
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 15, No. 5, September-October 1992

Application of Maximum Entropy/Optimal Projection Design
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Maximum entropy/optimal projection design synthesis is a methodology for designing robust, fixed-order
controllers for flexible structures. This paper reviews the theoretical basis for this method and illustrates the
approach using a benchmark problem. The benchmark problem involves two masses with spring coupling, an
uncertain spring constant, and a sensor and actuator that are noncollocated. The results of this paper also
illustrate the use of a precompensation methodology that allows the control designer to precondition the design
plant by embedding judiciously designed filters. These filters are included in the implemented controller.

I. Introduction

A CTIVE feedback control for vibration suppression in
lightly damped structures continues to be a challenging

area of aerospace engineering.1 Typically, such problems in-
volve multi-input/multi-output systems in noncollocated sen-
sor/actuator configurations. The task of designing distur-
bance attenuation feedback controllers for such systems is
further exacerbated by constraints on real-time processing
capacity for feedback control law implementation as well as
modeling uncertainty associated with complex structures.
Among the numerous methodologies proposed for addressing
the structural control problem, this paper focuses on the max-
imum entropy/optimal projection (ME/OP) approach. This
approach was originally developed by Hyland2'5 and Hyland
and Madiwale6 in a series of technical reports and conference
papers. The ME/OP approach has been applied experimen-
tally to various structural control testbeds7'9 and has been
evaluated by other researchers in Refs. 10-12. Subsequently,
numerous extensions and variations of this approach have
been developed to address a variety of problems in robust,
fixed-structure controller synthesis.13'17 A detailed review of
this work with extensive references to related literature is given
in Ref. 18.

The purpose of this paper is twofold. First we provide (in
Sees. II and III) a brief review of robust fixed-order controller
synthesis, in particular, robust optimal projection controller
synthesis. Although a detailed review is given in Ref. 18, the
brief review given here focuses more directly on the ME/OP
technique for robust controller synthesis, which is described in
Sec. III. After reviewing ME/OP, we then turn our attention
in Sec. IV to problems 1 and 2 of the benchmark example
given in Ref. 19. The ME/OP design approach is applied to
the benchmark example in Sec. V, and the design results are
discussed in Sec. VI. A conclusion is presented in Sec. VII.

II. Robust Fixed-Order Controller Synthesis
Optimal projection theory13 generalizes linear quadratic

Gaussian (LQG) theory to the case of reduced-order con-
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trollers. Although LQG theory provides quadratically (H2)
optimal full-order dynamic compensators by means of two
uncoupled Riccati equations, optimal projection theory char-
acterizes quadratically optimal reduced-order (i.e., fixed-or-
der) controllers via a coupled system consisting of two modi-
fied Riccati equations and two modified Lyapunov equations.
When the controller order is set equal to the plant order, the
projection matrix T responsible for the coupling (the so-called
"optimal projection") becomes the identity, the coupling
terms vanish, the Lyapunov equations are rendered superflu-
ous, and the LQG Riccati equations are recovered. Numerical
algorithms for solving the optimal projection equations via
iterative and homotopy techniques are discused in Refs.
20-22.

Robust optimal projection theory (as well as robust LQG
theory) has been developed by incorporating uncertainty
bounds within the design optimization procedure. The idea
behind this approach can most clearly be illustrated within the
context of robust analysis, whereas its application to synthesis
is a fairly straightforward extension of fixed-structure opti-
mization. The description given here follows the development
of uncertainty bounds given in Ref. 23.

For the asymptotically stable linear system

x(t) = Ax(t) (1)

we consider a quadratic Lyapunov function of the form

(2)

where the positive-definite matrix P is given by the Lyapunov
equation

0 = A TP + PA + R (3)

where R is positive definite. To address additive disturbances
for a system of the form

x(t) = Ax(t) + w(/)

it is convenient to utilize the dual equation

0 = AQ + QAT + V

(4)

(5)

in which A is replaced by A T (which has the same spectrum as
A) and where V is interpreted as the intensity of the white
noise disturbance w ( t ) . In Eq. (5), the matrix Q can be viewed
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as a controllability Gramian or covariance matrix with associ-
ated quadratic (H2) performance measure

J = tr QR = tr PV (6)

If A is uncertain so that Eq. (1) is replaced by

x(t) = (A + &A)x(t) (7)

where A A 6 11, a set of perturbations, then we wish to deter-
mine whether A + AA remains stable for all AA € 11. One
approach to this problem involves replacing Eq. (5) by

0 = AQ + QAT + fi + V (8)

where 0 is a constant positive-definite matrix. Rewriting Eq.
(8) as

= 04 + AA)Q

it follows that A + A A is stable so long as A A satisfies

(9)

<ti (10)

where Q is the solution to Eq. (8).
A variation on Eq. (8) involves allowing 0 to be a function

of Q . Thus we consider the modified Lyapunov equation

Q = AQ + QAT +$l(Q)+ V (11)
where 0( • ) satisfies

AAQ + QAA T < fi(Q), for all AA € 11 (12)

and for all non-negative-definite Q . It then follows by rewrit-
ing Eq. (11) as

0 = 04 + AA)Q + Q(A + AA)T+ti(Q)

- (AAQ + QAAT)+ V (13)

that A + AA is stable. Furthermore, letting QAA satisfy

0 = 0 4 +AA)Q±A + Q±A(A + AA)T + V (14)

and subtracting Eq. (14) from Eq. (13) yields

0 = (X + AA)(Q - QLA) + (Q - Q±A)(A + AA)T

(15)
which implies that

QAA < Q , AAt 11 (16)

Thus tr(QR) provides a worst-case bound for the actual H2
performance tr(QAAR).

Since the ordering induced by the cone of non-negative-def-
inite matrices is only a partial ordering, it should not be
expected that there exists an operator Q( - ) satisfying Eq. (12)
that is a least upper bound. Indeed, there are many alternative
definitions for the bound 12 ( • ). To illustrate some of these
alternatives, assume for convenience that A A is of the form

A A = (17)

where a\ is an uncertain real scalar parameter assumed only to
satisfy the stated bounds and A\ is a known matrix denoting
the structure of the parametric uncertainty. The bound 12( • )
utilized in Ref. 24 for full-state-feedback design was chosen to
be the absolute value bound

(18)

where 1 • I denotes the non-negative-definite matrix obtained
by replacing each eigenvalue by its absolute value. Since the
bound defined in Eq. (18) is not differentiable with respect to
Q, it has limited usefulness in fixed-structure controller syn-
thesis. A more useful bound is the quadratic (in Q) bound

(19)

which has been considered in Refs. 25 and 26. In Eq. (19), AL
and AR are a factorization of A\ of the form A\ - ALAR. A
third bound that has been considered is the linear (in Q)
bound

(20)

where a. is an arbitrary positive scalar. As discussed in Ref. 14,
the linear bound is closely related to a multiplicative white
noise model.

Within the context of fixed-structure controller synthesis,
the linear and quadratic bounds have been merged with opti-
mal projection theory in Refs. 15 and 16, respectively. The
quadratic bound also has the useful property that it enforces
an //«, (bounded real) constraint. This extension has been
incorporated within optimal projection theory in Ref. 17.

In summary, it can be seen that both the linear and
quadratic bounds guarantee robust stability and performance
with respect to parameter uncertainty and lead to generaliza-
tions of LQG and optimal projection theory. As discussed in
Ref. 27, however, these bounds actually guarantee robustness
with respect to time-varying parameter variations, which may
lead to conservatism when the parameter variations are known
to be constant. Viewed in the frequency domain, such bounds
correspond to small-gain-type conditions that enforce robust
stability with respect to complex, frequency-dependent uncer-
tainty, which is conservative if the uncertain parameters are
known to be real and constant. Such conservatism may have
serious consequences in controlling flexible structures with
stiffness uncertainty, which is a highly structured, inherently
real form of parameter uncertainty. Consequently, we now
turn our attention to the maximum entropy/optimal projec-
tion approach to robust controller synthesis that seeks to
overcome these difficulties for a particular form of parametric
uncertainty.

III. Maximum Entropy/Optimal Projection
Design Synthesis

As discussed in Sec. I, the ME/OP approach was originally
developed in Refs. 2-6. In brief, the basis of the ME/OP idea
is to choose the operator fl(Q) in the modified Lyapunov equa-
tion (8) to be of the form

0(Q) = (21)

where the summation corresponds to an uncertainty model of
the form A + AA , where

AA = (22)

where a\,... ,or are uncertain real parameters, and d\,... ,6r
> 0 are uncertainty scalings. Note that in Eq. (17) we set r - 1
for convenience, although Eqs. (17-20) could readily be gener-
alized to the case r > 1.

The unusual feature of Eq. (21) is that (as will be seen
shortly) 0(Q) is not a bound in the sense of Eq. (12) as are
Eqs. (18-20). Thus we do not stipulate a precise uncertainty
range for the uncertain parameters a/ as in Eq. (17). Rather,
the constants d\,...,dr should only be viewed as scalings.
Indeed, whereas the bounds of Eqs. (18-20) are valid for
arbitrary choices of A\9 the operator in Eq. (21) will only be
used (in this paper) under restrictive, but practically useful,
assumptions. Specifically, we now assume that the nominal
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dynamics matrix A is of the form

A = block-diag (23)

which is representative of a lightly damped structure in a
modal basis, whereas the uncertainty matrix At is of the form

Af = block-diag ( 0,... , 0 , 1 ° * ,0,.. . ,0 j (24)

where the position of the matrix

0 1
-1 0

corresponds to the /th diagonal block of A . Since the poles of
A + E/= j ffjAj are of the form - 77 + y (<*>/ + a/), each term a/^4,
represents uncertainty in the imaginary part of a pole location.

To further illustrate the structure of !}(g) given by Eq. (21),
define

so that Eq. (21) becomes

Q(Q) = SQ + QS + £ MiCM /*
/ = i

(25)

(26)

and the modified Lyapunov equation (11) is of the form
r

0 = (A + S)Q + Q(,4 + S)r+ £M/(M f + K (27)

Using Eq. (24) and the fact that

0 'N-i »J L
S can be written as

It is interesting to contrast Eq. (26) with the linear bound of
Eq. (20) in light of the structure of S. To do this, generalize
Eq. (20) to the case r > 1 (but setting a: = 1), which now has
the form

(29)

(30)

Now rewrite Eq. (29) as

where

4 1/2 £ 6/7
/ = i

which yields a modified Lyapunov equation of the form

0 = (4 + S)Q + Q(A + S)7 + EM/CM/7* V (31)
/ = i

which is identical to Eq. (27) with S replaced by S.
Maximum entropy design appears to be closely related to

recent results on parameter-dependent Lyapunov functions

and variations of the Popov criteria.28 In Ref. 29, it is shown
that the maximum entropy covariance equation (31) describes
the average covariance for a Cauchy uncertainty probability
distribution.

Given the modified Lyapunov equation (27), the ME/OP
design equations can be derived in a straightforward manner
following the technique given in Ref. 15. Hence, consider the
nominal plant

Bu +Awi , xtRns, u£Rn», WitRn»\ (32)

(33)

(34)

where y is the sensor output, z is the performance variable,
and Wi and w2 are (for convenience only) uncorrelated, white
noise disturbances with intensities V\ > 0 and V2 > 0, respec-
tively. Also, consider the H2 cost functional

J(AC,BC,CC) = lim E(xTR{x + uTR2u) (35)

where R{ = E^El and R2 > 0. The matrices Ac, Bc, and Cc
characterize the A2cth-order dynamic compensator (nc < n)

xc = Acxc + Bcy, xc£Rnc

u = -Ccxc

(36)

(37)

Optimization of the performance functional (35) with the
modified covariance model (27) applied to the closed-loop
system yields dynamic compensator gains

c = Y(As-Qt-l,P)GT

Bc=TQCTV2~l

CC=R2
1BTPGT

(38)

(39)

(40)

where the n x n non-negative-definite matrices Q, P, Q, and P
satisfy

0 = ASQ + QAJ

0 = AjP

(41)

(42)

+ 6(^5 - EP)r+ G^C - r^GEGr7: (43)

0 = (As - Qt)TP + P(AS - Ql) + PEP - r^PEPr± (44)

rank g = rank P = rank QP = wc (45)

(46)

where ( • )# denotes the group generalized inverse and r has the
factorization

(47)

(48)

The matrix r defined in Eq. (46) is an oblique projection
matrix (the optimal projection) that is responsible for enforc-
ing the reduced-order constraint nc < n on the compensator.
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The ME/OP design equations (41-46) can be solved by
using a homotopy algorithm.21'30 As illustrated by Fig. 1, this
homotopy algorithm allows the deformation of an LQG con-
troller into a full-order maximum entropy controller. The
maximum entropy controller is then reduced to an appropriate
order by using an indirect controller reduction method. It is
important that this initial reduced-order controller approx-
imately solves the ME/OP design equations to within a small
error, although it is not required to be a stabilizing controller.
This can be achieved by beginning with a low authority LQG
design and/or incorporating a sufficiently high level of uncer-
tainty in the ME design. In practice a slight modification of
the balanced controller reduction algorithm of Yousuff and
Skelton31 is currently used as the indirect controller method.
Once this initial reduced-order controller is obtained, the ho-
motopy algorithm is used to deform this controller into an
ME/OP controller. Then, if a higher authority controller is
desired, the final step of the algorithm is to increase the
controller authority to a desirable level.

IV. Benchmark Problem
We now turn our attention to the benchmark problem of

Ref. 19. The dynamical system is described, and two associ-
ated design problems are presented.

Consider the two-mass/spring system shown in Fig. 2,
which is a generic model of an uncertain dynamical system
with a noncollocated sensor and actuator pair. A control force
acts on body 1, and the position of body 2 is measured,
resulting in a noncollocated control problem. This system can
be represented in state-space form as

(49)

0
0

— k/m\
k/m2

0
0

k/m\
- k/m2

1 0"
0 1
0 0
0 0

0
0

1/m,
0

u +

0
0
0

\/m2

DESIGN AN LQG
CONTROLLER {OF POSSIBLY LOW

OR MODERATE AUTHORITY)
"EASY PROBLEM"

USE HOMOTOPY ALGORITHM
TO DEFORM LQG CONTROLLER

INTO A MAXIMUM ENTROPY
CONTROLLER

USE AN INDIRECT
METHOD TO REDUCE

THE CONTROLLER ORDER
"EASY PROBLEM"

USE HOMOTOPY ALGORITHM
TO DEFORM CONTROLLER

INTO A MAXIMUM ENTROPY/
OPTIMAL PROJECTION

CONTROLLER

USE HOMOTOPY ALGORITHM
TO INCREASE CONTROLLER

AUTHORITY

Fig. 1 Practical application of the maximum entropy/optimal pro-
jection control-design algorithm.

Fig. 2 Benchmark system.

y ' = z = x2, y = y f + v
where

x\ =
X2 =
XT, =
x4 =
u =

Wj =
z =

y ' =
v =

(50)

position of body 1
position of body 2
velocity of body 1
velocity of body 2
control input
plant disturbance
performance variable (output to be controlled)
noise-free measurement
sensor noise

Design Problems
Design Problem 1

Design a constant gain linear feedback compensator of the
form

x = Acxc + Bcy

u = Ccxc + Dcy

(51)

(52)

(any of these matrices may of course be zero) with the follow-
ing properties:

1) The closed-loop system is stable for m\ = m2 = 1 and
0.5 < k < 2.0.

2) For w(t) = unit impulse at / = 0, the performance vari-
able z has a settling time of about 15 s for the nominal system
mi = m2 = k = 1.

3) The control system can tolerate reasonable measurement
noise signals v(t).

4) Achieve reasonable performance/stability robustness
with reasonable bandwidth.

5) Use reasonable controller effort.
6) Use reasonable controller complexity.

Design Problem 2
Same as design problem 1 except in place of step 2 insert the

following:
The w(t) is a sinusoidal disturbance of frequency 0.5 rad/s

whose amplitude and phase, although constant, are not avail-
able to the designer. Achieve asymptotic rejection of w(t) at
the performance variable z ( t ) [i.e., minimize lim sup^^^O
with a 20-s settling time] for m\ - m2 = 1, 0.5 < k < 2.0.

V. ME/OP Control Design for the
Benchmark Problem

This section considers design problems 1 and 2 of the bench-
mark problem described in the previous section. In particular,
the development of robust controllers using the ME/OP ap-
proach is described. This approach was first applied to the
benchmark problem in Refs. 32 and 33.

We begin by introducing some notation. Consider the plant

x(t) = Ax(t) + Bu(t)

y'(t) = Cx(t)

(53)

(54)

(55)

Then G(s) is said to be the transfer matrix representation of
Eqs. (53-55) if

z(s)
(56)
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G(s)

Fig. 3 Design>configuration for the precompensation methodology.

w2(s)

H(s)

Fig. 4 Implementation configuration for the precompensation meth-
odology.

Likewise (A , B, C, D},Ei) is said to be the state representation
of Eq. (56) if Eqs. (53-55) hold.

Now, for a nominal value &nom of the spring stiffness let the
corresponding state representation of the benchmark system
shown in Fig. 2 be given by

x(t) = A0(knom)x(t) + B0u(t)

y'=z(t)

(57)

(58)

(59)

Also, let GO (s) be the transfer matrix representation of Eqs.
(57-59).

A precompensation strategy was used for control law de-
sign. This precompensation strategy is illustrated by Figs. 3
and 4. As shown in Fig. 3 we simply embed the precompensa-
tion filters CM(s), Cy'(s)9 CWl(s), and Cz(s) in the plant a
priori and design the ME/OP controller H(s) for this modi-
fied design plant. Then, as illustrated in Fig. 4, the precom-
pensation dynamics Cu(s) and Cy>(s) are included in the im-
plemented compensator H(s). The sensor noise w2(s) in Fig.
3 is fictitious since it is added to the pseudo-output y'(s). Its
intensity V2 is chosen to aid in the determination of the con-
troller authority. It is not difficult to show that for both Figs.
3 and 4 the closed-loop transfer function Gd (s) satisfying

z(s)
u(s) (60)

is identical in Figs. 3 and 4. Hence, this methodology insures
that if H(s) is stabilizing in the feedback loop of Fig. 3, then
H(s) is stabilizing in the feedback loop of Fig. 4. In addition,
Eq. (60) also insures that the transfer function between z(s)
and Wi(s) is preserved, thus insuring the preservation of the
attenuation from w\ to z. This precompensation methodology
was used in Ref. 9 to achieve controller roll off and to force
the design plant to appear to be rate feedback. Its use for the
benchmark problem is detailed later.

To describe the control design process for each controller,
assume that (A,B,C,D{, E{) is the state-space representation
corresponding to G(s) in Fig. 3, such that

(62)

(63)

(64)

is the state-space representation of the design plant. The syn-
thesis of H(s) in Fig. 3 was based on the solution of the design
equations (41-46).

The state-space basis of Eqs. (61-64) was chosen such that
A is block-diagonal with a 2 x 2 diagonal block of the form

0 o>0

corresponding to the vibrational mode of the system with
nominal natural frequency co0. System uncertainty was as-
sumed to be in the frequency of this mode, and thus the par-
ameter r in Eqs. (41), (42), and (48) is given by r = 1. The
corresponding uncertainty pattern matrix A j was given by

block-diag ( 0, . . . ,0, ^ ,0, . . . ,0 (65)

where location of the nonzero 2 x 2 block corresponded to the
location of the dynamics of the vibrational mode in A . The
design weights R I , R2, V\, and V2 were given by

R, = (66)

x(t) = Ax(t) + Bu (/) (61)

The design parameters are p, which determines the control
authority, and 5[/2, which weights A\ and reflects the level of
modal uncertainty. Note that since the stiffness k was assumed
to be in the interval [0.5 N/m, 2.0 N/m], the natural fre-
quency co of the vibrational mode was in the interval [1.0
rad/s, 2.0rad/s].

Three controllers are described next. Controllers 1 and 2
were developed to meet the objectives of design problem 1
whereas controller 3 was developed for design problem 2.
Controllers 1 and 3 were formulated as standard H2 distur-
bance rejection problems, i.e., Cu(s) = Cy>(s) = 1 in Figs. 3
and 4. The disturbance weighting matrix CWl(s) was chosen in
the control design process for controller 3 to reflect knowledge
of the sinusoidal nature of the disturbance. For controller 2,
precompensation Cu(s) was added to nullify the effects of the
rigid-body mode in a frequency band approximately one
decade above and one decade below the frequency of the
vibrational mode. Basically, this was an attempt to make the
problem "easier" for the LQG part of the design. As will be
shown, Cu(s) is simply a second-order lead-lag filter. The
"lag" poles were included not only to make the precompensa-
tion realizable in state space but also to prevent the LQG
segment of the controller from having to provide additional
roll off. The description of each controller includes the pre-
compensation dynamics used to develop the design model and
the stiffness A:nom of the design model. The parameter knom
was not chosen to be 1 N/m as might be expected because it
was experimentally observed that as 6j increased the closed-
loop system tended to become robust with respect to positive
perturbations in knom faster than with respect to negative
perturbations.

The settling time for each system was chosen to be the time
required for the displacement of mass 2 to reach and stay
within the interval [-0.1 m, 0.1 m]. Each of the controllers
satisfied the corresponding settling time objectives when con-
nected to the model corresponding to k = I N/m. Also, each
of the controllers stabilizes the plant for k € [0.5 N/m, 2.0
N/m]. To illustrate the effectiveness of maximum entropy
design in inducing robustness, each of the three controllers is
compared with the LQG design that was used to initialize the
design process illustrated by Fig. 1. The gain margin (GM) and
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phase margin (PM) listed for each controller are the margins
yielded by implementing each controller with the correspond-
ing design plant. In addition, for controllers 1 and 2 a simula-
tion is provided that shows the mass 2 displacement response
when the sensor measurements are corrupted by a noise pro-
cess w2(0- In these simulations, the noise was chosen to be
white with a uniform distribution in the interval [-0.01 m,
0.01 m]

Controller 1 (for Design Problem 1)
The parameters for controller 1 are as follows:

Cu(s) = Cy(s) = CW{(s) = Cz(s) = 1

p = 0.00001, <5;/2 = 0.2

£nom = 0.6 N/m => o>0 = 1.0954 rad/s

order of G(s) = order of H(s) = 4 => full-order design

settling time of the mass 2 displacement = 15 s (for k = 1)

peak response of the mass 2 displacement = 0.7 m
(for k = \)

IMPULSE RESPONSE AT MASS 2 FOR CONTROLLER 1 (K= 1.0.0.5.2.0)

H(s) = 194390(5 + 0.36679)[(5 - 0.11735)2 + 0.909962]
(s + 81.438)(s + 131.04) [(5 + 2.9049)2 + 1.86152]

Controller 1: stable for 0.45 < k < 2.05, GM - 3 dB,
PM - 10 deg

0.3

°'2

10 15 20
TIME (SECONDS)

IMPULSE RESPONSE AT MASS 2 FOR CONTROLLER 2 (K= 1.0,0.5.2.0)
......... RESPONSE FOR K=0.5
———— RESPONSE FOR K=1.0
........ RESPONSE FOR K= 2.0

10 15 20
TIME (SECONDS)

Fig. 5 Mass 2 displacement response to an impulse disturbance for
controller 1 (top) and controller 2 (bottom).

IMPULSE RESPONSE AT MASS 1 FOR CONTROLLER 1 (K=1.0.0.5.2.0)
• RESPONSE FOR K=0.5
• RESPONSE FOR K=1.0

RESPONSE FOR K= 2.0

10 15 20
TIME (SECONDS)

LQG controller: stable for 0.59 < k < 1.06, GM = 1 dB,
PM < 1 deg

The impulse responses of the mass 2 displacement (the output
performance variable), the mass 1 displacement, and the con-
trol signal are shown, respectively, in Figs. 5-7 for k = 1.0,
0.5, and 2.0 N/m. The impulse response of the displacement
of mass 2 for k = 1.0 N/m with noise-corrupted measure-
ments is shown in Fig. 8. The Nyquist plot of the loop transfer
function is shown in Fig. 9

Controller 2 (for Design Problem 2)
The parameters for controller 2 are as follows:

IMPULSE RESPONSE AT MASS 1 FOR CONTROLLER 2 (K= 1.0.0.5.2.0)

Cu(s) =
100[(5 + 0.04)2 + 0.06932]

(5 + 10)2 + 17.32052

p = 0.0001, a -0.2

knom = 0.6 N/m =» co0 - 1.0954 rad/s

order of G(s) = 6, order of H(s) = 4 => reduced-order design

settling time of the mass 2 displacement = 5 s (for k = 1)

peak response of the mass 2 displacement = 0.2 m
(for k = 1)

......... RESPONSE FOR K=0.5
———— RESPONSE FOR K=1.0
........... RESPONSE FOR K= 2.0

10 15 20
TIME (SECONDS)

25

Fig. 6 Mass 1 displacement response to an impulse disturbance for
controller 1 (top) and controller 2 (bottom).

The impulse responses of the mass 2 displacement (the output
performance variable), the mass 1 displacement, and the con-
trol signal are shown, respectively, in Figs. 5-7 for k = 1.0,
0.5, and 2.0 N/m. The impulse response of the displacement
of mass 2 for k = 1.0 N/m with noise-corrupted measure-
ments is shown in Fig. 8. The Nyquist plot of the loop transfer
function is shown in Fig. 10.

Controller 3 (for Design Problem 2)
The parameters for controller 3 are as follows:

Cu(s) = - Cz(s) = 1, Cw.(s) =
1

(5 + 0.00050)2 + 0.502

= 1.2247 rad/s

H(s) = 2490300(5 + 0.93838) [(5 + 0.30989)2 + 0.402372][(5 + 0.040000)2 + 0.0692822]
(s + 54.835)(s + 18.831)[(s + 10.000)2 + 17.3212][(s + 0.014561)2 + 0.0312412]

Controller 2: stable for 0.12 < k < 2.03, GM - 6 dB,
PM = 33 deg

LQG controller: stable for 0.45 < k
PM - 35 deg

1.35, G M - 7 dB,
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Fig. 7 Control signal response to an impulse disturbance for con-
troller 1 (top) and controller 2 (bottom).
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Fig. 8 Mass 2 displacement response to an impulse disturbance with
sensor noise for controller 1 (top) and controller 2 (bottom).

order of <5(s) = order of //(s) = 6 => full-order design

settling time of the mass 2 displacement = 12 s (for k = 1)

peak response of the mass 2 displacement = 4.4 m
(for k = 1)
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Fig. 9 Nyquist plot of loop transfer function for controller 1.
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Fig. 10 Nyquist plot of loop transfer function for controller 2.
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Fig. 11 Mass 2 displacement response to a 0.5 rad/s sinusoidal dis-
turbance for controller 3.

86816(5 + 0.12320)[(5 - 0.21281)2 + 0.963302][(5 + O.Q23916)2 + 0.424272]
5 + 253.19)(s + 38.684)[(s + 2.5068)2 + 1.67762][(s + 0.0011218)2 + 0.501382]

Controller 3: stable for 0.48 < k < 2.50, GM - 5 dB,
PM = 22 deg

LQG controller: stable for 0.43
PM - 22 deg

< k < 0.78, GM = 4 dB,

The responses of the mass 2 displacement (the output perfor-
mance variable), the mass 1 displacement, and the control
signal to a sinusoidal disturbance of frequency of 0.5 rad/s are
shown, respectively, in Figs. 11-13 for A: = 1.0, 0.5, and 2.0
N/m. It should be noted that no attempt was made to reduce
the order of this controller.

VI. Discussion of Results
Controllers 1 and 2 both satisfied the settling time objectives

of design problem 1 but differed significantly in their basic

structure and overall performance. One of the primary differ-
ences between these two controllers is best illustrated by the
Nyquist diagrams presented in Figs. 9 and 10 of the corre-
sponding loop transfer functions. In these figures it is seen
that both controllers placed the loop transfer function in the
first quadrant just before the nominal frequency o>0- This
insured stability when 180 deg of phase lag was added due to
the undamped vibrational mode of the plant. However, de-
spite this similarity, the route that the controllers took to place
the loop transfer function in the first quadrant was vastly
different. As seen in Fig. 9, controller 1 chose to force the loop
transfer function to reach the first quadrant via the second
quadrant. This required substantial phase lag from the com-
pensator. However, compensator gain was also needed to
achieve performance. Hence, controller 1 included a complex
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Ml RESPONSE PERSISTENT DISTURBANCE (W=SIN(.5T)) CONTROLLER 3
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Fig. 12 Mass 1 displacement response to a 0.5 rad/s sinusoidal dis-
turbance for controller 3.

the use of a precompensation methodology that essentially
allows the control designer to precondition the design plant by
embedding in this plant judiciously designed filters. These
filters are then included in the implemented compensator. The
order of the controller designed using the precompensation
methodology was reduced using optimal projection theory.

Acknowledgments
This work was supported by the Air Force Office of Scien-

tific Research under Contracts F49620-89-C-0011 and F49620-
89-C-0029.

RESPONSE TO PERSISTENT DISTURBANCE (W=SIN(.5T)) CONTROLLER 3

I °
"• -0.5

- RESPONSE FOR K*0.5
- RESPONSE FOR K=1.0
RESPONSE FOR Kx 2.0

0 5 10 15 20 25 30
TIME (SECONDS)

Fig. 13 Control signal response to a 0.5 rad/s sinusoidal disturbance
for controller 3.

pair of nonminimum phase zeros to achieve both phase lag
and increased gain. On the other hand, the precompensation
chosen for controller 2 was such that, as shown in Fig. 10, the
loop transfer function reached the first quadrant via the third
and fourth quadrants. The desired lead and gain increases
were accomplished via minimum phase compensator zeros.

Figure 5 compares the impulse response of mass 2 for con-
trollers 1 and 2 whereas Fig. 6 compares the impulse response
of mass 1 for the two controllers. It is easily seen from these
figures that controller 2 reduced the effects of the impulse
disturbance on the system much more than controller 1. In
addition, it is seen in the data listed for each controller that
controller 2 has significantly higher gain and phase margins
than controller 1, a feature that might be desirable in some
applications. However, Figure 7 reveals that the greater per-
formance of controller 2 was achieved at the expense of much
greater control authority, and Fig. 8 shows that, due to its
higher bandwidth, controller 2 yields a closed-loop system that
is much more sensitive to sensor noise. In fact, the control
authority required by controller 2 would likely require an
actuator with mass many times the total mass of the original
system. Controllers 1 and 3 avoided the use of an impractical
amount of actuator authority by the judicious use of nonmin-
imum phase zeros. We conjecture that a low authority con-
troller that meets the performance objectives cannot be de-
signed for the benchmark problem without using nonmini-
mum phase zeros.

It is interesting to note that the data for controller 2 shows
that the initiating LQG controller has larger gain and phase
margins than the robust controller but also has less robustness
with respect to the uncertainty in the stiffness k. This provides
an illustration of a control problem in which the gain and
phase margins do not necessarily imply parametric robustness.

The data for each of the three controllers clearly show that
the initializing LQG designs did not satisfy the robustness
requirements with respect to the uncertainty in k. The efficacy
of maximum entropy design in providing the needed robust-
ness was thus clearly illustrated by the results of this paper.

VII. Conclusion
This paper has demonstrated the application of the maxi-

mum entropy/optimal projection methodology for designing
robust reduced-order controllers to a benchmark problem.
The use of maximum entropy uncertainty modeling clearly
provided the needed robustness that was not achievable by
simple LQG control. The results of this paper also illustrate
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