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ABSTRACT

Iselators and abserbers have been studied extensively asa
means of passively suppressing vibration in mechanical sys-
tems. This paper derives the optimal tening parameters for
these passive suppression schemes with an Hs wmumoun__rﬂnm
eriterion. The Ha norm of a system is briefly reviewed, and
its selection as a performance criterion is motivated. The
optimal tuning scheme in the case of the absorber is then
compared to the classical work of Den Hartog [1] and Snow-
don [2). The comparison shows Little improvement in the
E. cost over the classical scheme, which suggests that the
approximately optimal H,, analysis of the absorber respects
the optimal Ha cost. However, the reverse is gemerally not
true, as in the case with increasing absorber masses.

INTRODUCTICN -

Passive isglators and absorbers provide one of the princi-
pal means for suppressing undesirable vibrations. Techniques
{or tuning isolators and abscrbers have thus been extensively
studied in the vibration control literature [2-5). These stud-
ies have generally focused on the choice of design parameters
to achieve.a suitable shape of the transmissibility for a given
disturbance spectrum. For example, the classical tuning of
the Den Hariog absorber given in [1,2] provides damping
values that approximately minimize the peak transmissibil-
ity. From a modern systems approach, this design is approxi-
mately optimal from the point of view of the H,, performance
criterion [§].

fn contrast to Lhese techniques, semi-active and active
control approaches to vibration suppression are often based
upon precise oplimality criteria, in particular, a quadratic
H: performance index with the associated LQR ard LQG
control designs [T-13}. Quadratic optimality is useful for
minimizing mean-square response levels in the preserce of
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FIGURE 1: ISOLATOR/ABSCRBER SYSTEM

broadband {white) or narrow-band {colored} stochastic noise
disturbances [14].

The goal of the present paper is to revisit the problem
of passive isolater and absorber design from the point of
view of Hy optimality. For our analysis we consider the
standard spring/dashpot isolator and one-degree-of-freedom
mass/spring/dashpot absorber in the presence of white or
impulsive shock disturbances. In beth cases we optimize
over the available design parameters. In the case of the iso-
lator, optimization is performed with respect to the main
spring and dashpot, while for the absorber, oplimization is
performed with respect to the auxiliary mass, spring, and
dashpot. The resulting optimal tuning parameters for the
absorber are then compared with the classical absorber tun-
ing parameters given im [1,2].

K+ OPTIMAL PERFORMANCE CRITERION

The physical interpretation of the H; norm in the frequency
and lime domains motivates its use as & performance criferion
for quantifying vibration suppression. Referring to Figure 1,
it is desirable to suppress the displacement g(f) of the main
mass in the presence of base displacemen: z{i}. Because
of reciprocity, the transfer funciion from base displacement
to main mass displacement, that is, the transmissibility, is



equivalent to the transfer function from tmain mass force to
base force {15].

Both the isclator and absorber are considered as vi-
bration suppression schemes. The isolator consists of
the spring/dashpot interconnection between the main
mass and the base, while the addition of an auxiliary
mass/spring/dashpot to the main mass of the isclator con-
stitutes the absorber system as shown in Figuze 1.

The classical results in (1,2] derive absorber tuning pa-
rameters by minimizing the peak frequency respenss. The
derivation of these system parameters can be viewed as an
approximately optimal H, design of the transmissibility,

An alternative approach is to formulate this classical prob-
lem from an Hy optimality standpoint. The H: norm of a
tzansfer function has three interpretations that have physi-
cal significance in quanti{yving vibration suppressicn. A brief
discussion of these interpretations is given below.

impulse Respanse Interpretation

Consider the linear time-invariant system

£ = Azit) + Buft), z{(0) = =y, (1)
w(t) = Cz(t), (2)

where {f} E R™, u(t) e B, ¢{f) € R, 4 & R B ¢
K%L and © € B'*" Now assume that A is asympiotically
stable and consider the performance criterion given by the
quadratic functional

e

JHzo, u) \ YTt (3)

f 2 = 0 and u(t} = &{t), where 6(¢) is the unit impulse at
t =0, the impulse response y{t} = H{t) is given by

Hit) = Ce* B, {4

and the cost functional (3) is the L norm of the impulse
response function (-] defined by

;ws u..
_E:_r \D __E:_E ﬁ_

The L3 norm of the impelse response can be evaluated
in terms of the controllability and observability Gramiaas.
When A is asymptotically stable the L3 norm of H{-) be
COmes

1O = [ cetBaTATC
3

8
H .\ mﬂmmdnﬁdﬁ.maﬂm&_
3

and can be further written as

iH#()z = CQCT = BT PB, (7)
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where @, P € R"™"™ defined by

(v

g u‘\ e * BT ATy (8)
o

mu‘\ et TCT ey, {9)
1]

satisfy the Lyapunov equations
0= AQ+ QAT + BRT {10}
0=ATP4+PA+CTC. (11)

Symbolic evaiuation of the H: norm, which is based on
the closed form expression from the solution of (10) and
{11}, can be obtained by uwsing the method giren in Jury
and Dewey [16]. This algorithm has been implemented wsing
Mathemotics and is used in later sections.

Stochastic interpretation

Alternatively, consider the case in which uif) is a zero-
mean normalized Gaussian white noise disturbance with co-

Hu(t)a™ (1)) = 6(t - 7). (12)

Now consider the performance to be the [Mean-square re-
spanse of the system from equilibrium in the presence of this
disturbance as given by
a4 . e
Mo w) 2 lim B0, (13)

Defining the state covariance by

Q1) 2 Ez(n)aT (2], (14)

vields
_ Js(zo, uft)) = lim CQHCT, {15)

[ =

where f) sobves the Lyapunoy differential equakion

Qt) = AQ(H) + Q1) AT + BBT, {16)
Q0) = Elrgzf] = 0.

If Ais asympiotically stable then the steady state cavart-

ance 2 lim; oo Qt) exists and satisfies (10). Thus
Jsfzg, u{f)} is given by
Jsl(zo, uft)) = CQCT. (17)

Power Spectral Density Interpretation

Again, consider a linear time-invariant system with trans-
fer function G{ %) and a zero-mean narmalized white Gaus-
sian disturbance. The power spectral density Syf{w] of the
response is then given by

Sy(w) = |G}, (18)



and the total mear-square power of the response is

10O =5 [ 16w, ()

It follows {rom Parseval’s Theorem that

\E:m,;;& = %.\.3 Glw)C (), (20}
a o

which relates the L; norm of the impulse response function
in the time domain to the Ay norm of its transform.

This expression can be interpreted as the average power
of the response in the presence of a white neise input.

H, Vibration Cost

Consider the transmissibility of the isolator/absarber sys-
tem as

_ gls)

z(s}’
where x{5} and ¢{s} are the Laplace transforms of the dis-
placements in Figere 1. Since the Hy norm of the impulse
response funciion quantifies vibration levels we define the vi-

Tis) = (21]

bration cost as

__HE._.._._.NED_._ = :u;nuzw ‘.‘MMW

The three interpretations of the Hs norm in the previcus
sections give Juipration the following physical meanings:

1. Noting that T{s} = “ua.“‘._. Fvibeation 15 Lhe total ki-

netic energy per unit mass of the main mass due to an
impulsive velocity at the base.

Fvibratian 15 the mean-square steady state kinetic en-
eTgY per unit mass of the main mass in the presence of
a white velocity disturbance at the base.

Fribeation is the average power output of the main mass
in the presence of a white noise disturbance at the base.

The cost Jiibration can alsa include colored disturbances
by augmenting the transmissibility with an appropriate filter.

However, {or simplicity we consider only broadband distur-
bances. ‘
H: OPTIMAL ISOLATOR TUNING

Consider the isolator modeled as

Mi=Kiz—g)+C{—q). (23)

By taking the Laplace transform, the transmissibility is given

by
(s)

ﬂ?@”q Cs4+ K

= 24
(s} M +Cs5+ K (24)

a7
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FIGURE 2. ISOLATOR Hy COST

and the Hy norm of this transmissibility is

Hvibeation = {T{- 13 {25)
2
R Crw4 K - F. e [y
- ..-‘.Io.n. _mnln_ut..l._.umr_ _ dw = W ic + M
To minimize Jijpration with respect to € we set
m_mN vibration = U, which rields
Q.QHEHP._ =vHEM. _”Mm_“_

Yith the damping ratic defined by A & % the optimal
damping ratio is ’

1

2

Substitoting Acpeimal back into the performance criterion
(26) yields 2 minimum Hj norm of

. (27)

b,ov.:.aw_ =

Juibration = [[T(3 = wi, {28}
where wy, is the natural Irequency of the isolator. Figure 2
illustrates the minimum of the H; cost along the line &4 = .m.
Additionally, with & = Agpeimat the input frequency yielding
the largest vibration amplitude sccurs at

max = Y V3 — 1w, = B556 w, (28)
with maximum transmissibility
2
Toax = mqm + 12 1.4679 = 3.334 4B. (30)

The transmissibility and impulse resporse of the isolatar for
several damping ratios, including the Acpeimat, 2re shown in
Figures 3 and 4.



H, OGPTIMAL ABSORBER TUNING

[n order to f{urther suppress vibration in the
isalator system, an absorber comprised of an auxiliary
mass{spring/dashpot is commenly added to the main mass.
In this section we gutline the optimal tuning parameters for
the zhsorber.

The dynamics of the isclator/absorber system are given
by

miaft) = —k(ga — ¢) — elda — 4), (3

1)

Mi=-Klg-=)—Clg—z)+k(ga — g) + e{da — ¢), (32}

By elimipating g, from these equnations and taking the
Laplace transform, the transmissibility is given by

T{s)

k _ i
m YT Mim

Wy =

Additionally, since Foppmal 15 independent of the auxiliary
damping ¢, (37) can be wriiten as

1
Koprimm = 54{2 = ). (40)

Now substituting Koprimal into {38) yields the damping ratie

#{4 — p)

82— p) (1

ﬁuvnu.“_.n__ﬂ_. =

Cms® + (Km+ Cc)s® + (Ck + Ke)s + Kk

(33}
As in [1, 2] we consider the case of undamped main mass & =
0 in the following analysis. In this case, the transmissibility
in {33} becomes

KEms® + Kes+ KF

T Mmsi+(c{m+ M)+ Cm)s® + (k(m+ M) + Km + Ce)s? + (Ck + Ke)s + K&

T{s) =
(34)

and the Hs norm i= given by

‘Mmst+cf{m+ M) + (kim + M)+ Km)s? + Kes + Kk

MR mE kA m® 4+ Kom? + KM +20°mM - 2kKmM + k202

r_ﬁ.—_:u.nunm.nz = ]
. (35)
This guantity is now minimized over the absorber design pa-
rameters. First, inspection of Jyipration Shows that as m
becomes large Jyibration asymptotically decreases and thus
there does not exist a minimum with respect to m. The
auxiliary mass should generally be chosen as large as design
constraints will allow to best minimize this cost functional.
Next, by leaving Jyibration @ terms of the auxiliary mass m
and minimizing over ¢ and k&, the optimal parameters become

Equations (40} and (41} constitute the simoltaneous opti-
mization of ¢ and k.

Den Hartog [1] gave the tuning parameter for the auxiliary
Spring as

_m..h._n:mm:.un = ._R:. - ___.,_um.ﬂu ﬂ.ﬂmu__

kT — kK m? + K2m? + 28?mM — 2k KmM 4+ E2M7

Captimal — »aﬂTﬂ. " .__:”_
{36}
mim 4 2M)
h#_u__":,:....m_ = 2Am + ,_..\ﬁum K. ._“m.wu
For these valzes the optimal damping ratio is
; l 1
Saptimal = m nnﬂ..m. - é.‘um + H. Amm“_

Furthermore, the natural [requency ratio, locked natural fre-
quency, absorber natural frequency, and mass ratio are given

by
Wi K

v Wloched = WV +m 1 nmm“_

n= _
“iocked

as

while Snowdon (2] later developed the approximatzly opti-
mal H,, tuning parameter {or { as

R {T] .
ﬁm:oﬁno: m_“ 1— hE”_ A” M_T

For clarity, note that the mass ratioc p = 77— defined in

{40) and osed in expressions (38)-(46) differs from the clas-
sical definition fciasical = % The transmissibility and
impulse response for these values are shown in Figures 5 and
6 [t becomes evident through examination of these plots

that the approximately optimal H,, analysis and the optimal
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FIGURE 3: ISOLATOR TRANSMISSIBILITY ¢ feasenie)
FIGURE 4: ISOLATOR NORMALIZED IMPULSE RESFONSE

Hy analysis yield tuning parameters that are almost identical.
Table 1 lists the Hy costs for the normalized H: optimally

tuned isolator, the normalized H, optimally tuned absorber, a ! Pl ;

and the Den Hartog/Snowdon normalized tuned absorber, IT () : -
Table i: Vibration Performance . ‘
Tuned System : H; Cost m
| Hy Optimal Isolator | W m
_ H2 Optima! Absarber w...\ﬁm.mm wh :
§rmmen «
ru.m-. Hartog/Snowdon Absorber ﬂwmlr_a %

By examining this table, comparisons of the Hy cost can
be made. The H; optimal isalator always does better than "
the Den Hartog/Snowdon absorber, and the fraction of im-

provement is given by B
ar'[
2/Bp FIGURE 5: ABSORBER TRANSMISSIEILITY COM-
i (44) ﬂﬂ%_moz FOR VARIOUS VAL UES OF THE MASS RA-
f

it can also be seen that the Hy optimal isolator will do better
than the Hs optimal absorber when H < m. by a fraction

improvement of
L-n/i (45) T T T
TH an ; r “ ;

Finally, the Hy optimal absorber does better than the Dlen o m i
Hartog/Snowdon absorber with a fraction improvement :
B 0 150 DO SN WU A N S
LN (45) A N A
L 8 - . ; |
Typically these improvements are on the order of 3%-5%. | _ | m
Figure 7 shaws these H-: costs normaljzed by . A T _ _

azf e l-“r.r-
CONCLUSIONS Y _ m m : _
a ) 1] 14 x = k13
Cptimal tuning parameters for an tundamped ntain mass e !
absorber from an H; optimal perspective were derived. It was FIGURE 6: IMPULSE RESPONSE WITH p=172
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FIGURE 7: VIBRATION COST COMPARISON

shown in Section 2 that the Hy norm entails several interpre-
tations for quantifying the effects of vibration. Alternatively,
Den Hartog and Snowdon approximately optimize the system
from an Ho, (harmenic amplification) perspective. The com-
parisan of the Hy optimal scheme to the classical one yields
little improvement in the Hz cost as seen in Figare 7. Ad-
ditionally, the H, norm of the Hs optimal system becomes
increasingly large for larger mass ratios p. The case of equal
main mass and auxiliary mass yields a 3 dB degradation in
H.. performance.

‘An outcome of particular interest is the improvement of
Suibration when the damping ratic at the miain mass can be
chosen as (uptimal = w This large improvement shows the
authority that the main mass damping has over suppressing
vibration in the system. ‘
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