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This article addresses the state-estimation problem for linear and non-linear systems for the case in which prior
knowledge is available in the form of an equality constraint. The equality-constrained Kalman filter (KF)
is derived as the maximum-a-posteriori solution to the equality-constrained state-estimation problem for linear
and Gaussian systems and is compared to alternative algorithms. Then, four novel algorithms for non-linear
equality-constrained state estimation based on the unscented KF are presented, namely, the equality-constrained
unscented KF, the projected unscented KF, the measurement-augmentation unscented KF, and the constrained
unscented KF. Finally, these methods are compared on linear and non-linear examples.
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1. Introduction

The classical Kalman filter (KF) for linear systems
provides optimal state estimates under standard noise

and model assumptions (Jazwinski 1970). In practice,
however, additional information about the system may

be available, and this information may be useful for

improving state estimates. A scenario we have inmind is
the case in which the dynamics and the disturbances are

such that the states of the system satisfy an equality or
inequality constraint (Robertson and Lee 2002;

Goodwin, Seron, and de Doná 2005). For example, in

a chemical reaction, the species concentrations are non-
negative (Massicotte, Morawski, and Barwicz 1995;

Chaves and Sontag 2002), whereas in a compartmental
model with zero net inflow (Bernstein and Hyland

1993), mass is conserved. Likewise, in undamped

mechanical systems, such as a system with
Hamiltonian dynamics, conservation laws hold, while,

in the quaternion-based attitude estimation problem,

the attitude vector must have unit norm (Crassidis and
Markley 2003; Choukroun, Bar-Itzhack, and Oshman

2006). Additional examples arise in optimal control
(Maciejowski 2002; Goodwin et al. 2005), parameter

estimation (Chia, Chow, and Chizeck 1991; Aguirre,

Barroso, Saldanha, and Mendes 2004; Nepomuceno,
Takahashi, Aguirre, Neto, and Mendes 2004; Walker

2006; Aguirre, Alves, and Corrêa 2007), tracking and
navigation (Wen and Durrant-Whyte 1992; Alouani

and Blair 1993; Dissanayake, Sukkarieh, and Nebot

2001; Shen, Honga, and Cong 2006) and aeronautics

(Rotea and Lana 2005; Simon and Simon 2006). In such

cases, we wish to obtain state estimates that take

advantage of prior knowledge of the states and use this

information to obtain better estimates than those

provided by the Kalman filter in the absence of such

information.
Various algorithms have been developed for equal-

ity-constrained state estimation. One of the most

popular techniques is the measurement-augmentation
Kalman filter (MAKF), in which a perfect ‘measure-

ment’ of the constrained quantity is appended to the

physical measurements (Porrill 1988; Tahk and Speyer

1990; Wen and Durrant-Whyte 1992; Alouani and

Blair 1993; Chen and Chiang 1993; De Geeter, van
Brussel, and De Schutter 1997; Walker 2006).

In addition, estimate-projection (Simon and Chia

2002), system-projection (Ko and Bitmead 2007) and

gain-projection (Gupta and Hauser 2007; Teixeira

et al. 2008b) methods have been considered. A two-
step projection algorithm for handling non-linear

equality constraints has also been presented (Julier

and LaViola 2007).
For state estimation with inequality constraints,

moving horizon estimators (MHE) (Rao, Rawlings,

and Lee 2001; Rao, Rawlings, and Mayne
2003), unscented filtering algorithms (Vachhani,

Narasimhan, and Rengaswamy 2006; Teixeira 2008;

Teixeira, Tôrres, Aguirre, and Bernstein 2008d) and

probabilistic methods (Rotea and Lana 2005) have

been developed. However, inequality constraints
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are outside the scope of the present article.
Finally, a general framework for state estimation
with an equality constraint on the estimator gain
(aiming at enforcing special properties on the state
estimates) is presented in Teixeira et al. (2008b).

The contributions of the present article are as
follows. First, we investigate how a linear equality state
constraint arises in a linear dynamic system and
present necessary conditions on both the dynamics
and process noise for the state to be equality
constrained. In Ko and Bitmead (2007), this problem
is stated in the opposite way, that is, given that
a system satisfies an equality constraint, the goal is to
characterise the process noise. In these cases, we show
that an equality-constrained linear system is control-
lable from the process noise only in the subspace
defined by the equality constraint and that additional
information regarding the initial condition provided by
the equality constraint is useful for improving the
classical Kalman filter estimates.

Second, we derive the equality-constrained Kalman
filter (ECKF) as the maximum-a-posteriori analytical
solution to the equality-constrained state-estimation
problem for linear and Gaussian systems. We also
prove the equivalence of ECKF and MAKF and
discuss connections with the estimate-projection and
system-projection approaches. We compare these four
algorithms by means of a compartmental system
example in which the disturbances are constrained so
that mass is conserved.

Next, our main contribution in this article is to
develop and compare four suboptimal algorithms for
equality-constrained state estimation for non-linear
systems, namely, the equality-constrained unscented
Kalman filter (ECUKF) the projected unscented
Kalman filter (PUKF), the measurement-augmenta-
tion unscented Kalman filter (MAUKF) and the
constrained unscented Kalman filter (CUKF). These
methods, which extend algorithms for constrained
state estimation developed for linear systems, are
based on the unscented Kalman filter (UKF) (Julier
and Uhlmann 2004), which is an example of sigma-
point Kalman filters (SPKF) (van der Merwe, Wan,
and Julier 2004). In addition, CUKF is based on MHE
with unitary horizon. Recent work (Julier, Uhlmann,
and Durrant-Whyte 2000; Haykin 2001; Lefebvre,
Bruyninckx, and De Schutter 2002; Lefebvre,
Bruyninckx, and De Schutter 2004; Romanenko and
Castro 2004; van der Merue et al. 2004; Hovland et al.
2005; Choi, Yeap, and Bouchard 2005; Crassidis 2006;
Chandrasekar, Ridley, and Bernstein 2007; Teixeira,
Santillo, Erwin, and Bernstein 2008e) illustrates the
improved performance of SPKF compared to the
extended Kalman filter (EKF) (Jazwinski 1970), which
is prone to numerical problems such as initialisation

sensitivity, divergence, and instability for strongly
non-linear systems (Reif, Günther, Yaz, and
Unbehauen 1999). A quaternion-based attitude estima-
tion problem (Crassidis and Markley 2003) is used to
illustrate UKF, ECUKF PUKF, MAUKF and
CUKF. Although the state of the process model
satisfies the unit norm constraint, this constraint is
violated by the state estimates obtained from uncon-
strained Kalman filtering.

Finally, we use equality-constrained Kalman filtering
techniques to improve estimation when an approximate
discretised model is used to represent a continuous-time
process. The problem of using UKF with a discrete-time
model obtained from black-box identification to perform
state estimation for a continuous-time non-linear system
is treated in Aguirre, Teixeira, and Tôrres (2005).
According to Rao et al. (2003), constraints can also be
used to correct model error. We illustrate the application
of equality-constrained unscented Kalman filter techni-
ques to this problem through an example of a discretised
model of an undamped single-degree-of-freedom pendu-
lum without external disturbances. Although energy is
conserved in the original, continuous-time system, the
discretised model is approximate, and the energy
constraint is intended to improve estimates of the
discretised states. Additionally, an application of equal-
ity-constrained Kalman filtering to magnetohydrody-
namics data assimilation (Chandrasekar, Barrero,
Ridley, Bernstein, and De Moor 2004; Chandrasekar,
Ridley, and Bernstein 2007), in which the zero-
divergence constraint is enforced on the magnetic field
using finite-volume discretised models, is discussed in
Teixeira, Ridley, Tôrres, Aguirre, and Bernstein
(2008c). The present article is based on research in
Teixeira (2008), while preliminary versions of it appear
as Teixeira, Chandrasekar, Tôrres, Aguirre, and
Bernstein (2007, 2008a).

2. State estimation for linear systems

For the linear stochastic discrete-time dynamic system

xk ¼ Ak�1xk�1 þ Bk�1uk�1 þ Gk�1wk�1, ð1Þ

yk ¼ Ckxk þ vk, ð2Þ

where Ak�12R
n�n, Bk�12R

n�p, Gk�12R
n�q, and

Ck2R
m�n are known matrices, the state-estimation

problem can be described as follows. Assume that,
for all k� 1, the known data are the measurements
yk2R

m, the inputs uk�12R
p, and the statistical

properties of x0, wk�1 and vk. The initial state
vector x02R

n is assumed to be Gaussian with
mean x̂0j0 and error-covariance Pxx

0j0,E½ðx0 � x̂0j0Þ �
ðx0 � x̂0j0Þ

T
�. The process noise wk�12R

q, which

2 B.O.S. Teixeira et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
i
x
e
i
r
a
,
 
B
r
u
n
o
 
O
.
 
S
.
]
 
A
t
:
 
1
7
:
3
3
 
2
5
 
M
a
r
c
h
 
2
0
0
9



represents unknown input disturbances, and the

measurement noise vk2R
m, concerning inaccuracies

in the measurements, are assumed white, Gaussian,

zero mean and mutually independent with known

covariance matrices Qk�1 and Rk, respectively. Next,

define the profit function

JðxkÞ, �ðxkjðy1, . . . , ykÞÞ, ð3Þ

which is the conditional probability density function of

the state vector xk2R
n given the past and present

measured data y1, . . . , yk. Under the stated assump-

tions, the maximisation of (3) is the state-estimation

problem, while the maximiser x̂kjk of J is the optimal

state estimate.
The optimal state estimate x̂kjk is given by KF

(Jazwinski 1970), whose forecast step is given by

x̂kjk�1 ¼ Ak�1x̂k�1jk�1 þ Bk�1uk�1, ð4Þ

Pxx
kjk�1 ¼ Ak�1P

xx
k�1jk�1A

T
k�1 þ Gk�1Qk�1G

T
k�1, ð5Þ

ŷkjk�1 ¼ Ckx̂kjk�1, ð6Þ

P
yy
kjk�1 ¼ CkP

xx
kjk�1C

T
k þ Rk, ð7Þ

P
xy
kjk�1 ¼ Pxx

kjk�1C
T
k , ð8Þ

where Pxx
kjk�1,E½ðxk � x̂kjk�1Þðxk � x̂kjk�1Þ

T
�, P

yy
kjk�1,

E½ð yk � ŷkjk�1Þð yk � ŷkjk�1Þ
T
�, and P

xy
kjk�1,E½ðxk�

x̂kjk�1Þð yk � ŷkjk�1Þ
T
�, and whose data-assimilation

step is given by

Kk ¼ P
xy
kjk�1ðP

yy
kjk�1Þ

�1, ð9Þ

x̂kjk ¼ x̂kjk�1 þ Kkðyk � ŷkjk�1Þ, ð10Þ

Pxx
kjk ¼ Pxx

kjk�1 � KkP
yy
kjk�1K

T
k , ð11Þ

where Pxx
kjk,E½ðxk � x̂kjkÞðxk � x̂kjkÞ

T
� is the error-cov-

ariance matrix and Kk is the Kalman gain matrix.

The notation ẑkjk�1 indicates an estimate of zk at time

k based on information available up to and including time

k� 1. Likewise, ẑkjk indicates an estimate of z at time k

using information available up to and including time k.

Model information is used during the forecast step, while

measurement data are injected into the estimates during

the data-assimilation step, specifically (10).

3. State estimation for equality-constrained

linear systems

In (1), assume that rank(Gk�1)¼ q5 n, and define

r , n� q, where 1� r� n. The case r¼ n indicates that

Gk�1wk�1 is absent. Therefore, there exists Ek�12R
r�n

such that rank(Ek�1)¼ r and

Ek�1Gk�1 ¼ 0r�q: ð12Þ

Let T1,k�12R
(n�r)�n be such that

Tk�1,
T1,k�1

Ek�1

� �
2 R

n�n

is invertible. For example, we can choose T1,k�1,

GT
k�1. Multiplying (1) by Tk�1 yields

T1,k�1

Ek�1

� �
xk ¼

T1,k�1Ak�1

Ek�1Ak�1

� �
xk�1 þ

T1,k�1Bk�1

Ek�1Bk�1

� �
uk�1

þ
T1,k�1Gk�1

0r�q

� �
wk�1:

Hence, for all k� 1,

Ek�1xk ¼ ek�1, ð13Þ

where ek�1 , Ek�1(Ak�1xk�1þBk�1uk�1). Note that

ek�1 is not necessarily constant even if system (1) and

(2) is time invariant. Since rank(Gk�1)5 n, Gk�1wk�1

has singular covariance Gk�1Qk�1G
T
k�1 (Goodwin et al.

2005; Ko and Bitmead 2007).
Let s be an integer satisfying 1� s� r, and partition

Ek�1, ½
E1,k�1

Dk�1
�, where

E1;k�1 2 R
ðr�sÞ�n and Dk�1 2 R

s�n

It thus follows from (12) that

Dk�1Gk�1 ¼ 0s�q: ð14Þ

Proposition 3.1: Assume that

Dk�1Ak�1 ¼ Dk�1 ð15Þ

and

Dk�1Bk�1uk�1 ¼ 0s�1 for all k � 1: ð16Þ

Then, for all k� 1,

Dk�1xk ¼ dk�1, ð17Þ

where

dk�1,Dk�1xk�1: ð18Þ

Proof: It follows from (13) that Dk�1xk¼Dk�1�

(Ak�1xk�1þBk�1uk�1)¼Dk�1xk�1¼ dk�1. œ

Corollary 3.1: If the system given by (1) and (2) is

time invariant and (14)–(16) hold, then, for all k� 1,

Dxk ¼ d, ð19Þ

where D , Dk�1 and

d,Dx0: ð20Þ

Note that, if s¼ r¼ n, then xk¼D�1d. Hence, this case

is not of practical interest.

International Journal of Control 3
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The next result shows that, if (1) is equality

constrained, then it is not controllable in R
n from the

process noise, but it is rather controllable in the

subspace defined by (17).

Proposition 3.2: If (14) and (15) hold, then

(Ak�1,Gk�1) is not controllable in R
n.

Proof: Multiplying the controllability matrix

KðAk�1,Gk�1Þ, Gk�1 Ak�1Gk�1 � � � An�1
k�1Gk�1

� �
by Dk�1 yields

Dk�1KðAk�1,Gk�1Þ

¼ Dk�1Gk�1 Dk�1Ak�1Gk�1 � � � Dk�1A
n�1
k�1Gk�1

� �
¼ 0s�q Dk�1Gk�1 � � � Dk�1A

n�2
k�1G

� �
¼ 0s�nq,

implying that the columns of K lie on the null space

of Dk�1 such that rank(K)5 n. œ

Assuming that, for all k� 1, Dk�12R
s�n satisfying

(14)–(16) and dk�1 defined by (18) are known, the

objective of the equality-constrained state-estimation

problem is to maximise (3) subject to (17).

4. Equality-constrained Kalman filter

In this section, we solve the equality-constrained

state-estimation problem to obtain ECKF. Let x̂pkjk
denote the solution of the equality-constrained state-

estimation problem.

Lemma 4.1: Assume that Pxx
kjk�1 given by (5) and Rk

are positive definite. x̂pkjk maximises J given by (3)

subject to (17) if and only if x̂pkjk minimises

J ðxkÞ, ðxk � x̂kjk�1Þ
T
ðPxx

kjk�1Þ
�1
ðxk � x̂kjk�1Þ

h
þ yk � CkxkÞ

TR�1k ðyk � CkxkÞ
� i

ð21Þ

subject to (17), where x̂kjk�1 is given by (4).

Proof: The proof is similar to the unconstrained

counterpart investigated in Maybeck (1979, pp. 234–

235) or Jazwinski (1970, pp. 207–208) and is omitted for

brevity. For completeness, the proof to the constrained

case is presented in Teixeira (2008, Lemma 5.2.1). œ

Define the projected error covariance Pxxp
kjk ,

E½ðxk � x̂pkjkÞðxk � x̂pkjkÞ
T
� þ �In�n, where 05 �� 1

is a very small number compared to the entries of

Pxx
kjk that guarantees that P

xxp
kjk is positive definite. From

our experience, we set 10�15� �� 10�9 for computa-

tional implementation.

Proposition 4.1: Let x̂kjk�1 and Pxx
kjk�1 be given by

x̂kjk�1,Ak�1x̂
p
k�1jk�1 þ Bk�1uk�1, ð22Þ

Pxx
kjk�1,Ak�1P

xxp
k�1jk�1A

T
k�1 þ Gk�1Qk�1G

T
k�1: ð23Þ

Define

d̂k�1jk,Dk�1x̂kjk, ð24Þ

Pdd
kjk,Dk�1P

xx
kjkD

T
k�1, ð25Þ

Pxd
kjk,Pxx

kjkD
T
k�1, ð26Þ

Kp
k ,Pxd

kjkðP
dd
kjkÞ
�1, ð27Þ

where x̂kjk is given by (10) and P
xx
kjk is given by (11). Then

x̂pkjk and Pxxp
kjk are given by

x̂pkjk ¼ x̂kjk þ Kp
kðdk�1 � d̂k�1jkÞ, ð28Þ

Pxxp
kjk ¼ Pxx

kjk � Kp
kP

dd
kjkK

p
k
T
þ �In�n: ð29Þ

Proof: Using Lemma 4.1, let �2R
s and define the

Lagrangian

L,J ðxkÞ þ 2�TðDk�1xk � dk�1Þ:

The necessary conditions for a minimiser x̂pkjk are

given by

@L

@xk
¼ ðPxx

kjk�1Þ
�1
ðx̂pkjk � x̂kjk�1Þ � CT

kR
�1
k ðyk � Ckx̂

p
kjkÞ

þDT
k�1� ¼ 0n�1, ð30Þ

@L

@�
¼ Dk�1x̂

p
kjk � dk�1 ¼ 0s�1: ð31Þ

It follows from (30) that

ððPxx
kjk�1Þ

�1
þ CT

kR
�1
k CkÞðx̂

p
kjk � x̂kjk�1Þ

¼ CT
kR
�1
k ðyk � Ckx̂kjk�1Þ �DT

k�1�: ð32Þ

From (11), using (7)–(9) and the matrix inversion

lemma (Bernstein 2005), we have

Pxx
kjk¼Pxx

kjk�1�KkP
yy
kjk�1K

T
k

¼Pxx
kjk�1�P

xy
kjk�1ðP

yy
kjk�1Þ

�1P
yy
kjk�1ðP

yy
kjk�1Þ

�T
ðP

xy
kjk�1Þ

T

¼Pxx
kjk�1�Pxx

kjk�1C
T
k ðCkP

xx
k�1jk�1C

T
k þRkÞ

�1CkP
xx
kjk�1

¼ ððPxx
kjk�1Þ

�1
þCT

kR
�1
k CkÞÞ

�1: ð33Þ

4 B.O.S. Teixeira et al.
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Furthermore, from (9), using (7) and (8), we have

Kk ¼ P
xy
kjk�1ðP

yy
kjk�1Þ

�1

¼ Pxx
kjk�1C

T
k ðCkP

xx
kjk�1C

T
k þ RkÞ

�1

¼ Pxx
kjkðP

xx
kjkÞ
�1Pxx

kjk�1C
T
k ðCkP

xx
kjk�1C

T
k þ RkÞ

�1

¼ Pxx
kjkðC

T
kR
�1
k Ck þ ðP

xx
kjk�1Þ

�1
ÞPxx

kjk�1C
T
k

� ðCkP
xx
kjk�1C

T
k þ RkÞ

�1

¼ Pxx
kjkðC

T
kR
�1
k CkP

xx
kjk�1C

T
k þ CT

kR
�1
k RkÞ

� ðCkP
xx
kjk�1C

T
k þ RkÞ

�1

¼ Pxx
kjkC

T
kR
�1
k ðCkP

xx
kjk�1C

T
k þ RkÞðCkP

xx
kjk�1C

T
k þ RkÞ

�1

¼ Pxx
kjkC

T
kR
�1
k : ð34Þ

Substituting (33) and (34) into (32) and multiplying by

Pxx
kjk yields

x̂pkjk ¼ x̂kjk�1 þ Kkðyk � Ckx̂kjk�1Þ � Pxx
kjkD

T
k�1�: ð35Þ

Substituting (35) into (31) yields

dk�1 ¼ Dk�1x̂kjk�1 þDk�1P
xx
kjkC

T
kR
�1
k ðyk � Ckx̂kjk�1Þ

�Dk�1P
xx
kjkD

T
k�1�,

which implies

� ¼ ðDk�1P
xx
kjkD

T
k�1Þ

�1
ðDk�1x̂kjk�1 � dk�1Þ

þ ðDk�1P
xx
kjkD

T
k�1Þ

�1Dk�1Kkðyk � Ckx̂kjk�1Þ: ð36Þ

Likewise, substituting (36) into (35) yields

x̂pkjk ¼ x̂kjk�1 þ Kkðyk � Ckx̂kjk�1Þ

� Pxx
kjkD

T
k�1ðDk�1P

xx
kjkD

T
k�1Þ

�1
ðDk�1x̂kjk�1 � dk�1Þ

� Pxx
kjkD

T
k�1ðDk�1P

xx
kjkD

T
k�1Þ

�1Dk�1Kkðyk � Ckx̂kjk�1Þ

¼ x̂kjk�1 þ Kkðyk � Ckx̂kjk�1Þ

� Pxx
kjkD

T
k�1ðDk�1P

xx
kjkD

T
k�1Þ

�1 Dk�1x̂kjk�1 � dk�1
�

þDk�1Kkyk �Dk�1KkCkx̂kjk�1
�

¼ x̂kjk�1 þ Kkðyk � Ckx̂kjk�1Þ

þ Pxx
kjkD

T
k�1ðDk�1P

xx
kjkD

T
k�1Þ

�1

� dk�1 �Dk�1ðx̂kjk�1 þ Kkðyk � Ckx̂kjk�1ÞÞ
� �

:

Now using (24)–(27), (9)–(11), we obtain

x̂pkjk ¼ x̂kjk�1 þ Kkðyk � ŷkjk�1Þ

þ Pxx
kjkD

T
k�1ðDk�1P

xx
kjkD

T
k�1Þ

�1

� dk�1 �Dk�1ðx̂kjk�1 þ Kkðyk � ŷkjk�1ÞÞ
� �

¼ x̂kjk�1 þ Kkðyk � ŷkjk�1Þ þ Kp
kðdk�1 � d̂k�1jkÞ

¼ x̂kjk þ Kp
kðdk�1 � d̂k�1jkÞ,

which proves (28).

Given the symmetry between (28) and (10)

and recalling that Pxx
kjk is given by (11), it follows that

Pxxp
kjk is given by (29). œ

Remark 4.1: Note that ECKF is expressed in three

steps, namely, the forecast step (22) and (23), (6)–(8),

the data-assimilation step (9)–(11) and the projection

step (24)–(29), where the updated estimates are

projected onto the hyperplane defined by the equality

constraint (17).

Lemma 4.2: Let N (Dk�1) denote the null space of

Dk�1, let W2R
n�n be positive definite, and define

PNðDk�1Þ
, In�n �WDT

k�1ðDk�1WDT
k�1Þ

�1Dk�1:

ð37Þ

Then PNðDk�1Þ
is an oblique projector whose range is

N (Dk�1), that is, P2
NðDk�1Þ

¼ PNðDk�1Þ
but it is not

necessarily symmetric.

For the following two results, let x̂kjk given by (10)

and Pxx
kjk given by (11) denote the updated estimate and

updated error covariance provided by ECKF. Also, let

x̂pkjk given by (28) and Pxxp
kjk given by (29) denote the

projected estimate and projected error covariance of

ECKF.

Proposition 4.2: Set W ¼ Pxx
kjk in (37). Then, the

projection step (24)–(29) is equivalent to

x̂pkjk ¼ PNðDk�1Þ
x̂kjk þ �dk�1, ð38Þ

Pxxp
kjk ¼ PNðDk�1Þ

Pxx
kjk þ �In�n, ð39Þ

where �dk�1,Pxx
kjkD

T
k�1ðDk�1P

xx
kjkD

T
k�1Þ

�1dk�1.

Proof: Using Lemma 4.2 and substituting (24)–(27)

into (28) and (29) yields (38) and (39). œ

Proposition 4.3: Assume that (1) and (2) is time

invariant. Also, assume that D in (19) satisfies

(14)–(16). Furthermore, assume that, for a given k� 1,

Dx̂pk�1jk�1 ¼ d and DPxxp
k�1jk�1 ¼ 0s�n and set �¼ 0. Then

Dx̂kjk ¼ d, DPxx
kjk ¼ 0s�n, x̂

p
kjk ¼ x̂kjk, and Pxxp

kjk ¼ Pxx
kjk.

Proof: Multiplying (22) and (23) by D yields

Dx̂kjk�1 ¼ DAx̂pk�1jk�1 þDBuk�1

¼ Dx̂pk�1jk�1 þ 0s�1 ¼ d, ð40Þ

DPxx
kjk�1 ¼ DAPxxp

k�1jk�1A
T þDGQk�1G

T

¼ DPxxp
k�1jk�1A

T þ 0s�qQk�1G
T

¼ 0s�nA
T ¼ 0s�n: ð41Þ

International Journal of Control 5

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
i
x
e
i
r
a
,
 
B
r
u
n
o
 
O
.
 
S
.
]
 
A
t
:
 
1
7
:
3
3
 
2
5
 
M
a
r
c
h
 
2
0
0
9



With (8) and (41), multiplying (9) by D yields

DKk ¼ DP
xy
kjk�1ðP

yy
kjk�1Þ

�1
¼ DPxx

kjk�1C
TðP

yy
kjk�1Þ

�1

¼ 0s�nC
TðP

yy
kjk�1Þ

�1
¼ 0s�m: ð42Þ

With (40) and (42), multiplying (10) and (11) by

D yields

Dx̂kjk ¼ Dx̂kjk�1 þDKkð yk � ŷkjk�1Þ

¼ dþ 0s�mð yk � ŷkjk�1Þ ¼ d, ð43Þ

DPxx
kjk ¼ DPxx

kjk�1 �DKkP
yy
kjk�1K

T
k

¼ 0s�n þ 0s�mP
yy
kjk�1K

T
k ¼ 0s�n: ð44Þ

Given (43) and (44) and �¼ 0, from (38) and (39), we

have x̂pkjk ¼ x̂kjk and Pxxp
kjk ¼ Pxx

kjk. œ

Corollary 4.1: Assume that Dx̂p1j1 ¼ d and DPxxp
1j1 ¼

0s�n. Then, for all k� 2, Dx̂kjk ¼ d and DPxx
kjk ¼ 0s�n.

Remark 4.2: Therefore, for time-invariant systems,

whenever (14)–(16) hold, the projection step of ECKF
given by (24)–(29) is required only at k¼ 1, so that, for

all k� 2, the updated estimate x̂kjk given by (10)

satisfies Dx̂kjk ¼ d.

5. Connections between ECKF and

alternative approaches

We now compare ECKF to three Kalman filtering
algorithms that yield state estimates satisfying an

equality constraint.
First we consider MAKF (Porrill 1988; Tahk and

Speyer 1990; Wen and Durrant-Whyte 1992), which

treats (17) as perfect measurements. In Appendix I, we

present the MAKF equations and prove that the
MAKF and ECKF estimates are equal.

In Appendix II, we show that the projected Kalman

filter by system projection (PKF-SP) (Ko and Bitmead
2007), which, assuming that (14)–(16) hold, incorpo-

rates the information provided by (17) only in filter

initialisation, that is, k¼ 0, is a special case of ECKF
for time-invariant systems.

In Appendix III, we briefly review the projected

Kalman filter by estimate projection (PKF-EP) (Simon
and Chia 2002; Simon 2006), which projects x̂kjk onto

the hyperplane (17) for all k� 1. Unlike ECKF, the

projected estimate of PKF-EP is not recursively fed
back in the next iteration.

Figure 1 illustrates how the forecast, data-

assimilation and projection steps are connected for
ECKF, PKF-SP, PKF-EP and MAKF.

Also, for the special case of unitary horizon, ECKF

and MHE (Rao et al. 2001) minimise the same cost

function, specifically (21). However, ECKF provides
the analytical solution to the equality-constrained
optimisation problem. Moreover, unlike MHE,
ECKF enforces the constraint information on the
error covariance in addition to the state estimate.

We also remark that, if m¼ 0, then the problem
solved by ECKF in Proposition 4.1 is similar to the
case in which Kalman filter is used as an iterative
solver for systems of linear algebraic equations such
as Dx¼ d, where D2R

s�n, d2R
s, and rank(D)¼ s

(Pinto and Rios Neto 1990, Theorem 2).
Note that, if dk�1 is uncertain, then (17) can be

replaced by the noisy equality constraint (De Geeter
et al. 1997; Walker 2006; Ko and Bitmead 2007)

dk�1 ¼ Dk�1xk þ vdk, ð45Þ

where vdk 2 R
s is a white, Gaussian, zero-mean noise

with covariance Rd
k, and it is treated as an extra noisy

measurement by MAKF (Appendix I) but with

~Rd
k ,

Rk 0m�s

0s�m Rd
k

� �

replacing ~Rk.

6. State estimation for equality-constrained

non-linear systems

For the non-linear stochastic discrete-time dynamic
system

xk ¼ f xk�1, uk�1,wk�1, k� 1ð Þ, ð46Þ

yk ¼ h xk, kð Þ þ vk, ð47Þ

where f : R
n
�R

p
�R

q
�N!R

n and h : R
n
�N!R

m

are, respectively, the process and observation models,
and whose state vector xk is known to satisfy the
equality constraint

g xk, k� 1ð Þ ¼ dk�1, ð48Þ

where g : Rn
�N!R

s and dk�1 is known, the objective
of the equality-constrained state-estimation problem is,
for all k� 1, to maximise (3) subject to (48). However,
the solution to this problem is complicated (Daum
2005) by the fact that, for non-linear systems,
�(xkj( y1, . . . , yk)) is not completely characterised by its
first-order and second-order moments. We thus use an
approximation based on the classical Kalman filter to
provide a suboptimal solution to the non-linear case.

6.1 Unscented Kalman filter

First, to address the unconstrained case, we consider
UKF (Julier and Uhlmann 2004) to provide

6 B.O.S. Teixeira et al.
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a suboptimal solution to the state-estimation problem.
Instead of analytically or numerically linearising
(46) and (47) and using (4)–(11), UKF employs the
unscented transform (UT) (Julier et al. 2000), which
approximates the posterior mean ŷ2R

m and covar-
iance Pyy

2R
m�m of a random vector y obtained from

the non-linear transformation y¼ h(x), where x is
a prior random vector whose mean x̂ 2 R

n and
covariance Pxx

2R
n�n are assumed to be known. UT

yields the true mean ŷ and the true covariance Pyy if
h¼ h1þ h2, where h1 is linear and h2 is quadratic (Julier
et al. 2000). Otherwise, ŷk is a pseudo mean and Pyy is
a pseudo covariance.

UT is based on a set of deterministically chosen

vectors known as sigma points. To capture the mean

x̂ak�1jk�1 of the augmented prior state vector

xak�1,
xk�1

wk�1

� �
, ð49Þ

where xak�1 2 R
na and na , nþ q, as well as the

augmented prior error covariance

Pxxa
k�1jk�1,

Pxx
k�1jk�1 0n�q

0q�n Qk�1

" #
, ð50Þ

Figure 1. Comparative diagram of (a) ECKF, (b) PKF-EP, (c) PKF-SP and (d) MAKF. Unlike PKF-EP, the projection step of
ECKF is connected by feedback recursion. In PKF-SP, in the context of time-invariant dynamics, the initial state estimate and
the associated error covariance carry the information provided by the equality constraint. Note that, since (14) holds such
that GQk�1G

T is a ‘constrained’ covariance, Qk�1 need not to be modified in the PKF-SP implementation. Otherwise, we can
replace GQk�1G

T by PN (D)GQk�1G
T in (5), where PN (D) is given by (A.25). In MAKF, the equality constraint is enforced at the

data-assimilation step.
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the sigma-point matrix Xk�1 2 R
na�ð2naþ1Þ is chosen as

Xk�1jk�1 ¼ x̂ak�1jk�111�ð2naþ1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ �Þ

p
� 0na�1 Pxxa

k�1jk�1

	 
1=2
� Pxxa

k�1jk�1

	 
1=2� �
,

ð51Þ

with weights

�ðmÞ0 ,
�

na þ �
,

�ðcÞ0 ,
�

na þ �
þ 1� �2 þ �,

�ðmÞi , �
ðcÞ
i , �

ðmÞ
iþna
, �ðcÞiþna ,

1

2ðna þ �Þ
,

i ¼ 1, . . . , na,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð52Þ

where (�)1/2 is the Cholesky square root, 05�� 1, �� 0,

�� 0, and � , �2(�þna)�na4�na. We set �¼ 1 and

�¼ 0 (Haykin 2001) such that �¼ 0 (Julier and Uhlmann

2004) and set �¼ 2 (Haykin 2001). Alternative schemes

for choosing sigma points are given in Julier and

Uhlmann (2004) and references therein.
The UKF forecast equations are given by (51) and

(52) together with

coliðX
x
kjk�1Þ ¼ fðcoliðX

x
k�1jk�1Þ, uk�1,

coliðX
w
k�1jk�1Þ,k�1Þ, i¼ 0, . . . ,2na, ð53Þ

x̂kjk�1 ¼
X2na
i¼0

�ðmÞi coliðX
x
kjk�1Þ, ð54Þ

Pxx
kjk�1 ¼

X2na
i¼0

�ðcÞi ½coliðX
x
kjk�1Þ � x̂kjk�1�

� ½coliðX
x
kjk�1Þ � x̂kjk�1�

T, ð55Þ

coliðYkjk�1Þ ¼ hðcoliðX
x
kjk�1Þ,kÞ, i¼ 0, . . . ,2na, ð56Þ

ŷkjk�1 ¼
X2na
i¼0

�ðmÞi coliðYkjk�1Þ, ð57Þ

P
yy
kjk�1 ¼

X2na
i¼0

�ðcÞi ½coliðYkjk�1Þ � ŷkjk�1�

� ½coliðYkjk�1Þ � ŷkjk�1�
T
þ Rk, ð58Þ

P
xy
kjk�1 ¼

X2na
i¼0

�ðcÞi ½coliðX
x
kjk�1Þ � x̂kjk�1�

� ½coliðYkjk�1Þ � ŷkjk�1�
T, ð59Þ

where

Xx
k�1jk�1

Xw
k�1jk�1

" #
,Xk�1jk�1;

X x
k�1jk�1 2 R

n�ð2naþ1Þ

and
Xw

k�1jk�1 2 R
q�ð2naþ1Þ

The UKF data-assimilation equations are given by
(9)–(11).

7. Equality-constrained unscented Kalman filters

In this section, by using UT, we extend the algorithms
PKF-EP, ECKF and MAKF to the non-linear case.
These unscented-based approaches provide suboptimal
solutions to the equality-constrained state-estimation
problem for non-linear systems. Unlike the linear
case (x 4), these approaches do not guarantee that the
non-linear equality constraint (48) is exactly satisfied,
but they provide approximate solutions.

Furthermore, to obtain state estimates satisfying
(48) at a given tolerance by solving an optimisation
problem online, we also present an unscented extension
of the constrained Kalman filter (CKF) for linear
systems, which is a special case of MHE with unitary
horizon (Rao et al. 2001).

7.1 Projected unscented Kalman filter

The projection step of ECKF given by (24)–(29) is now
extended to the non-linear case by means of UT.
Choosing sigma points and associated weights as
indicated in (51) and (52), we have

Xx
kjk ¼ x̂kjk11�ð2nþ1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ �Þ

p
� 0n�1 Pxx

kjk

	 
1=2
� Pxx

kjk

	 
1=2� �
, ð60Þ

where x̂kjk and Pxx
kjk are given by (10) and (11),

respectively. Then the sigma points coliðX
x
kjkÞ 2 R

n,
i¼ 0, . . . , 2n, are propagated through (48), yielding

coliðDkjkÞ ¼ gðcoliðX
x
kjkÞ, k� 1Þ, i ¼ 0, . . . , 2n,

ð61Þ

such that d̂k�1jk, P
dd
kjk, and Pxd

kjk are given by

d̂k�1jk ¼
X2n
i¼0

�ðmÞi coliðDkjkÞ, ð62Þ

Pdd
kjk ¼

X2n
i¼0

�ðcÞi ½coliðDkjkÞ � d̂k�1jk�½coliðDkjkÞ � d̂k�1jk�
T,

ð63Þ

Pxd
kjk ¼

X2n
i¼0

�ðcÞi ½coliðX
x
kjkÞ � x̂kjk�½coliðDkjkÞ � d̂k�1jk�

T,

ð64Þ

and Kp
k, x̂

p
kjk, and Pxxp

kjk are given by (27), (28) and (29),
respectively.

Appending the projection step (60)–(64), (27)–(29)
to UKF (51)–(59), (9)–(11) without feedback recursion

8 B.O.S. Teixeira et al.
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(Figure 1(b)) yields PUKF, which extends PKF-EP to

non-linear systems.

7.2 Equality-constrained unscented Kalman filter

Define

xapk�1,
xpk�1
wk�1

� �
,

and

Pxxap
k�1jk�1,

Pxxp
k�1jk�1 0n�q

0q�n Qk�1

" #
;

such that the sigma points

Xk�1jk�1 ¼ x̂apk�1jk�111�ð2naþ1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ �Þ

p
� 0na�1 Pxxap

k�1jk�1

	 
1=2
� Pxxap

k�1jk�1

	 
1=2� �
,

ð65Þ

are chosen based on x̂pk�1jk�1 given by (28). Then, by

appending the projection step (60)–(64), (27)–(29) to

Equations (65), (52)–(59), (9)–(11), we obtain ECUKF.

Note that, unlike PUKF, ECUKF connects the projec-

tion step to UKF by feedback recursion; see Figure 1(a).

7.3 Measurement-augmentation unscented

Kalman filter

To extend the MAKF algorithm to the non-linear case,

we replace (47) by the augmented observation

~yk, ~hðxk, kÞ þ ~vk, ð66Þ

where

~yk,
yk

dk�1

� �
; ~hðxk, kÞ,

hðxk, kÞ

gðxk, k� 1Þ

� �
and

~vk, ½
vk
0s�1
�

With (66), MAUKF combines (51)–(55) with the

augmented forecast equations

colið ~Ykjk�1Þ ¼
~hðcoliðX

x
kjk�1Þ, kÞ, i ¼ 0, . . . , 2na,

ð67Þ

~̂ykjk�1 ¼
X2na
i¼0

�ðmÞi colið ~Ykjk�1Þ, ð68Þ

~P
~y ~y
kjk�1 ¼

X2na
i¼0

�ðcÞi ½colið
~Ykjk�1Þ � ~̂ykjk�1�

� ½colið ~Ykjk�1Þ � ~̂ykjk�1�
T
þ ~Rk, ð69Þ

~P
x ~y
kjk�1 ¼

X2na
i¼0

�ðcÞi ½coliðX
x
kjk�1Þ � x̂kjk�1�

� ½colið ~Ykjk�1Þ � ~̂ykjk�1�
T, ð70Þ

where

~Rk,
Rk 0m�s

0s�m 0s�s

� �
, ð71Þ

and the KF data-assimilation equations

~Kk ¼ ~P
x ~y
kjk�1ð

~P
~y ~y
kjk�1Þ

�1, ð72Þ

x̂kjk ¼ x̂kjk�1 þ ~Kkð ~yk � ~̂ykjk�1Þ, ð73Þ

Pxx
kjk ¼ Pxx

kjk�1 �
~Kk

~P
~y ~y
kjk�1

~KT
k : ð74Þ

Recall that, unlike the linear case, the ECUKF and

MAUKF estimates are not necessarily equivalent.
In practice, to circumvent ill-conditioning problems

in the inversion of ~P
~y ~y
kjk�1 in (69), we replace ~Rk by ~Rd

k,

where we set Rd
k ¼ �Is�s, 10

�15
� �� 10�9.

7.4 Constrained unscented Kalman filter

We now extend CKF to the non-linear case by

combining the forecast step of UKF with the data-

assimilation step of CKF. Then we obtain CUKF,

whose forecast equations are given by (51)–(59) and

whose data-assimilation equations are given by

x̂kjk ¼
argmin J 1ðxkÞ,

fxk: g xk, k�1ð Þ¼dk�1g
ð75Þ

together with (9) and (11), where J 1(xk) is given by

J 1ðxkÞ, ðxk � x̂kjk�1Þ
T
ðPxx

kjk�1Þ
�1
ðxk � x̂kjk�1Þ

h
þ yk � hðxk, kÞÞ

TR�1k ðyk � hðxk, kÞÞ
� i

, ð76Þ

where x̂kjk�1 is given by (54) and Pxx
kjk�1 is given by (55).

Various optimisation methods can be used to solve

online the constrained optimisation problem (75)

(Fletcher 2000). Note that (76) is the non-linear

counterpart of (21).
Note that, unlike ECUKF and MAUKF, the

equality-constraint information is not assimilated

by the error-covariance Pxx
kjk in (11). Also, CUKF

allows the enforcement of inequality constraints in

addition to (48) in (75).

8. Numerical examples

In this section, a linear example is investigated using

KF, ECKF, MAKF, PKF-EP and PKF-SP, and two

non-linear examples are discussed using UKF,

ECUKF, MAUKF, PUKF and CUKF.
To compare the performance of these algorithms,

we use two metrics over a c-run Monte Carlo

simulation. First, the accuracy of the state estimate

x̂i,kjk, j given by (10), i¼ 1, . . . , n and j¼ 1, . . . , c, from

International Journal of Control 9

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
i
x
e
i
r
a
,
 
B
r
u
n
o
 
O
.
 
S
.
]
 
A
t
:
 
1
7
:
3
3
 
2
5
 
M
a
r
c
h
 
2
0
0
9



time k¼ k0 to kf is quantified by the root mean square

error (RMSE) index given by

RMSEi ¼
1

c

Xc
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kf � k0 þ 1

Xkf
k¼k0

ðxi,k � x̂i,kjk, jÞ
2

vuut ,

i ¼ 1, . . . , n ð77Þ

where xi,k is the true value. For ECKF and PKF-EP, as

well as for ECUKF and PUKF, x̂i,kjk, j is replaced by

x̂pi,kjk, j given by (28) and (A.27), respectively. Note that,

to calculate RMSEi, xi,k must be known, and thus this

index is restricted to simulation.
Next, we assess how informative (Lefebvre et al.

2004) the state estimate x̂kjk is by evaluating the mean

trace (MT) of Pxx
kjk given by (11) from time k¼ k0 to kf,

that is,

MT ¼
1

c

Xc
j¼1

1

kf � k0 þ 1

Xkf
k¼k0

trðPxx
kjk, jÞ

" #
: ð78Þ

MT measures the uncertainty in the estimate x̂kjk. For

ECKF and PKF-EP, as well as for their non-linear

counterparts, Pxx
kjk, j is replaced by Pxxp

kjk, j given by (29)

and (39), respectively.

8.1 Compartmental system

Consider the linear discrete-time compartmental model

(1) and (2) (Bernstein and Hyland 1993) whose

matrices are given by

A ¼

0:94 0:028 0:019

0:038 0:95 0:001

0:022 0:022 0:98

2
64

3
75, B ¼ 03�1,

G ¼

0:05 �0:03

�0:02 0:01

�0:03 0:02

2
64

3
75,C ¼ 1 0 0

0 1 0

� �
, ð79Þ

with initial condition x0¼ [1 1 1]T and process noise

and observation noise covariance matrices Qk�1 ¼

	2wI3�3 and Rk ¼ 	
2
v I2�2. The data-free simulation of

this system is shown in Figure 2 for 	w¼ 1.0. Note that
(14)–(16) hold for (79) such that the trajectory of
xk2R

3 lies on the plane (19), whose parameters are
assumed to be known and are given by

D ¼ 1 1 1
� �

, d ¼ 3, ð80Þ

that is, conservation of mass is verified.
For state estimation, the KF algorithm is initialised

with

x̂0j0 ¼ 2 1 0
� �T

, Pxx
0j0 ¼ I3�3: ð81Þ

Figure 3 shows that the KF estimates do not lie on the
plane (19). Even if x̂0j0 ¼ x0 or 	w¼ 0, KF does not
produce estimates satisfying (19).

Next, we implement the ECKF algorithm. From
a 100-run Monte Carlo simulation for each one of
these process noise levels, namely, 	w¼ 0, 0.1, 0.5, 1.0,
and 	v¼ 0.01, Table 1 shows that the ECKF estimates
satisfy the equality constraint. In addition, these
estimates are both more accurate and more informative
than the KF estimates.

For MAKF, PKF-EP and PKF-SP, initialisation
is defined as in (81), except for PKF-SP (see (A.23)
in Appendix II). Table 1 summarises the results.
ECKF, MAKF, PKF-SP and PKF-EP guarantee
that (19) is satisfied at machine precision and yield
improved estimates compared to KF. All equality-
constrained methods produce similar results concern-
ing RMSE and MT for this time-invariant system,
which is in accordance with Ko and Bitmead (2007,
Theorem 2) regarding PKF-SP and PKF-EP. Recall
that the numerical differences in Table 1 regarding
the RMS constraint error for the equality-con-
strained algorithms are neglegible. However, though
not shown in Table 1, it is relevant to mention that
PKF-EP produces less accurate and less informative
forecast estimates x̂kjk�1 compared to the other
constrained algorithms. This is expected because
PKF-EP do not use x̂pk�1jk�1 to calculate x̂kjk�1; see
Figure 1(b).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

k

x k

0

0.5
1

1.5

0.4
0.6

0.8
1

1

1.5

2

x1,kx2,k

x 3
,k

(a) (b)

Figure 2. Data-free simulation of the compartmental model. In (a), the state components are shown evolving with time and, in
(b), in state space.
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In addition, a land-based vehicle linear example

with kinematic constraints (Simon and Chia 2002;

Ko and Bitmead 2007) is investigated using KF,

ECKF, MAKF, PKF-SP and PKF-EP in Teixeira

(2008, Chapter 5).

8.2 Attitude estimation

Consider an attitude estimation problem (Crassidis

and Markley 2003; Choukroun et al. 2006), whose

kinematics are modelled as

_eðtÞ ¼
1

2
�ðtÞeðtÞ, ð82Þ

where the state vector is the quaternion vector e(t)¼

[e0(t) e1(t) e2(t) e3(t)]
T, the matrix �(t) is given by

�ðtÞ ¼

0 rðtÞ �qðtÞ pðtÞ

�rðtÞ 0 pðtÞ qðtÞ

qðtÞ �pðtÞ 0 rðtÞ

�pðtÞ �qðtÞ �rðtÞ 0

2
666664

3
777775, ð83Þ

and the angular velocity vector u(t)¼ [p(t) q(t) r(t)]T

is a known input. Since ke(0)k2¼ 1 and �(t) is skew

symmetric, it follows that, for all t4 0,

keðtÞk2 ¼ 1: ð84Þ

We set e(0)¼ [0.9603 0.1387 0.1981 0.1387]T and

uðtÞ ¼ 0:03sin
2


600
t

� �
0:03sin

2


600
t� 300

� ��

0:03sin
2


600
t� 600

� ��T
:

ð85Þ

To perform attitude estimation, we assume that

�uk�1 ¼ uððk� 1ÞT Þ þ �k�1 þ wu
k�1 ð86Þ

is measured by rate gyros, where T is the discretisation

step, wu
k�1 2 R

3 is zero-mean Gaussian noise and

�k�12R
3 is drift error. The discrete-time equivalent

of (82) augmented by the gyro drift random-walk

model (Crassidis and Markley 2003) is given by

ek

�k

" #
¼

Ak�1 04�3

03�4 I3�3

" #
ek�1

�k�1

" #
þ

04�1

w�k�1

" #
, ð87Þ

where ek , e(kT ), w�k�1 2 R
3 is process noise asso-

ciated with the drift-error model,

xk,
ek

�k

� �
2 R

7

Table 1. Percent RMS constraint error, RMSE (77), and MT (78), from k¼ 1500 to 2000, for 100-run Monte Carlo simulation
for compartmental system, concerning process noise levels 	w¼ 0, 0.1, 0.5 and 1.0, and KF, ECKF, MAKF, PKF-EP and
PKF-SP algorithms.

	w KF ECKF MAKF PKF-EP PKF-SP

Percent RMS constraint error
0 0.12 4.52�10�15 4.24�10�11 4.53�10�15 8.19�10�12

0.1 0.22 4.52�10�15 2.01�10�11 4.52�10�15 4.05�10�12

0.5 0.40 4.50�10�15 0.88�10�11 4.51�10�15 3.92�10�12

1.0 0.62 4.53�10�15 0.50�10�11 4.51�10�15 3.98�10�12

RMSEi, i¼ 1, 2, 3 (�10�3)
0 0.57, 0.36, 2.93 0.10, 0.16, 0.21
0.1 6.26, 2.60, 7.34 6.25, 2.54, 4.19
0.5 9.01, 4.58, 13.2 9.01, 4.55, 6.75
1.0 9.35, 5.58, 19.7 9.35, 5.56, 8.07

MT (�10�4)
0 0.0996 0.0012
0.1 1.0515 0.6352
0.5 2.8057 1.4722
1.0 5.4646 1.8387

0 500 1000 1500 2000

2.95

3

3.05

k

D
x k

Figure 3. Estimate of the total mass (constraint) Dxk in the
conservative compartmental system (79) using KF (—–) in
comparison with the true value (� �).
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is the state vector,

wk�1,
wu
k�1

w�k�1

� �
2 R

6

is the process noise, and

Ak�1, cosðsk�1ÞI4�4 �
1

2

T sinðsk�1Þ

sk�1
�k�1, ð88Þ

�k�1,�ððk� 1ÞT Þ, ð89Þ

sk�1,
T

2
�uk�1 � �k�1 � wu

k�1



 


2
: ð90Þ

The constraint (84) also holds for (87), that is,

x21,k þ x22,k þ x23,k þ x24,k ¼ 1: ð91Þ

We set T¼ 0.1 s, �k�1¼ [0.001 �0.001 0.0005]Trad s�1,

and Qk�1¼ diag(10�5I3�3, 10
�10I3�3). Attitude obser-

vations y½i�k 2 R
3 for a direction sensor are given by

(Crassidis and Markley 2003)

y½i�k ¼ Ckr
½i� þ v½i�k , ð92Þ

where r[i]2R
3 is a reference direction vector to

a known point, and Ck is the rotation matrix from
the reference to the body-fixed frame
We assume that two directions are available (Crassidis
and Markley 2003; Lee, Leok, McClamroch, and
Sanyal 2007), which can be obtained using either
a star tracker or a combined three-axis accelerometer/
three-axis magnetometer. We set r[1]¼ [1 0 0]T,

r[2]¼[0 1 0]T, and Rk¼ 10�4I6�6. These direction
measurements are assumed to be provided at a lower
rate, specifically, at 1Hz, which corresponds to
a sample interval of 10T s.

We implement Kalman filtering using UKF,
ECUKF, PUKF, MAUKF and CUKF with (87),
(92) and constraint (91). We initialise these algorithms
with x̂0j0 ¼ ½ 1 0 0 0 0 0 0 �T and
Pxx
0j0 ¼ diagð 0:5I4�4 0:01I3�3 Þ. We use the fmincon

algorithm of Matlab in the CUKF implementation.
Table 2 shows the results obtained from a 100-run

Monte Carlo simulation. Note that, for the non-linear
case, MT given by (78) is obtained from the pseudo-
error covariance, and thus, smaller values of MT do not
guarantee a smaller spread about the mean.
Nevertheless, with the usage of prior knowledge by
ECUKF and MAUKF, the values of MT show that

more informative estimates are produced compared to

the unconstrained estimates given by UKF. However,

a slight increase in the RMS error is observed for

algorithms ECUKF and MAUKF implying loss of

accuracy around 5% compared to UKF. On the other

hand, PUKF and CUKF yield estimates as accurate as

UKF does. The equality constraint is more closely

tracked whenever a constrained filter is employed; see

Figure 4. RMS errors around 0.0007% are obtained for

PUKF, MAUKF and ECUKF, which exhibits the

smallest constraint error among these three algorithms.

Compared to PUKF, MAUKF and ECUKF, note that

our implementation of CUKF using the fmincon

Table 2. Percent RMS constraint error, RMSE (77), and MT (78), from k¼ 5000 to 10 000, for 100-run Monte Carlo simulation
for attitude estimation using UKF, MAUKF, PUKF, ECUKF and CUKF.

UKF MAUKF PUKF ECUKF CUKF

Percent RMS constraint error (�10�4)
254.1 6.50 8.31 6.49 0.58

RMSEi for e0, e1, e2, e3, �1, �2, �3 (�10
�3)

1.331 1.398 1.334 1.398 1.332
1.366 1.434 1.365 1.433 1.365
1.320 1.377 1.320 1.376 1.318
1.319 1.374 1.315 1.374 1.313
0.124 0.130 0.124 0.130 0.124
0.119 0.125 0.119 0.125 0.119
0.120 0.126 0.120 0.125 0.120

MT for attitude (�10�6)
8.18 5.42 8.16 5.42 8.18

MT for drift (�10�7)
1.17 1.09 1.17 1.09 1.17

Ck ¼

x21,k � x22,k � x23,k þ x24,k 2ðx1,kx2,k þ x3,kx4,kÞ 2ðx1,kx3,k � x2,kx4,kÞ

2ðx1,kx2,k � x3,kx4,kÞ �x21,k þ x22,k � x23,k þ x24,k 2ðx1,kx4,k þ x2,kx3,kÞ

2ðx1,kx3,k þ x2,kx4,kÞ 2ð�x1,kx4,k þ x2,kx3,kÞ �x21,k � x22,k þ x23,k þ x24,k

2
664

3
775: ð93Þ

12 B.O.S. Teixeira et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
i
x
e
i
r
a
,
 
B
r
u
n
o
 
O
.
 
S
.
]
 
A
t
:
 
1
7
:
3
3
 
2
5
 
M
a
r
c
h
 
2
0
0
9



algorithm provides a 11 times smaller constraint error
for the quaternion norm, but at a two times larger
processing time.

Also, for comparison, we implement the EKF-
counterparts of ECUKF, PUKF and MAUKF,
namely, ECEKF, PEKF (Simon and Chia 2002)
and MAEKF (Alouani and Blair 1993). The results
(not shown) indicate that the unscented approaches
yield improved results.

8.3 Simple pendulum

We consider the continuous-time undamped and
unforced pendulum

€�ðtÞ þ
g

L
sin �ðtÞ ¼ 0, ð94Þ

where �(t) is the angular position such that �¼ 0 rad
corresponds to the stable equilibrium position, g is the
gravity acceleration and L is the length. Given noisy
measurements of the angular velocity of the pendulum,
we want to obtain states that satisfy the energy
conservation property.

Using Euler discretisation with time step T, such
that t¼ kT, and defining x1,k¼ �(kT) and x2,k ¼ _�ðkT Þ,
we obtain the approximate discretised model

x1,k

x2,k

� �
¼

x1,k�1 þ Tx2,k�1

x2,k�1 � T
g

L
sin x1,k�1
� �

" #
þ

w1,k

w2,k

� �
, ð95Þ

with noisy measurements of the true (continuous-time
model) values of angular velocity given by

yk ¼ x2ðkT Þ þ vk: ð96Þ

By conservation of energy in (94) we have

�mgL cosðx1ðtÞÞ þ
mL2

2
x22ðtÞ ¼ Eð0Þ, ð97Þ

where E(0) is the total mechanical energy and m is the
pendulum mass. Next, we define the approximate
energy Ek of the discrete-time model by

Ek, �mgL cosðx1,kÞ þ
mL2

2
x22,k: ð98Þ

We use the fourth-order Runge–Kutta integration
scheme to obtain x(kT) for L¼ 1m, T¼ 10ms,
and initial conditions �ð0Þ ¼ 3
=4, _�ð0Þ ¼ 
=50.
We assume that E(0) is known and we implement
equality-constrained state estimation by constraining
Ek¼E(0) for all k� 1. The state estimation is initialised
with Qk�1 ¼ 	

2
wI2�2, Rk ¼ 	

2
v , x̂0j0 ¼ ½ 1 1 �T, and

Pxx
0j0 ¼ I2�2, where three values of observation noise

are tested, namely, 	v¼ 0.1, 0.25 and 0.5, and process
noise with 	w¼ 0.007 is set to help convergence of
estimates (Xiong, Zhang, and Chan 2007). A 100-run
Monte Carlo simulation is performed for each 	v.

Table 3 shows the percent RMS errors related
to the equality constraint (98). Figure 5 compares
the accuracy of the algorithms with relation to (97). It
can be noticed, in this example, that the data-free
simulation of the discretised model results in an
unrealistic increasing energy Ek. Note that UKF
is not able to closely track the constraint. For
higher observation noise levels, that is, 	v¼ 0.5,
RMS constraint errors between 4% and 7% are
observed. Nonetheless, whenever PUKF, MAUKF
and ECUKF are employed, these indices are reduced

0 20 40 60 80 100 120 140 160 180 200
10−15

10−10

10−5

100

lo
g 1

0(
1−

||e
k|

| 2
)

kT (s)

UKF
MAUKF
PUKF
ECUKF
CUKF

Figure 4. Estimation error of the quaternion vector norm using UKF (� � ��), ECUKF (thick —–), PUKF (���), MAUKF
(� ��) and CUKF (thin —–) algorithms. The ECUKF and MAUKF estimates almost coincide, while the constraint error for
PUKF is slightly larger than the constraint error for ECUKF and MAUKF. CUKF estimates satisfy the equality constraint at
machine precision at most times.
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Table 3. Percent RMS constraint error, RMSE (77), and MT (78), from k¼ 3000 to 4000, for 100-run Monte Carlo simulation
for the discretised pendulum (95), concerning different levels of observation noise 	v¼ 0.1, 0.25 and 0.5, and algorithms, namely,
UKF, ECUKF, PUKF, MAUKF and CUKF. We show in italics results for the case in which the true continuous-time model
(94) is used with 	w¼ 0.0003 to help convergence.

	v UKF MAUKF PUKF ECUKF CUKF

Percent RMS constraint error (�10�2)
0.1 356.30 1.95 5.65 1.95 0.000066

21.81 0.06 0.27 0.06 0.000151
0.25 459.40 3.50 9.11 3.51 0.000050

25.68 0.14 1.09 0.14 0.000134
0.5 594.61 5.98 15.93 5.97 0.000040

29.80 0.32 3.16 0.31 0.000119

RMSEi, i¼ 1, 2 (�10�2)
0.1 2.95, 2.88 0.91, 1.92 1.15, 2.12 0.91, 1.92 1.20, 2.07

0.59, 1.16 0.17, 0.36 0.39, 0.82 0.17, 0.36 0.32, 0.67
0.25 3.93, 5.59 1.32, 3.05 1.76, 3.84 1.32, 3.04 1.84, 3.75

0.98, 2.15 0.30, 0.68 0.70, 1.55 0.29, 0.68 0.59, 1.32
0.5 5.56, 9.61 1.80, 4.00 2.76, 5.93 1.80, 3.99 2.86, 6.03

1.60, 3.55 0.62, 1.35 1.15, 2.54 0.60, 1.30 0.98, 2.14

MT (�10�4)
0.1 26.79 8.09 9.08 8.09 26.89

2.18 0.37 1.09 0.37 0.37
0.25 61.66 20.67 26.63 20.66 61.54

8.31 0.94 4.18 0.94 0.94
0.5 139.94 42.13 66.86 42.11 138.60

23.17 2.10 11.73 2.10 2.10

0 1 2 3 4 5 6 7 8 9 10
10−12

10−10

10−8

10−6

10−4

10−2

100

102

lo
g 1

0(
E

(0
) 

− 
E

k)

kT (s)

Discretised model
UKF
MAUKF
PUKF
ECUKF
CUKF

Figure 5. Estimation error of the total energy E(0) for the discretised pendulum (95)–(96) for UKF (� � ��), MAUKF (thick� � �),
PUKF (���), ECUKF (thick ––) and CUKF (thin ––) with 	v¼ 0.25. For comparison, the thin dot-dashed line, which is
above the remaining lines, refers to the energy Ek calculated from data-free simulation of the discretised model (95). ECUKF
and MAUKF estimates almost coincide, while CUKF estimates satisfy the equality constraint at machine precision at most
times.
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by two orders of magnitude, while, by using CUKF,

we observe a reduction of seven orders of magnitude.

In addition to the improvement in the accuracy
of constraint satisfaction, the usage of prior knowledge

also results in more accurate and more informative
estimates.

According to the indices in italics in Table 3, the
same comparative analysis is applicable when the true

continuous-time model (94) is used replacing (95).
The use of a fourth Runge–Kutta integration with

UKF yields 30% smaller RMSE indices and two times
smaller MT index compared to Euler discretisation

with ECUKF, but with approximately seven times
larger RMS constraint error and with approximately

four times larger processing time. Similar to x 8.2, note
that the use of a process model whose state vector

satisfies an equality constraint does not guarantee that

the state estimates satisfy this constraint because such
information is not taken into account during data

assimilation.
For this numerical example, ECUKF and

MAUKF yield more accurate and more informative
estimates than PUKF and CUKF. Moreover, the

performance of ECUKF and MAUKF almost coin-
cide for this non-linear example. When it comes

to constraint satisfaction, CUKF yields the most
accurate results.

In addition, we implement the EKF-counterparts

of ECUKF, PUKF and MAUKF. The results
(not shown) indicate that the unscented approaches

yield competitive results compared to the extended
approaches.

9. Concluding remarks

We have shown that the problem of equality-
constrained state estimation for linear and Gaussian

systems arises from the definition of both process noise
and dynamic equations with special properties, speci-

fically, (14)–(16), such that the system is not con-
trollable in R

n from the process noise. In this case, the

classical Kalman filter does not guarantee that its
estimates satisfy the equality constraint.

Then we have solved the equality-constrained state-

estimation problem for linear and Gaussian systems
using the maximum-a-posteriori approach, yielding

ECKF. Moreover, we have proved the equivalence of
ECKF to MAKF and have presented its connections

to PKF-SP and PKF-EP. We have compared these
four methods by means of a compartmental system

example with mass conservation.
For the non-linear case, where it is the main

contribution of the present article, four suboptimal

algorithms based on UKF were presented, namely,

ECUKF, PUKF, MAUKF, CUKF. CUKF, which
is an optimisation-based approach, allows the enforce-
ment of both equality and inequality constraints at
a given tolerance. These methods were compared on
two examples, including a quaternion-based attitude
estimation problem, as well as a mechanical system
with conserved energy.

Numerical results suggest that, in addition to
exactly, that is, at machine precision, (in the linear
case and for CUKF in the non-linear case) or very
closely (for ECUKF, MAUKF and PUKF in the non-
linear case) satisfying a known equality constraint of
the system, the proposed methods can yield more
accurate and more informative estimates than KF (in
the linear case) or UKF (in non-linear case). For the
linear scenario, ECKF, MAKF, PKF-SP and PKF-EP
have produced similar results. However, for the non-
linear case, considering the examples investigated, we
recommend the user to test ECUKF, MAUKF and
PUKF in this order for a given equality-constrained
state-estimation application. If the constraint satisfac-
tion accuracy has priority over processing time and
ease of implementation, we suggest CUKF. Recall
that, since these non-linear methods are approximate,
their performance depends on the application.
Moreover, except for CUKF, all equality-constrained
approaches have required similar processing time,
which was competitive to KF (for linear algorithms)
and UKF (for non-linear cases) processing time. In this
case, CUKF has a larger processing time because it
solves online a constrained optimisation problem.
The performance of CUKF depends on the optimisa-
tion algorithm and problem. For the two non-linear
examples investigated, the CUKF processing time was
2–15 times larger than the UKF processing time.

Finally, we have also addressed the case where an
approximate discretised model is used to represent
a continuous-time process in state estimation.
Improved estimates were obtained when equality-
constrained Kalman filtering algorithms were
employed to enforce a conserved quantity of the
original continuous-time model, but without the
higher computational burden required by more accu-
rate integration schemes.

We believe that comparisons of MHE for non-
linear systems (Rao et al. 2003) against ECUKF and
MAUKF would be valuable in a deeper analysis of the
algorithms and that this should be pursued in the near
future.
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Teixeira, B.O.S., Tôrres, L.A.B., Aguirre, L.A., and

Bernstein, D.S. (2008d), ‘Unscented Filtering for

Interval-constrained Nonlinear Systems’, in Proceedings

of the 47th IEEE Conference on Decision and Control,

Cancun, Mexico, pp. 5116–5121.
Teixeira, B.O.S., Santillo, M.A, Erwin, R.S. and Bemstein,

D.S. (2008e), ’Spacecraft Tracking using sampled-data

Kalman Filters’, IEEE Control Systems Magazine, 28(4),

78–94.

Vachhani, P., Narasimhan, S., and Rengaswamy, R. (2006),

‘Robust and Reliable Estimation via Unscented Recursive

Nonlinear Dynamic Data Reconciliation’, Journal of

Process Control, 16, 1075–1086.
van der Merwe, R., Wan, E.A., and Julier, S.J. (2004),

‘Sigma-point Kalman Filters for Nonlinear Estimation

and Sensor-fusion – Applications to Integrated

Navigation’, in Proceedings of the AIAA Guidance,

Navigation & Control Conference,, Providence, USA. No.

AIAA2004-5120.
Walker, D.M. (2006), ‘Parameter Estimation using Kalman

Filters with Constraints’, International Journal of

Bifurcation and Chaos, 4, 1067–1078.
Wen, W., and Durrant-Whyte, H.F. (1992), ‘Model-based

Multi-sensor Data Fusion’, in Proceedings of the 1992

IEEE International Conference on Robotics and

Automation, Nice, France, pp. 1720–1726.
Xiong, K., Zhang, H., and Chan, C. (2007), ‘Author’s

Reply to ‘Comments on ‘Performance Evaluation of UKF-

based Nonlinear Filtering’ ’, Automatica, 43, 569–570.

International Journal of Control 17

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
i
x
e
i
r
a
,
 
B
r
u
n
o
 
O
.
 
S
.
]
 
A
t
:
 
1
7
:
3
3
 
2
5
 
M
a
r
c
h
 
2
0
0
9



Appendix I: Equivalence between ECKF and MAKF

Define the augmented observation

~yk,
yk

dk�1

" #
¼ ~Ckxk þ

vk

0s�1

" #
, ðA:1Þ

where

~Ck,

Ck

Dk�1

" #
: ðA:2Þ

With (A.1), MAKF uses (4) and (5) together with the
augmented forecast equations

~̂ykjk�1 ¼
~Ckx̂kjk�1, ðA:3Þ

~P
~y ~y
kjk�1 ¼

~CkP
xx
kjk�1

~CT
k þ

~Rk, ðA:4Þ

~P
x ~y
kjk�1 ¼ Pxx

kjk�1
~CT
k , ðA:5Þ

where ~Rk is given by (71), and the augmented data-
assimilation equations given by (72)–(74).

For convenience, let ~xkjk�1, x̂kjk�1 (4) denote the
forecast estimate provided by MAKF. Furthermore, let
~Pxx
kjk�1,Pxx

kjk�1 (5) be the associated forecast error covariance
of MAKF. Also let x̂kjk�1 (22) and Pxx

kjk�1 (23) denote the
forecast estimate and the associated error covariance of
ECKF. Assume that � in (29) is sufficiently small and can be
neglected.

Proposition 9.1: Assume that ~xkjk�1 ¼ x̂kjk�1 and ~Pxx
kjk�1 ¼

Pxx
kjk�1. Then ~xkþ1jk ¼ x̂kþ1jk and ~Pxx

kþ1jk ¼ Pxx
kþ1jk.

Proof: ~P
~y ~y
kjk�1 (A.4) is equivalent to

~P
~y ~y
kjk�1 ¼

P
yy
kjk�1 CkP

xx
kjk�1D

T
k�1

Dk�1P
xx
kjk�1C

T
k Pdd

kjk�1

" #
:

It follows from Bernstein (2005) that ~P
~y ~y�1
kjk�1 has entries

~P
~y ~y�1
kjk�1 ¼

ð ~P�1kjk�1Þ1 ð ~P�1kjk�1Þ12

ð ~P�1kjk�1Þ
T
12 ð ~P�1kjk�1Þ2

2
4

3
5,

where

ð ~P�1kjk�1Þ1, P
yy
kjk�1�CkP

xx
kjk�1D

T
k�1ðP

dd
kjk�1Þ

�1Dk�1P
xx
kjk�1C

T
k

	 
�1
,

ð ~P�1kjk�1Þ12, � P
yy
kjk�1�CkP

xx
kjk�1D

T
k�1ðP

dd
kjk�1Þ

�1Dk�1P
xx
kjk�1C

T
k

	 
�1
�CkP

xx
kjk�1D

T
k�1ðP

dd
kjk�1Þ

�1,

ð ~P�1kjk�1Þ2, Pdd
kjk�1�Dk�1P

xx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1CkP
xx
kjk�1D

T
k�1

	 
�1
:

ðA:6Þ

Furthermore, it can be shown that

ð ~P�1kjk�1Þ1 ¼ ðP
yy
kjk�1Þ

�1
þ ðPyy

kjk�1Þ
�1CkP

xx
kjk�1

�DT
k�1ð

~P�1kjk�1Þ2Dk�1P
xx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1, ðA:7Þ

ð ~P�1kjk�1Þ12 ¼ �ðP
yy
kjk�1Þ

�1CkP
xx
kjk�1D

T
k�1ð

~P�1kjk�1Þ2: ðA:8Þ

It follows from (9) that

Kk ¼ Pxx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1, ðA:9Þ

Furthermore, substituting (A.9) into (11) yields

Pxx
kjk ¼ Pxx

kjk�1 � Pxx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1CkP
xx
kjk�1:

Hence,

ðDk�1P
xx
kjkD

T
k�1 Þ

�1
¼ Dk�1P

xx
kjk�1D

T
k�1 �Dk�1P

xx
kjk�1

	
� CT

k ðP
yy
kjk�1Þ

�1CkP
xx
kjk�1D

T
k�1


�1
¼ ð ~P�1kjk�1Þ2: ðA:10Þ

Substituting (A.9) into (10) yields (28). Substituting (24) into
(28) yields

x̂pkjk¼ x̂kjk�1þ Kk�Kp
kDk�1Kk Kp

k

� ��
~yk� ~Ckx̂kjk�1

�
: ðA:11Þ

It follows from (25), (A.6), (A.8) and (A.10) that

Kp
k ¼ Pxx

kjk�1
~CT
k

ð ~P�1kjk�1Þ12

ð ~P�1kjk�1Þ2

2
4

3
5: ðA:12Þ

Substituting (A.8) into (A.12) and substituting the resulting
expression into Kk � Kp

kDk�1Kk yields

Kk � Kp
kDk�1Kk

¼ Pxx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1
þ ðPyy

kjk�1Þ
�1CkP

xx
kjk�1D

T
k�1

h
� ð ~P�1kjk�1Þ2Dk�1P

xx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1
i

� Pxx
kjk�1D

T
k�1ð

~P�1kjk�1Þ2Dk�1P
xx
kjk�1C

T
k ðP

yy
kjk�1Þ

�1:

Hence, (A.7) and (A.8) imply that

Kk � Kp
kDk�1Kk ¼ Pxx

kjk�1
~CT
k

ð ~P�1kjk�1Þ1

ð ~P�1kjk�1Þ
T
12

2
4

3
5: ðA:13Þ

Therefore, it follows from (A.12) and (A.13) that

Kk � Kp
kDk�1Kk Kp

k

� �
¼ Pxx

kjk�1
~CT
k

~P
~y ~y�1
kjk�1: ðA:14Þ

Since the estimate ~xkjk of MAKF is given by

~xkjk ¼ ~xkjk�1 þ ~Kk ~yk � ~Ck ~xkjk�1

	 

, ðA:15Þ

where

~Kk ¼ ~Pxx
kjk�1

~CT
k

~Ck
~Pxx
kjk�1

~CT
k þ

~Rk

	 
�1
,

it follows from (A.14) that

~Kk ¼ Kk � Kp
kDk�1Kk Kp

k

� �
: ðA:16Þ

Therefore, (A.11) and (A.15) imply that ~xkjk ¼ x̂pkjk and (4)
and (22) imply that ~xkþ1jk ¼ x̂pkþ1jk.

Note that (11) and (29) can be expressed as

Pxx
kjk¼ðIn�n�KkCkÞP

xx
kjk�1ðIn�n�KkCkÞ

T
þKkRkK

T
k , ðA:17Þ

Pxxp
kjk ¼ ðIn�n � Kp

kDk�1ÞP
xx
kjkðIn�n � Kp

kDk�1Þ
T: ðA:18Þ
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Substituting (A.17) into (A.18) yields

Pxxp
kjk ¼ ðIn�n � Kp

kDk�1ÞðIn�n � KkCkÞP
xx
kjk�1ðIn�n � KkCkÞ

T

� ðIn�n � Kp
kDk�1Þ

T
þ ðKk � Kp

kDk�1KkÞRk

� ðKk � Kp
kDk�1KkÞ

T: ðA:19Þ

Substituting (A.2) and (A.16) into (A.19) yields

Pxxp
kjk ¼ ðIn�n �

~K ~CkÞP
xx
kjk�1ðIn�n �

~K ~CkÞ
T
þ ~K ~Rk

~KT: ðA:20Þ

Since, (11) implies that

~Pxx
kjk ¼ ðIn�n �

~K ~CkÞ ~Pxx
kjk�1ðIn�n �

~K ~CkÞ
T
þ ~K ~Rk

~KT, ðA:21Þ

it follows from (A.20) and (A.21) that ~Pxx
kjk ¼ Pxxp

kjk . Hence, (4)
and (23) imply that ~Pxx

kþ1jk ¼ Pxx
kþ1jk. œ

Appendix II: Connection between ECKF and

PKF-SP

Assume that system given by (1), (2) and (19) is time
invariant. Also, assume that (14)–(16) hold for D in (19). In
Ko and Bitmead (2007), using a descriptor system represen-
tation (Nikoukhah, Campbell, and Delebecque 1999), the
system given by (1) and (2), (19) is written in a projected
representation. Then, consider PKF-SP which uses KF
equations (4)–(11), but initialised with x̂p0j0 satisfying

Dx̂p0j0 ¼ d, ðA:22Þ

and the singular initial error covariance

Pxxp
0j0 ¼ PNðDÞP

xx
0j0, ðA:23Þ

where the projector PN (D)2R
n�n is obtained by the singular

value decomposition

DT ¼ U1 U2

� � Ss

0ðn�sÞ�s

� �
VT

1

VT
2

" #
, ðA:24Þ

where U22R
n�(n�s) such that

PNðDÞ ¼ U2U
T
2 : ðA:25Þ

Also, note that, since (14) holds, Gwk�1 is constrained in
PN (D) and GQk�1G

T is a ‘constrained’ covariance as used in
Ko and Bitmead (2007).

With Corollary 4.1 and comparing (A.22) and (A.23) to
(38) and (39), we see that, similar to ECKF, which performs
projection only at k¼ 1 to guarantee constraint satisfaction
for all k� 1, PKF-SP performs projection in initialisation,
that is, only at k¼ 0, providing that (14)–(16) hold; see
Figure 1(c).

Appendix III: Connection between ECKF

and PKF-EP

PKF-EP projects the updated estimate x̂kjk (10) onto the
hyperplane defined by (17) by minimising the cost function

JðxkÞ, xk � x̂kjk
� �T

W�1 xk � x̂kjk
� �

ðA:26Þ

subject to (17), where W2R
n�n is positive definite.

The solution x̂pkjk to (A.26) is given by

x̂pkjk ¼ x̂kjk þ Kp
kðdk�1 �Dk�1x̂kjkÞ, ðA:27Þ

where

Kp
k ,WDT

k�1ðDk�1WDT
k�1Þ

�1: ðA:28Þ

The projected error covariance Pxxp
kjk associated with x̂pkjk is

given by (39) with �¼ 0.
PKF-EP is formed by forecast ((4)–(8)), data-assimila-

tion ((9)–(11)) and projection ((A.27)–(A.28), (37), (39))
steps.

We set W ¼ Pxx
kjk in (A.28), where Pxx

kjk is given by (11),
such that x̂pkjk (A.27) is optimal according to the maximum-
a-posteriori and minimum-variance criteria (Simon and
Chia 2002). In this case, note that the projection
Equations (A.27), (A.28), (37), (39) of PKF-EP are equal
to the projection Equations (24)–(29) of ECKF. However,
unlike ECKF, PKF-EP does not recursively feed the
projected estimate x̂pkjk (A.27) and the error covariance Pxxp

kjk
given by (39) back in forecasts (4) and (5); see Figure 1(b).
Therefore, the PKF-EP forecast estimate x̂kjk�1 (4) is
different from its ECKF counterpart (22).

International Journal of Control 19

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
i
x
e
i
r
a
,
 
B
r
u
n
o
 
O
.
 
S
.
]
 
A
t
:
 
1
7
:
3
3
 
2
5
 
M
a
r
c
h
 
2
0
0
9


