1B#D is strictly positive real, then there exists e'0 such that
Z(s!e)"C (sI!(A#eI))~1B#D is positive real, so that A#eI has no eigenvalues in
Re[s]'0. Hence A is Hurwitz and Z(s) is asymptotically stable.

The definitions of positive realness and strict positive realness for real-rational functions are
motivated from network theory. Every driving point impedance of a passive network is positive
real, while every positive real transfer function can be realized as the driving point impedance of
a passive network.14 Analogously, a strictly positive real transfer function characterizes a dissi-
pative network. To see this, consider a positive real transfer function Z(s) that describes the
impedance of a passive network consisting of inductors and capacitors with impedances s¸ and
1/sC. Replacing every term s¸ by (s#e)¸ (an inductance ¸ in series with resistance e¸) and every
term 1/sC by 1/(s#e)C (a capacitance C in parallel with a resistance 1/eC) yields a dissipative
network whose impedance is Z(s#e) (see Reference 15, 6, p. 60).

The following result is a generalization of the positive real lemma16,17 to positive real
and strictly positive real, complex-rational functions. This lemma will be used to relate the
frequency domain strict positive real condition to a set of algebraic conditions of a state-space
realization.
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Lemma 2.1

Let Z(s)"C (sI!A)~1B#D, where A3Rn]n, B3Cn]m, C3Cm]n and D3Cm]m are a minimal
realization of Z(s) and A is Hurwitz. Then Z(s) is strictly positive real if and only if there exist
a positive-definite matrix P3Cn]n, matrices ¸3Cm]n and ¼3Cm]m, and a positive scalar e such that

(A#eI)TP#P(A#eI)#¸*¸"0 (1)

B*P#¼*¸"C (2)

D#D*"¼*¼ (3)

Proof. Let the positive-definite matrix P3Cn]n, the matrices ¸3Cm]n and ¼3Cm]n, and the
positive scalar e satisfy (1)— (3). It follows that for all s3C,

Z(s!e)#Z*(s!e)"D#D*#C(sI!(A#eI))~1B#B*(sN I!(A#eI)T)~1C*

"¼*¼#¼*¸ (sI!(A#eI))~1B#B*(sN I!(A#eI)T)~1¸*¼

#B*(sN I!(A#eI )T)~1[(sN#s)P!(A#eI )TP!P (A#eI)]

) (sI!(A#eI))~1B

"¼*¼#¼*¸ (sI!(A#eI))~1B#B*(sN I!(A#eI)T)~1¸*¼

#B*(sN I!(A#eI )T)~1¸*¸(sI!(A#eI))~1B

#(sN#s)B*(sN I!(A#eI)T)~1P(sI!(A#eI))~1B]

"[¼#¸ (sI!(A#eI))~1B]*[¼#¸(sI!(A#eI))~1B]

#(sN#s)B*(sI!(A#eI))~*P(sI!(A#eI))~1B

so that Z(s!e)#Z*(s!e)*0 for all s"ju. Since A is Hurwitz, we can always choose e'0
such that A#eI has no eigenvalues in Re[s]'0. Hence, there exists e'0 such that Z(s!e) is
positive real so that Z (s) is strictly positive real.

Conversely, suppose that Z(s) is strictly positive real so that there exists d'0 such that
Z(s!d) is positive real, which implies Z(s!e) is positive real for all e3[0, d]. Hence, since A is
Hurwitz, e3[0, d] can be chosen such that Z(s!e) is positive real and A#eI is Hurwitz. Simple
manipulations yield the realization

Z(s!e)#Z J (s!e)&

A#eI 0 B

0 !(A#eI)T C*

C !B* D#D*

"C
A

1
C

1
K
B

1
D

1
D (4)

To show that realization (4) is minimal, we first note that since A is Hurwitz, the matrix
block-diag(jI!(A#eI), jI#(A#eI)T) has rank 2n for all j3C which are not eigenvalues of
either A#eI or !(A#eI)T, so that the matrices

C"C
jI!(A#eI)

0

0

jI#(A#eI)T
B

C*D, O"C
jI!(A#eI) 0

0 jI#(A#eI)T

C !B* D
both have rank 2n for all j3C which are not eigenvalues of either A#eI or !(A#eI)T. Next,
note that since (A, B) is controllable, [jI!A B] has rank n for all j3C. It thus follows that
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[jI!(A#eI) B] has rank n for all j3C so that [jI#(A#eI)T
!B* ] has rank n for all j3C. Similarly,

since (A, C) is observable it follows that [jI!(A#eI)

C
] has rank n for all j3C so that

[jI#(A#eI)T C*] has rank n for all j3C. Now, A#eI has only eigenvalues in the open
left-half plane and !(A#eI)T has only eigenvalues in the open right-half plane, so that A#eI
and !(A#eI)T have no common eigenvalues. Hence, since jI!(A#eI) has rank n for all j3C

which are eigenvalues of !(A#eI)T and jI#(A#eI)T has rank n for all j3C which are
eigenvalues of A#eI, the matrices C and O both have rank 2n for all j3C which are eigenvalues
of either A#eI or !(A#eI)T. Hence the matrices C and O both have rank 2n for all j3C, so
that the realization (4) is controllable, and observable, and hence minimal.

Next, since Z(s!e) is positive real, it follows from Theorem 2 of Reference 13 that there exists
a spectral factorization Z(s!e)#Z J (s!e)"» J (s)» (s), where »(s)"H (sI!F )~1G#J is
asymptotically stable and F3Rn]n, G3Cn]m, H3Cm]n and J3Cm]m are a minimal realization of
»(s). Letting K3Cn]n satisfy KF#FTK#H*H"0, it follows that

» J (s)»(s)"[G*(!sI!FT)~1H*#J*][H (sI!F )~1G#J]

"G*(!sI!FT)~1H*H(sI!F )~1G#G*(!sI!FT)~1H*J

#J*H (sI!F)~1G#J*J

"G*(!sI!FT)~1(K(sI!F )#(!sI!FT )K) (sI!F )~1G

#G*(!sI!FT)~1H*J#J*H(sI!F )~1G#J*J

"(G*K#J*H) (sI!F )~1G#G*(!sI!FT)~1(KG#H*J)#J*J

Hence a realization of » J (s)»(s) is given by

» J (s)» (s)&

F 0 G

0 !FT KG#H*J

J*H#G*K !G* J*J

"C
A

2
C

2
K
B

2
D

2
D (5)

Since Z(s!e)#Z J (s!e)"» J (s)»(s), (4) and (5) are equivalent realizations of the same transfer
function. Hence, since (4) is minimal and (4) and (5) are both realizations of order 2n, it follows
that (5) is also a minimal realization, so that there exists a non-singular matrix ¹3Rn]n such that
A

2
¹"¹A

1
, B

2
"¹A

1
, C

2
¹"C

1
and D

2
"D

1
.

Next, partition ¹ conformally as ¹"[T1

T21
T12

T2
], so that A

2
¹"¹A

1
implies

0"F¹
12
#¹

12
(A#eI)T. Since F and A#eI are Hurwitz, this equation has the unique solution

¹
12
"0. Similarly, ¹

21
"0. Hence, F"¹

1
(A#eI)¹~1

1
, G"¹

1
B, J*H#G*K"C¹~1

1
and

J*J"D*#D. Now, define P¢¹T
1
K¹

1
, ¸¢H¹

1
and ¼¢J. Then, it can be seen that P, ¸ and

¼ satisfy (1)— (3). Finally, since ¹
1

is non-singular and K'0, it follows that P'0. K

The following lemma characterizes strictly positive real complex-rational functions.

Lemma 2.2

Let Z(s)"C (sI!A)~1B#D, where A3Rn]n, B3Rn]m, C3Rm]n and D3Rm]m are a minimal
realization of Z(s). If Z (s) is strictly positive real, then He Z(s)'0 for all s"ju. Conversely, if
A is Hurwitz, He Z(s)'0 for all s"ju and D#D*'0, then Z (s) is strictly positive real.
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Proof. Suppose that Z (s) is strictly positive real and let e'0 be such that Z (s!e) is positive
real. Using Lemma 2.1, it follows from (2) and (3) that

Z(s)#Z*(s)"D#D*#C(sI!A)~1B#B*(sN I!AT )~1C*

"¼*¼#(¼*¸#B*P) (sI!A)~1B#B*(sN I!AT)~1(PB#¸*¼)

"¼*¼#¼*¸(sI!A)~1B#B*(sJ I!AT)~1¸*¼

#B*(sN I!AT )~1[(sN#s)P!ATP!PA] (sN I!AT)~1B

Next, using (1) it follows that ATP#PA#¸*¸"!2eP so that ¸*¸(!ATP!PA and

Z(s)#Z*(s)'¼*¼#¼*¸(sI!A)~1B#B*(sN I!AT )~1¸*¼

#B*(sN I!AT)~1¸*¸(sI!A)~1B#(sN#s)B*(sN I!AT )~1P(sI!A)~1B

"[¼#¸(sI!A)~1B]*[¼#¸ (sI!A)~1B]#(sN#s)B*(sI!AT)~*

]P(sI!A)~1

Hence, He Z(s)'0 for all s"ju.
Conversely, suppose A is Hurwitz, He Z(s)'0 for all s"ju and D#D*'0. Let e'0 and

note that

Z(s!e)"C((s!e)I!A)~1B#D

"C(sI!A) (sI!(A#eI))~1(sI!A)~1B#D

"C(sI!(A#eI )#eI ) (sI!(A#eI))~1(sI!A)~1B#D

"Z(s)#e½(s, e)

where ½(s, e)¢C(sI!(A#eI))~1(sI!A)~1B. Since A is Hurwitz, sI!A is non-singular for all
s"ju and there exists eL such that sI!(A#eI ) is non-singular for all e3[0, eL ] and for all s"ju.
Hence, f (u, e)¢max

i
D j

i
[He ½( ju, e)] D is finite for all e3[0, eL ] and for all u3R. Since

limu?=
f (u, e)"0 for all e3[0, eL ], it follows that there exists k

1
'0 such that f (u, e)(k

1
for all e3[0, eL ] and for all u3R, so that !k

1
I(He ½(s, e)(k

1
I for all e3[0, eL ] and for all

s"ju.
Next note that since He Z( ju)'0 for all u3R and limu?=

He Z( ju)"D#D*'0, it follows
that there exists k

2
'0 such that He Z (s)'k

2
I for all s"ju. Now, letting 0(e(minMeL , k

2
/k

1
N,

we obtain

He Z(s!e)"He Z(s)#eHe ½(s, e)'k
2
I!ek

1
I'0

for all s"ju. Hence, Z(s!e) is positive real so that Z(s) is strictly positive real. K

Remark 2.3

Although the conditions He Z(s)'0 for all s"ju and D#D*'0 are sufficient for Z(s) to be
strictly positive real, the condition D#D*'0 is not necessary. For example, consider14

Z(s)"
1

s#a
where a'0, which is clearly strictly positive real, but does not satisfy D#D*'0. On the other
hand, the condition He Z (s)'0 for all s"ju is not sufficient for Z (s) to be strictly positive real.
To see this, consider14

Z (s)"
s#a#b

(s#a) (s#b)
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where a, b'0. Noting that

He Z( ju)"
ab(a#b)

(u2#a2) (u2#b2)

it follows that He Z(s)'0 for all s"ju. Since Z(s) is asymptotically stable, it thus follows from
Definition 2.2 that Z(s) is positive real. However, if e'0 then

He Z( ju!e)"
!eu2#(a!e) (b!e) (a#b!e)

(u2#(a!e)2) (u2#(b!e)2)

is negative for sufficiently large u, which shows that Z(s!e) is not positive real. Hence, although
Z(s) satisfies He Z(s)'0 for all s"ju, it is not strictly positive real.

Finally, the following lemma equates the feasibility of an LMI to the strict positive realness of
a complex-rational function.

Lemma 2.3

Let Z(s)"C(sI!A)~1B#D, where A3Rn]n is Hurwitz, B3Cn]m, C3Cm]n and D3Cm]m are
a minimal realization of Z(s). Then D#D*'0 and Z(s) is strictly positive real if and only if there
exists a positive-definite matrix P3Cn]n such that

C
ATP#PA

B*P!C

PB!C*

!(D#D*)D(0 (6)

Proof. Assume that there exists a positive-definite matrix P3Cn]n such that (6) holds. Then,
letting

F"C
I

(D#D*)~1(B*P!C)

0

ID and G"C
ATP#PA

B*P!C

PB!C*

!(D#D*)D
it follows from (6) that F*GF(0, which implies D#D*'0 and

0'ATP#PA#(PB!C*) (D#D*)~1(B*P!C)¢!R (7)

Next, note that

Z(s)#Z J (s)"D#D*#C (sI!A)~1B#B*(!sI!AT )~1C* (8)

Let x3Cm, xO0, and suppose Bx"0. Then x*B*"0 and

x* (Z( ju)#Z*( ju))x"x*(D#D*)x#x*C(sI!A)~1Bx#x*B*(!sI!AT)~1C*x

"x*(D#D*)x

'0
Next, suppose BxO0. Adding and subtracting B*P(sI!A)~1B#B*(!sI!AT )~1PB to (8)
and using (7) yields

Z(s)#Z J (s)"D#D*!(B*P!C) (sI!A)~1B!B*(!sI!AT)~1(PB!C*)

#B*P(sI!A)~1B#B*(!sI!AT)~1PB

"D#D*!(B*P!C) (sI!A)~1B!B*(!sI!AT )~1(PB!C*)
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#B*(!sI!AT)~1[(!sI!AT)P#P (sI!A)] (sI!A)~1B

"D#D*!(B*P!C) (sI!A)~1B!B*(!sI!AT )~1(PB!C*)

#B*(!sI!AT)~1[(PB!C*)(D#D*)~1(B*P!C)#R] (sI!A)~1B

"½ J (s) (D#D*)~1½(s)#B*(!sI!AT)~1R(sI!A)~1B

where ½ (s)¢(D#D*)!(B*P!C) (sI!A)~1B. Hence,

Z( ju)#Z*( ju)"½* ( ju) (D#D*)~1½( ju)#B*(!juI!AT )~1R( juI!A)~1B

Now, since D#D*'0, it follows that ½* ( ju) (D#D*)~1½( ju)*0 for all u3R. Furthermore,
since R'0, it follows that (!juI!AT)~1R( juI!A)~1'0 for all u3R. Consequently,

x* (Z( ju)#Z*( ju))x"x*½*( ju) (D#D*)~1½( ju)x

#x*B*(!juI!AT)~1R( juI!A)~1Bx'0

for all u3R, and thus He Z (s)'0 for all s"ju. It now follows from Lemma 2.2 that Z (s) is
strictly positive real.

Conversely, suppose that D#D*'0 and Z(s) is strictly positive real. Then by Lemma 2.1,
there exists a positive-definite matrix P3Cn]n, and matrices ¸3Cm]n and ¼3Cm]m such
that ATP#PA#¸*¸(0 and such that (2) and (3) hold. Next note that
[I!¼ (¼*¼ )~1¼*][I!¼(¼*¼ )~1¼*]*0 so that ¸*¸*¸*¼ (¼*¼ )~1¼*¸.
Hence, it follows that ATP#PA#(PB!C*) (D#D*)~1(B*P!C)(0, which can be rewritten
using Schur complements as (6). K

3. POSITIVITY AND POPOV CRITERIA

In this section we state the multivariable positivity and Popov criteria tests for stability of
a nominal plant transfer function in a negative feedback interconnection with a real, symmetric,
sector-bounded, uncertain matrix representing parameter uncertainty. The Popov criterion,
which is a generalization of the positivity criterion, involves a multiplier which plays a key role in
reducing the conservatism of the upper bounds for the structured singular value. The positivity
and Popov criteria are first written in the form of positive real tests involving the plant transfer
function. Then, using Lemma 2.3, these criteria are rewritten in the form of LMIs involving
state-space realization of the plant transfer function.

Consider a square nominal transfer function G(s) as shown in Figure 2 in a negative feedback
interconnection with a real, square, symmetric, uncertain matrix F which belongs to the set of
sector-bounded matrices

F¢MF3Rm]m: F"FT, 0)F)MN

where M3Rm]m is positive definite. Note that this definition will be used in subsequent sections as
well. This type of sector bound is referred to as one-sided to denote the fact that the lower bound is
zero.

We also consider the subset F
"4

of F consisting of real, symmetric, block-structured matrices
defined by

F
"4
¢MF3F: F"block-diag(I

l1
?F

1
,2 , I

lr
?F

r
), F

i
"FT

i
3Rm

i
]m

i, i"1,2, rN

where the dimension m
i
of each block and the number of repetitions l

i
of the block F

i
are given.

Note that m"+ r
i/1

l
i
m

i
.
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Figure 2. Interconnection of transfer function G(s) with real uncertain matrix F

To state the Popov criterion, define the set N of Hermitian matrices N that commute with
every matrix F3F

"4
by

N¢MN: N"block-diag(N
1
? I

m1
,2,N

r
? I

mr
), N

i
"N*

i
3C l

i
]l

i, i"1,2, rN

Note that if F3F
"4

and N3N, then FN"NF"block-diag(N
1
?F

1
,2, N

r
? F

r
). We now

recall the multivariable positivity and Popov criteria for one-sided, sector-bounded, block-
structured, uncertain matrices.

Lemma 3.118

Let G(s) be an asymptotically stable transfer function. Then the following statements hold.

(i) If M~1#G(s) is strictly positive real, then the negative feedback interconnection of G(s)
and F is asymptotically stable for all F3F

"4
.

(ii) If there exists N3N such that M~1#(I#sN)G(s) is strictly positive real, then the
negative feedback interconnection of G(s) and F is asymptotically stable for all F3F

"4
.

Next we use Lemma 2.3 to rewrite the positivity and Popov criteria from Lemma 3.1 in the
form of LMIs that involve a state-space realization of the plant.

Theorem 3.1

Let G(s)"C(sI!A)~1B be an asymptotically stable transfer function, where A3Rn]n,
B3Rn]m and C3Rm]n. Then the following statements hold.

(i) M~1#G (s) is strictly positive real if and only if there exists a positive-definite matrix
P3Cn]n such that

C
ATP#PA

BTP!C

PB!CT

!2M~1D(0 (9)

(ii) Let N3N. Then M~1#(I#sN)G(s) is strictly positive real if and only if there exists
a positive-definite matrix P3Cn]n such that

C
ATP#PA

BTP!C!NCA

PB!CT!ATCTN

!2M~1!NCB!BTCTND(0 (10)
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Figure 3. Feedback interconnection of plant G (s) with uncertain matrix *

In both cases, the negative feedback interconnection of G(s) and F is asymptotically stable for
all F3F

"4
.

Proof. First, note that (i) is a special case of (ii) with N"0. To prove (ii), note that

M~1#(I#sN)G(s)&C
A

C#NCA K
B

M~1#NCB D
so that M~1#(I#sN)G (s) is an asymptotically stable transfer function. Hence, it follows from
Lemma 2.3 with C and D replaced by C#NCA and M~1#NCB, respectively, that
M~1#(I#sN)G(s) is strictly positive real if and only if there exists a positive-definite matrix
P3Cn]n such that (10) holds. It now follows from Lemma 3.1 that the negative feedback
interconnection of G(s) and F is asymptotically stable for all F3F

"4
. K

4. NORM-BOUNDED, BLOCK-STRUCTURED UNCERTAINTY

In this section, the positivity and Popov criteria are first stated for a nominal plant transfer
function G (s) in a feedback interconnection with a real, norm-bounded, block-structured, uncer-
tain matrix * representing the model uncertainty as shown in Figure 3. Then, these criteria are
stated for scaled transfer functions, where the scaling does not affect the stability of the feedback
interconnection of G(s) and *. Finally, these criteria are rewritten in the form of LMIs, which are
used in the following section to obtain state-space upper bounds for the structured singular value.

Define the set Dc of norm-bounded, real, block-structured matrices by

Dc¢M*3D
3%!-

: p
.!9

(*))c~1N

where D
3%!-

is the set of real, block-structured matrices given by

D
3%!-

¢M*: *"block-diag(I
l1
?*

1
,2 , I

lr
?*

r
), *

i
3Rm

i
]m

i, i"1,2, rN

and where the dimension m
i
and the number of repetitions l

i
of the uncertain block *

i
are given.

Define the shifted transfer function Gc (s) by

Gc(s)¢[I!c~1G(s)]~1G(s)

Note from a simple loop-shifting transformation that the stability of the feedback interconnection
of G(s) and *3Dc is equivalent to the stability of the feedback interconnection of the shifted
transfer function Gc(s) and the shifted uncertainty F"*#c~I3F, where M"2c~1I. Finally,
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define the set D of complex invertible scaling matrices D that commute with every block-
structured uncertain matrix in D

3%!-
by

D¢MD3Cm]m: D"block-diag(D
1
? I

m1
,2 ,D

r
? I

mr
),D

i
3Cl

i
]l

i, det D
i
O0, i"1,2, rN

Note that if *3D
3%!-

and D3D, then D*D~1"*DD~1"*.
We now recall the positivity and Popov criteria and the scaled positivity and scaled Popov

criteria for norm-bounded, block-structured uncertain matrices. The positivity and Popov
criteria are analogous to the criteria in Lemma 3.1, with M specialized to 2c~1I and the transfer
function G(s) replaced by the shifted transfer function Gc(s).

Lemma 4.1

Let c'0 and suppose Gc (s) is asymptotically stable. Then the following statements hold.

(i) If 1
2
cI#Gc (s) is strictly positive real, then the feedback interconnection of G(s) and * is

asymptotically stable for all *3Dc .
(ii) If there exists N3N such that 1

2
cI#(I#sN)Gc(s) is strictly positive real, then the

feedback interconnection of G(s) and * is asymptotically stable for all *3Dc .
(iii) If there exists D3D such that 1

2
cI#DGc(s)D~1 is strictly positive real, then the feedback

interconnection of G(s) and * is asymptotically stable for all *3Dc .
(iv) If there exist D3D and N3N such that 1

2
cI#(I#sN)DGc(s)D~1 is strictly positive real,

then the feedback interconnection of G(s) and * is asymptotically stable for all *3Dc .

Next, we restate the positivity and Popov criteria in the form of LMIs that involve a state-space
realization of the plant transfer function. To do this, define the set Q of positive-definite matrices
Q that commute with every *3D

3%!-
by

Q¢MQ3D: Q'0N

Note that if D3D, then Q"D*D3Q, while if Q3Q, the D"Q1@23D, Note also that if NK 3N and
D3D, then N"D*NK D3N.

Theorem 4.1

Let c'0 and suppose Gc (s)&[ A#c~1BC

C
D B

0
] is asymptotically stable, where A3Rn]n B3Rn]n

and C3Rm]n. Then the following statements hold.

(i) 1
2
cI#Gc(s) is strictly positive real if and only if there exists a positive-definite matrix

P3Cn]n such that

C
(A#c~1BC)TP#P (A#c~1BC)

BTP!C

PB!CT

!cI D(0 (11)

(ii) Let Q3Q. Then 1
2
cI#Q1@2Gc(s)Q~1@2 is strictly positive real if and only if there exists

a positive-definite matrix P3Cn]n such that

C
(A#c~1BC)TP#P (A#c~1BC)

BTP!QC

PB!CTQ

!cQ D(0 (12)

(iii) Let N3N. Then 1
2
cI#(I#sN)Gc (s) is strictly positive real if and only if there exists

a positive-definite matrix P3Cn]n such that

C
(A#c~1BC)TP#P(A#c~1BC)

BTP!C!NC(A#c~1BC)

PB!CT!(A#c~1BC)TCTN

!NCB!BTCTN!cI D(0 (13)
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(iv) Let N3N and Q3Q. Then 1
2
cI#(I#sQ~1@2NQ~1@2)Q1@2Gc (s)Q~1@2 is strictly positive

real if and only if there exists a positive-definite P3Cm]n such that

C
(A#c~1BC)TP#P (A#c~1BC)

BTP!QC!NC(A#c~1BC)

PB!CTQ!(A#c~1BC)TCTN

!NCB!BTCTN!cQ D(0 (14)

In all cases, the feedback interconnection of G(s) and * is asymptotically stable for all *3Dc .

Proof. First, note that (i)— (ii) are special cases of (iv) with Q"I and/or N"0. To prove (iv),
define Z(s)¢1

2
cI#(I#sQ~1@2NQ~1@2)Q1@2Gc(s)Q~1@2 and note that

Z(s)&C
A#c~1BC

Q1@2C#Q~1@2NC(A#c~1BC) K
BQ~1@2

1
2
cI#Q~1@2NCBQ~1@2 D

Since Gc (s) is asymptotically stable by assumption, it follows that Z(s) is also asymptotically
stable. It follows from Lemma 2.3 with A, B, C and D replaced by A#c~1BC, BQ~1@2,
Q1@2C#Q~1@2NC(A#c~1BC) and 1

2
cI#Q~1@2NCBQ~1@2, respectively, that Z(s) is strictly

positive real if and only if there exists a positive-definite matrix P3Cn]m such that

C
(A#c~1BC)TP#P(A#c~1BC)

Q~1@2BTP!Q1@2C!Q~1@2NC(A#c~1BC)

PBQ~1@2!CTQ1@2!(A#c~1BC)TCTNQ~1@2

!Q~1@2NCBQ~1@2!Q~1@2BTCTNQ~1@2!cID(0

(15)

Since [I
0

0
Q1@2] is nonsingular, it follows that (15) is equivalent to (14). Finally, since Q3Q and

N3N imply Q~1@2NQ~1@23N, it follows from Lemma 4.1 that the feedback interconnection of
G(s) and * is asymptotically stable for all *3Dc . K

5. BOUNDS FOR THE STRUCTURED SINGULAR VALUE

In this section, we use the positivity and Popov criteria given in the previous section to obtain
upper bounds for the structured singular value. Specifically, the positive real criteria are used to
obtain upper bounds for the structured singular value in the frequency domain, while the LMI
criteria are used to obtain upper bounds for the structured singular value in the time domain.
Finally, these time domain bounds are shown to be upper bounds for the peaks of the corres-
ponding frequency domain upper bounds.

Recall that the structured singular value of a complex matrix G ( ju) for complex, block-
structured uncertainty is defined as1

k
#0.

(G( ju))¢
1

minMp
.!9

(*): *3D
#0.,0

N
(16)

where

D
#0.,0

¢M*3D
#0.

: det(I#G ( ju)*)"0N

and where D
#0.

is the set of complex, block-structured matrices given by

D
#0.

¢M*: *"block-diag(I
l1
?*

1
,2, I

lr
?*

r
), *

i
3Cm

i
]m

i, i"1,2, rN

If D
#0.,0

is empty, then by convention, k
#0.

(G( ju))¢0. Similarly, the structured singular value of
G( ju) for real, block-structured uncertainty is defined as

k
3%!-

(G( ju))¢
1

minMp
.!9

(*): *3D
3%!-,0

N
(17)
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where

D
3%!-,0

¢M*3D
3%!-

: det(I#G( ju)*)"0N

D
3%!-,0

is empty, then k
3%!-

(G( ju))¢0.

5.1. Frequency domain bounds

Using the positivity and Popov criteria, we define k
104

(G ( ju)) and k
P01

(G ( ju)) by4

k
104

(G ( ju))¢infMc'0: He[1
2
cI#Gc( ju)]'0N (18)

and

k
P01

(G ( ju))¢infMc'0: there exists N3N such that He[1
2
cI#(I#juN)Gc( ju)]'0N (19)

Similarly, using the scaled positivity and scaled Popov criteria, we define k
P04,4#

(G( ju)) and
k
P01,4#

(G( ju)) by

k
P01,4#

(G( ju))¢infMc'0: there exists D3D such that He[1
2
cI#DGc ( ju)D~1]'0N (20)

and

k
P01,4#

(G( ju))¢infMc'0: there exists N3N and D3D such that

He[1
2
cI#(I#juN)DGc ( ju)D~1]'0N (21)

In Reference 4, it was shown that k
104

(G ( ju)) and k
104,4#

(G ( ju)) are upper bounds for the complex
structured singular value, and that k

P01
(G( ju)) and k

P01,4#
(G ( ju)) are bounds for the real

structured singular value. Furthermore, these bounds satisfy the ordering

k
#0.

(G( ju)) ) k
104,4#

(G( ju)) ) k
104

(G ( ju))

VI VI VI

k
3%!-

(G ( ju)) ) k
P01,4#

(G( ju)) ) k
P01

(G( ju))

5.2. State-space bounds

In this section, we present the main result of the paper which provides state-space upper
bounds for the structured singular value. These upper bounds are written as LMIs that involve
a state-space realization of the plant transfer function. Letting G(s)"C (sI!A)~1B, we define

k
P04,1%!,

¢ infMc'0: there exists P'0 such that (11) holdsN (22)

k
P04,4#,1%!,

¢ infMc'0: there exists P'0, Q3Q such that (12) holdsN (23)

k
P01,1%!,

¢ infMc'0: there exists P'0, N3N such that (13) holdsN (24)

k
P01,4#,1%!,

¢infMc'0: there exists P'0, N3N, Q3Q such that (14) holdsN (25)

The following result shows that (22)— (25) are upper bounds for the peak values of the correspond-
ing frequency domain upper bounds.

Theorem 5.1

sup
u

k
104

(G ( ju)))k
104,1%!,

(26)

sup
u

k
104,4#

(G ( ju)))k
104,4#,1%!,

(27)
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sup
u

k
P01

(G ( ju)))k
P01,1%!,

(28)

sup
u

k
P01,4#

(G ( ju)))k
P01,4#,1%!,

(29)

Proof. First note that (26)— (28) are special cases of (29) with Q"I and/or N"0. To prove
(29), note from (25) and Theorem 4.1 that k

P01,4#,1%!,
can be rewritten as

k
P01,4#,1%!,

"infMc'0: there exists N3N and Q3Q such that

1
2
cI#(I#sQ~1@2NQ~1@2)Q1@2Gc (s)Q~1@2 is strictly positive realN

Since Q3Q and N3N imply Q~1@2NQ~1@23N and Q1@23D, k
P01,4#,1%!,

can be rewritten

k
P01,4#,1%!,

"infMc'0: there exist N3N and D3D such that

1
2
cI#(I#sN)DGc(s)D~1 is strictly positive realN

By definition, it follows that for all u3R,

k
P01,4#,1%!,

*infMc'0: there exist N3N and D3D such that

He[1
2
cI#(I#juN)DGc( ju)D~1]'0N

Hence,

k
P01,4#,1%!,

*sup
u

infMc'0: there exist N3N and D3D such that

He[1
2
cI#(I#juN)DGc( ju)D~1]'0N

so that, by definition, supuk
P01,4#

(G ( ju)))k
P01,4#,1%!,

. K

6. NUMERICAL EXAMPLES

The state-space bounds (22)— (25) are in the form of LMIs that involve a state-space realization of
the plant transfer function. Hence, the state-space bounds can be found by using a bisection
algorithm for c, where at each step the LMI is solved as a feasibility problem.5,6 Thus, at each
step, the algorithm reveals whether there exist appropriate matrices such that the LMI is satisfied
for a given c, and the state-space bounds can be computed to arbitrary accuracy. The size of the
smallest destabilizing perturbation is the inverse of the state-space bound.

First, we reconsider the example from Section 1. By evaluating k
P01,4#,1%!,

using a bisection
algorithm on c, the peak value of the bound for real uncertainty is found to be 0)3334 with an
accuracy of 10~4. The variables Q and N in the LMI are determined to be 0)013 and 0)0243,
respectively. Hence, the state-space bound k

P01,4#,1%!,
was able to accurately compute the size of

the smallest destabilizing perturbation efficiently, without an exhaustive search over frequency.
The peak upper bound k

P01,4#,1%!,
is shown as the dashed line in Figure 4.

Next, consider the linear plant model whose realization is given by

xR "
!1 0 0

0 !0)1 0)9

0 !0)9 !0)1

x#

0)57 0)53 0)75

0)80 0)50 0)55

0)03 0)96 0)89

u

y"

0)62 0)21 0)09

0)82 0)71 0)27

0)16 0)13 0)00

x
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Figure 4. Real k, complex k upper bound and peak upper bound k
101,4#,1%!,

for ~0>25s`1
3s2`s`3

Figure 5. Frequency domain and peak upper bounds for real k with *"diag(d
1
, d

2
, d

3
)
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Figure 6. Frequency domain and peak upper bounds for real k with *"diag(d
1
, d

1
, d

2
)

to be the nominal model of an uncertain system in a negative feedback interconnection with an
uncertain matrix. The state-space bounds (22)— (25) and the frequency domain bounds (18)— (21)
will be compared for several different uncertainty structures.

First consider the case of non-repeated, diagonal uncertainty, that is, *"diag(d
1
, d

2
, d

3
). Each

frequency domain bound was computed over a frequency range from 0)6 to 1)1 rad/sec to focus
on the region near the peak. Successively finer grids of frequencies were used to accurately
compute the peak value. Then, the corresponding state-space bounds were computed. The
frequency domain and state-space bounds are shown in Figure 5. Note that in all cases the
state-space upper bounds non-conservatively predict the peaks of the frequency domain upper
bounds so that equality holds in (22)— (25).

Next consider the cases of repeated uncertainty of the distinct forms *"diag(d
1
, d

1
, d

2
) and

*"diag(d
1
, d

2
, d

2
). Each frequency domain bound was computed, using the particular uncer-

tainty structure to define the structure of the matrices Q and N, over a frequency range from 0)6 to
1)1 rad/sec as before, and the corresponding state-space bounds were computed. All the bounds
are shown in Figures 6 and 7. Again, the state-space bounds were computed. All the bounds are
shown in Figures 6 and 7. Again, the state-space upper bounds non-conservatively predict the
peaks of the frequency domain upper bounds.

Finally, to illustrate the relative ease and accuracy with which the peak upper bounds can be
computed compared with a search over frequency, consider the repeated block structure *"dI.
The frequency domain bound k

P01
(G( ju)) was computed for 20 frequencies between 0)1 and

10 rad/sec. Next, k
P01

(G ( ju)) was computed for refined sets of frequencies, in this case at 20
frequencies between 0)54 and 0)89 rad/sec and then 20 frequency points between 0)76 and
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Figure 7. Frequency domain and peak upper bounds for real k with *"diag(d
1
, d

2
, d

2
)

0)82 rad/sec. The peak value of the third iteration is found to be 4)2960. The state-space bound
k
P01,1%!,

is computed for the state-space realization of the transfer function, is found to be 4)5219.
Hence, the closed loop is guaranteed to be asymptotically stable for all DdD(0)2211, the inverse of
k
P01,1%!,

. In contrast, the frequency domain bound predicts stability after three iterations for all
DdD(0)2328, the inverse of the maximum k

P01
(G ( ju)) of the third iteration. In fact, the uncertain-

ty d"0)2212 destabilizes the system. Hence, the fact that the frequency domain bound failed to
capture the peak value accurately after several iterations led to erroneous conclusions about the
robustness of the plant. Using sets of further refined frequencies finally results in a maximum
k
P01

(G ( ju)) of 4)5219 at approximately u"0)8058 rad/sec after four more iterations, so that the
peak bound k

P01,1%!,
is non-conservative. Furthermore, numerical computations show the less

conservative upper bound k
P01,4#

(G ( ju)) is zero at all frequencies other than the peak frequency.
Hence, as in the first example, computing the peak value using a frequency search using
k
P01,4#

(G( ju)) is impractical.
Finally, we consider the plant model given by19

xR "

!2 !400 0)1 0)2

1 0 0)5 0

0 2 !3 !80

0 0 1 0

x#

2 0)8

0 0

0 1

1 0

u

y"C
1)5 0 1 0

0 1 2 2Dx
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Figure 8. Upper bounds k
104

(G( ju)), k
104

(G ( ju)) and k
104,4#,1%!,

(G( ju))

in a feedback interconnection with diagonal uncertainty *"diag(d
1
, d

2
). The peak upper bound

k
104,4#,1%!,

was computed to be 3)1331 (see Figure 8), which guarantees stability for all * such that
p
.!9

(*)(0)319. In Reference 19, the optimal constant D-scale was computed using a gradient
search technique, and gave a value for the upper bound of 3)0807, so that the system is guaranteed
to be asymptotically stable for all * such that p

.!9
(*)(0)320, which is slightly better than the

value given by k
104,4#,1%!,

. The small discrepancy is due to computational error. Finally, the
frequency-domain upper bounds k

104
(G( ju)) and k

104,4#
(G( ju)) were computed and are shown in

Figure 8. Using several refined sets of frequencies near the largest peak of k
104,4#

, its maximum
value was found to be 2)58, so that asymptotic stability is predicted for all * such that
p
.!9

(*)(0)390. Hence, k
104,4#,1%!,

is conservative for this example.

7. CONCLUSIONS

A procedure for computing the peak upper bounds of the structured singular value for real and
complex uncertainty was presented. The positivity and Popov criteria for norm-bounded,
block-structured linear uncertainty in the feedback loop were stated in terms of positive real tests.
By stating these criteria for scaled transfer functions, upper bounds for the structured singular
value for real and complex uncertainties can be derived. Using a generalization of the positive real
lemma, the feasibility of an LMI was equated to the strict positive realness of a transfer function,
so that the peak values of the frequency-domain upper bounds could be written as tests on
a state-space realization of the transfer function. Such time-domain tests in the form of LMIs
have the advantage that robustness bounds can be determined efficiently by solving a convex
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optimization problem, without performing an exhaustive search over frequency or using gradient
search techniques.
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