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Sequential design of decentralized dynamic compensators using the
optimal projection equations

DENNIS S. BERNSTEINt

The optimal projection equations for quadratically optimal centralized fixed-order
dynamic compensation are generalized to the case in which the dynamic com-
pensator has, in addition, a fixed decentralized structure. Under a stabilizability
assumption for the particular feedback configuration, the resulting optimality
conditions explicitly characterize each subcontroller in terms of the plant and
remaining subcontrollers. This characterization associates an oblique projection
with each subcontroller and suggests an iterative sequential design algorithm. The
results are applied to an interconnected flexible beam example.
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1. Introduction
The purpose of this note is to consider the problem of designing decentralized

dynamic feedback controllers using recently obtained results on quadratically optimal
fixed-order dynamic compensation (Hyland and Bernstein 1984). As in Bernussou
and Titli (1982), Looze et al. (1978), and Singh (1981), the overall approach is to fix the
structure (information pattern and order) of the linear controller and optimize the
steady-state regulation cost with respect to the controller parameters. The underlying
philosophy is that the ability to carry out such an optimization procedure permits the
evaluation of a particular decentralized configuration which may be dictated by
implementation constraints. If there is some flexibility in designing the decentralized
architecture, then these results can be used to evaluate the optimal performance of
each permissible configuration, and hence to determine preferable structures. Since
the present paper is confined to the question of optimal regulation, trade-offs with
regard to robustness in the presence of plant variations are not considered. Such
trade-offs can be included, however, by utilizing the Stratonovich multiplicative white
noise approach developed by Bernstein and Hyland (1985).

To further motivate our approach, consider the problem of controlling an nth-
order plant 9 by means of a decentralized dynamic compensator consisting of
subcontrollers rc1 and rc2. A straightforward design technique that immediately
comes to mind is that of sequential optimization (Davison and Gesing 1979,Jamshidi
1983).To begin, ignore rc2 and design rc1 as a centralized controller for 9. Next,
regard the closed-loop system consisting of 9 and rc1as an augmented system 9' and
design rc2 as a centralized controller for 9'. Now redesign rc1 to be a centralized
controller for the augmented closed-loop system composed of 9 and f(j2' and so forth.
One difficultywith this scheme, however, is that of dimension.If, for example, one were
to employ LQG at each step of this algorithm, then on the first iteration rc1 would
have dimension n and thus rc2 would have dimension 2n. On the second iteration, f(j1
would require dimension 3n and f(j2 would have order 4n, and so forth. Such
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1570 D. S. Bernstein l
difficulties can be avoided by setting n = 0, which essentiallycorresponds to static
output feedback. Although easier to implement, static output feedback lacks filtering
abilities such as are inherent in LQG controllers, which are purely dynamic (i.e.strictly
proper).

As discussed by Sandell et al. (1978), p. 119, the explanation for this difficulty is
provided by the 'second-guessing' phenomenon: when LQG is used, each subcon-
troller must consist of linear feedback, not only of estimates of the plant states but also
of estimates of the other subcontrollers' estimates. Hence the 'optimal' controller is
given by an irrational transfer function, i.e. a distributed parameter (infinite-
dimensional) system. Such controllers, of course, must be ruled out since their design
and implementation (except in special cases) violate physical realizability (see, for
example, Bernstein and Hyland 1986).

Having thus ruled out zeroth-order and infinite-order decentralized controllers,
we focus on the problem of designing purely dynamic decentralized compensators.
Moreover, by invoking the constraint of fixed subcontroller order, we overcome the
second-guessing phenomenon. Utilizing the parameter optimization approach thus
leads to a generalization of the result obtained by Hyland and Bernstein (1984) for
centralized control. In brief, it was shown in Hyland and Bernstein (1984) that the
unwieldy first-order necessary conditions for fixed-order dynamic compensation can
be simplified by exploiting the presence of a previously unrecognized oblique
projection. The resulting optimal projection equations, which consist of a pair of
modified Riccati equations and a pair of modified Lyapunov equations coupled by the
optimal projection, yield insight into the structure of the optimal dynamic com-
pensator and emphasize the breakdown of the separation principle for reduced-order
controller design. For example, the optimal compensator is the projection of a full-
order dynamic controller which is generally different from the LQG design.
Furthermore, this full-order controller and the oblique projection are intricately
related since they are simultaneously determined by the coupled design equations. An
immediate consequence .is the observation that stepwise schemes employing either
model reduction followed by LQG or LQG followed by model reduction are generally
suboptimal. For computational purposes, the optimal projection equations permit the
developm~nt of novel numerical methods which operate through successive iteration
of the oblique projection (Hyland and Bernstein 1985). Such algorithms are thus
philosophically and operationally distinct from gradient search methods.

The generalization of the optimal projection equations to the decentralized case is
straightforward and immediate. In the optimization process each subcontroller is
viewed as a centralized controller for an augmented 'plant' consisting of the actual
plant and all other subcontrollers. It need only be observed that the necessary
conditions for optimality for the decentralized problem must consist of the collection
of necessary conditions obtained by optimizing over each subcontroller separately
while keeping the other subcontrollers fixed. More precisely, this statement corre-
sponds to the fact that setting the Frechet derivative to zero is equivalent to setting the
individual partial derivatives to zero. Hence it is not surprising that the optimal
projection equations for the decentralized problem involve multiple oblique projec-
tions, one associated with each subcontroller. Furthermore, each subcontroller
incorporates an internal model (in the sense of an oblique projection of full-order
dynamics) not only of the plant but also of all other subcontrollers. The-structure of
the equations suggests a sequential design algorithm such as that proposed in this
work.
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The simplicity with which this result is obtained should not belie its relevance to
the decentralized control problem. Specifically, our approach is distinct from sub-
system-decomposition techniques (Ikeda and Siljak 1980, 1981, Ikeda et at. 1981,
1984,Lindner 1985,Linnemann 1984,Ozguner 1979,Ramakrishna and Viswanadham
1982, Saeks 1979, Sezer and Huseyin 1984, Silkak 1978, 1983) and model-reduction
methods since the optimal projection equations retain the full, interconnected
plant at all times. For the proposed algorithm, decomposition techniques which
exploit subsystem-interconnection data can playa role by providing a starting point
for subsequent iterative refinement and optimization. Decomposition methods may
also playa role when very high dimensionality precludes direct solution of the optimal
projection equations. These are areas for future research.

With regard to the role of the oblique projection, it should be noted that such
transformations do not, in general, preserve plant characteristics such as poles, zeros,
subspaces, etc. Indeed, since the oblique projection arises as a consequence of
optimality, approaches that seek to retain system invariants (e.g. Uskokovic and
Medanic 1985) are generally suboptimal. In addition, the complex coupling among
the plant and subcontrollers via multiple oblique projections provides an additional
measure for evaluating the suboptimality of the methods proposed.

The plan of the paper is as follows. The fixed-structure decentralized dynamic-
compensation problem is stated in § 2 along with the generalization of the optimal
projection equations. In § 3 we propose a sequential design algorithm for solving these
equations and state conditions under which convergence is guaranteed. Finally, in § 4
the algorithm is applied to the 8th-order model of a pair of simply supported beams
connected by a spring. For this example, we obtain a two-channel decentralized
design which is 4th-order in each channel and compare its performance with the (8th-
order) centralized LQG design.
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2. Problem statement and main theorem
Given the controlled system

p

x(t) =Ax(t) + L BiUi(t) + wo(t)
i= 1

(2.1)

(2.2)

design a fixed-structure decentralized dynamic compensator

Xei(t)= Aeixei(t)+ BeiYi(t), i = 1,..., p (2.3)

(2.4)Ui(t)= CeiXei(t), i = 1, ..., P

which minimizes the steady-state performance criterion

J(Ael, Bel' Cel, ..., Aep, Bep, Cep) ~ tl~~ IE[X(t)T Rox(t) + it Ui(t)TRiUi(t)] (2.5)
p

where, for i = 1, ..., p: x E IRR,UiE IRmi,Y,. E lR'i,Ce/. E IRRCi,n ~ " n. n. ~ n + n - n .
C ~ CP Cl ~ C CP

i= 1

A, Bi, Ci, Aei, Bei, Cei, Ro and Ri are matrices of appropriate dimension with Ro
(symmetric) non-negative definite and Ri (symmetric) positive definite; Wois white
disturbance noise with n x n non-negative-definite intensity Vo, and Wi is white
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observation noise with Ii x Ii positive-definite intensity ~, where wo, WI' ..., wp are
mutually uncorrelated and have zero mean. IEdenotes expectation and superscript T
indicates transpose.

To guarantee that J is finite and independent of initial conditions we restrict our
attention to the set of admissible stabilizing compensators

d ~ {(Acl, BCI' Ccl, ..., Acp, Bcp, Ccp):A is asymptotically stable}

where the closed-loop dynamics matrix A is given by

where

\

\
"

[

Cl

j

-t;. .

... Bp], C = ~p

Ac~ block-diagonal(AcI' ..., Acp)

Bc~ block-diagonal(BcI' ..., Bcp)

Cc~ block-diagonal(Ccl, ..., Ccp)

(For possibly non-square matrices 5" 52' block -diagonal (5" 52) denotes tbe

mamx[5; :])
It is possible that for certain decentralized structures the system is not stabilizable,

i.e. d is empty (Wang and Davison 1973, Seraji 1982, Sezer and Siljak 1981). Our
approach, however, is to assume that d is not empty and characterize the optimal
decentralized controller over the stabilizing class. Since the value of J is independent
of the internal realization of each subcompensator, without loss of generality we can
further restrict our attention to

\
I
I.

I
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d + ~ {(Acl, Bcl, Ccl, ..., Acp, Bcp, Ccp)Ed: (Aci,Bci) is controllable and

(Cci, Aci) is observable, i = 1, ..., p}

The following lemma is an immediate consequence of Theorem 6.2.5,p. 123of Rao
and Mitra (1971). Let I, denote the r x r identity matrix.

Lemma 2.1

Suppose Q,P E IRqxq are non-negative definite and rank QP= r.Thenthereexist
G, r E lR,xqand invertible ME lR'x, such that

QP=GTMr

rGT = I,
. (2.6)

(2.7)

For convenience in stating the main theorem, call (G, M, r) satisfying (2.6), (2.7) a
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projective factorization of QP. Such a factorization is unique modulo an arbitrary
change in basis in IR',which corresponds to nothing more than a change of basis for
the internal representation of the compensator (or subcompensators in the present
context).

We shall also require the following notation. Let Ai denote A with the rows and
columns containing Aeideleted. Similarly, let Ri be obtained by deleting the rows and
columns corresponding to C~iRiCeiin the matrix

R ~ block-diagonal (Ro, C~l R1 Ce1, ..., C~pRpCep)

And furthermore, V;is obtained by deleting the rows and columns containing Bei~B~i
In

Also define

where 0, xs denotes the r x s zero matrix. Note that Ai, iii' Ci>Ri and V;essentially
represent the closed-loop system minus the ith subcontroller as controlled by the
latter. Finally, define

and, for "C E lR'x" let

"C.l~l,-"C

Main theorem

Suppose (Ae1, Bel' Ce1, ..., Aep, Bep, Cep) Ed + solves the steady-state fixed-
structure decentralized dynamic-compensation problem. Then for i = 1, ..., P there
exist (n + ne - nei) x (n + ne - nei) non-negative-definite matrices Qi, Pi' Qi and Pi
such that Aei, Bei and Cei are given by

- - TA . = r. (A-- Q.~. - ~.p. )G.Cl 1 1 I I I I I

-T -1B .=r. Q.c. V:CI 1 I I I

(2.8)

(2.9)

(2.10)

for some projective factorization Gi, Mi, ri of QiPi' and such that, with "Ci= G[ri, the
following conditions are satisfied:

- -T - - - T0= A-Q.+ Q.A. + V:- Q.~. Q. + "C'.lQ .~. Q."C..l1 1 1 1 1 1 I 1 1 1 1 1 1

, - - T
0= Ai Pi + PiAi + Ri - Pi~iPi + "Ci.lPi~iPi"Ci.l

- ~ ~- T - - T0= (A. - ~.p. )Q. + Q.(A-- ~.p. ) + Q.~.Q. - "C'.lQ .~. Q."C..l1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.- - T~ ~ - - T0= (A-- Q.~.) p. + P.(A. - Q.~.) + p.~.p. - "C..l P'~'P'''C. .l1 1 I 1 1 1 1 1 1 ,.. 1 1 1 I I

rank Qi = rank Pi = rank QiPi = nei

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Remark 2.1

Because of (2.7) the matrix 'ti is idempotent, i.e. 'tf = 'ti' This projection corre-
sponding to the ith subcontroller is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Furthermore, 'ti is given in
closed form by

~ ~ ~ ~ #
'to = Q.p. (Q.p. )1 1 I I I

where ( )#denotes the (Drazin) group generalized inverse (see, for example, Campbell
and Meyer, 1979, p. 124).
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3. Proposedalgorithm
Sequential design algorithm

Step 1. Choose a starting point consisting of initial subcontroller designs;

Step 2. For a sequence {ik}k'=l' where ikE{l,...,p}, k=1,2,..., redesign subcon-
troller ik as an optimal fixed-order centralized controller for the plant and
remaining subcontrollers;

Step 3. Compute the cost Jk of the current design and check Jk - Jk- 1 for
convergence.

Note that the first two steps of the algorithm consist of (i) bringing suboptimal
subcontrollers 'on line' and (ii) iteratively refining each subcontroller. As discussed in
§ 1, the choice of a starting design for Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for subcontroller refinement, note that
each subcontroller redesign procedure is equivalent to replacing a suboptimal
subcontroller with a subcontroller which is optimal with respect to the plant and
remaining subcontrollers.

\.

\

\
\,

Proposition 3.1

For a given starting design and redesign sequence {ik}k'=1suppose that the optimal
projection equations can be solved for each k to yield the global minimum. Then
{Jdk'=1 is monotonically non-increasing and hence convergent.

Determining both a suitable starting point and redesign sequence for solvability
and attaining the decentralized global minimum remain areas for future research.
With regard to algorithms for solving the optimal projection equations for each
subcontroller redesign procedure, details of proposed algorithms can be found in the
works of Hyland (1983, 1984) and Hyland and Bernstein (1985).

4. Application to interconnected flexible beams
To demonstrate the applicability of the main theorem and the sequential design

algorithm, we consider a pair of simply supported Euler-Bernoulli flexible beams
interconnected by a spring (see the Figure). Each beam possesses one rate sensor and
one force actuator. Retaining two vibrational modes in each beam, we obtain the 8th-
order interconnected model

.
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where

o

Bjj= o
- sin 2na.'-

a.= a.IL. s.= s.IL. c.= c.IL.I '" 1 1 " I 1 1 .
In the above definitions, k is the spring constant, Wjj is the jth modal frequency of the
ith beam, (j is the damping ratio of the ith beam, Lj is the length of the ith beam, and
cl;,Sjand Cjare, respectively, the actuator, sensor and spring-connection coordinates
as measured from the left in the Figure. The chosen values are

0 Wli 0 0

-Wli - (klwli)(sin ncY -2(jWli -(klw2j)(sin nCj)(sin 2ncj) 0
A.. = III

0 0 0 W2j

-(k/wli)(sin ncd(sin 2ncj) 0 -W2i - (k/w2j)(sin 2ncj)2 - 2(jW2j

0 0 0 0

(k/w1j)(sin ncd(sin nCj) 0 (klw2j)(sin ncd(sin 2ncj) 0

Ajj= I 0 0 0 0

(klw1j)(sin ncj)(sin 2ncd 0 (klw2j)(sin 2ncd(sin 2ncj) 0

i=f;j
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In addition, weighting and intensity matrices are chosen to be

([
1 0

] [
1 0

] [
1 0

] [
1 0

J)
R1 = block-diagonal , , ,

o l/w11 0 1/w21 0 1/w12 0 l/w22

R2 = R3 = 0'112

Vo ~ block-diagonID (G ~J[~ a [~ a [~ ~J)

\

\ For this problem the open-loop cost was evaluated and the centralized 8th-order
LQG design was obtained to provide a baseline. To provide a starting point for the
sequential design algorithm, a pair of 4th-order LQG controllers were designed for
each beam separately ignoring the interconnection, i.e. setting k = O. The optimal
projection equations were then utilized to iteratively refine each subcontroller. The
results are summarized in the Table.

\
\

\

Design Cost

Open loop
Centralized LQG

ne=8
Suboptimal decentralized

ne1=ne2=4
Redesign subcontroller 2
Redesign subcontroller 1
Redesign subcontroller 2
Redesign subcontroller 1
Redesign subcontroller 2
Redesign subcontroller 1
Redesign subcontroller 2
Redesign subcontroller 1

163.5

19.99

59,43
28.19
23.29
23.04
22.25
21.94
21-86
21.81
21.79
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k= 10

Wli = 1, W2i = 4, (i =0'005, Li= 1, i= 1,2

a1 = 0'3, 81= 0'65, C1= 0,6

a2 = 0'8, 82= 0,2, C2= 0,4
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