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Abstract 
With the success of adaptive cancellation methods de- 

veloped largely within the active noise control community, 
it is of interest to understand these algorithms within a 
more traditional feedback control framework. This paper 
thus has two goals, namely, to systematically describe three 
such algorithms (two LMS algorithms and the recently 
developed ARMARKOV/Toeplitz algorithm) in standard 
feedback control terminology, and to experimentally com- 
pare the performance of the algorithms. For experimental 
purposes, we use an acoustic duct testbed with both tonal 
and broadband disturbances. 

1. Introduction 
One of the main uses of feedback control is to suppress 

unwanted disturbances which can cause excessive vibra- 
tion levels and poor system performance. Disturbances 
can arise from a wide variety of sources. For example, ro- 
tating machinery can cause tonal or harmonic multi-tone 
disturbances, while turbulence can give rise to wide-band 
noise. The reduction of noise and vibration levels can be 
an important issue in aerospace vehicles. 

In recent years there has been considerable progress 
in developing algorithms for adaptive disturbance cancel- 
lation. Unlike fixed-gain control methods, these adaptive 
techniques generally require only limited plant models and 
information about the disturbance spectrum. Thus they 
are useful for cases in which the plant may change or may 
be difficult to identify. Since some of these algorithms 
exploit measurements of the disturbance signal and ig- 
nore the dynamics in the feedback path, they are often 
referred to as feedforward algorithms. In many cases, such 
algorithms have been developed outside of the traditional 
"feedback" control community. 

The effectiveness of these adaptive cancellation algo- 
rithms is evident from the wide range of applications where 
they have been successfully applied [14]. The theoretical 
development of these algorithms is also quite extensive. 
See, for example, the recent books [5,6] as well as the rep- 
resentative papers [7-91. 

The present paper has two main goals. First, we briefly 
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describe three adaptive cancellation algorithms. Two of 
these, which are based on the LMS algorithm, are well 
known and widely used [lo-121, while the third, which is 
called the ARMARKOV/Toeplitz algorithm, was recently 
developed in [13]. A useful feature of this review is our 
description of these algorithms in a unified manner from 
the perspective of the standard feedback control problem 
of [14], which is commonly used in the control literature. 
The standard control problem has historically been used in 
robust fixed-gain control, but also provides a systematic 
framework for adaptive control schemes. 

The second goal of the paper is to report experimental 
results that compare the performance of the various algo- 
rithms. To do this, we test each algorithm on an acoustic 
duct with five different disturbance spectra, namely, single 
tone, dual tone, moving single tone, broadband, and fan 
noise. In each case, we evaluate the performance of the 
algorithms in terms of convergence and rejection level. 

2. Adaptive Control and The Standard 
Problem 

b) Reference Feedtack 

Control Law 41 
I 

Figure 1: The Standard Problem with Performance As- 
sumption 

Consider the linear discrete-time, two-input two- 
output (TITO), system shown in Figure 1. An exogenous 
disturbance w E Rmw and a control signal U E Rm* are 
the inputs to the plant, while the measurement y E R'w, 
and the performance z E 77,'. are the outputs. The transfer 
matrix G E 1 2 ( ' ~ + ' v ) x ( m w + m - )  is defined by 
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and G, E RiuXmu is the the transfer matrix of the con- 
troller. The system is described by the input output rela- 
tion 

r .  

where the control signal U is given by the feedback relation 

U = G,y. (3) 

All of these transfer matrices are z-domain representations. 
The reader should note the notational difference between 
the performance variable z and the complex variable z used 
in the a-transform. 

Each entry of G is a transfer matrix that represents 
a distinct noise or vibration path. In the adaptive noise 
cancellation literature, GZw E 72'. X m w  is the primary path 
corresponding to the transfer matrix from the disturbance 
w to the performance z ,  G,, E R i u X m w  is the reference 
path corresponding to the transfer matrix from the dis- 
turbance w to  the measurement y, G,, E RrSxm* is the 
secondary path corresponding to the transfer matrix from 
the control U to the performance z ,  and G,, E 7i!'uxm- 
is the feedback path corresponding to the transfer matrix 
from the control U to the measurement y. Although this 
terminology is fairly standard in the feedforward control 
literature, it has not previously been defined within the 
standard problem framework. 

In standard Hz or H ,  fixed-gain controller design all 
of the transfer matrices of G need to be known a priori. 
In general it may be difficult to identify or model all of 
these transfer matrices with a sufficient level of accuracy. 
Moreover, the plant and disturbance spectra may be time 
varying. In these cases, adaptive techniques may improve 
the system's performance, with less a priori modeling. 
This modeling and disturbance information is implicitly 
determined on line during the adaptation process. 

One fundamental distinction between conventional 
fixed-gain control and adaptive control is the fact that 
in fixed-gain control, the performance variable z is not re- 
quired as a physical measurement, but rather is used as a 
design variable. In adaptive control, however, little knowl- 
edge of the plant dynamics is needed at the expense of 
requiring real time knowledge of the performance. This 
requirement dictates that the performance z be measured 
and fed back to the controller online as shown in Figure 1. 
The performance assumption is said to be satisified when 
this requirement is met. Additionally, when the control 
has little effect on the measurement, the feedback path 
can be ignored, or G,, = 0. In this case the feedforward 
assumption is satisfied, Moreover, the dynamics of the ref- 
erence path are sometimes ignored, or G,, = I .  In this 
case the disturbance measurement assumption is satisfied. 
The secondary path is also sometimes ignored in the same 
manner as G,, = I .  In this case the control feedthrough 
assumption is said to be satisifed. 

~ 
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3. Adaptive Control Algorithms 
In this section we review three adaptive control algo- 

rithms within the framework of the standard problem de- 
veloped in Section 2. Each algorithm attempts to minimise 
on-line a performance measure based on the performance 
variable z. 

All of the algorithms considered in this paper assume 
that at each instant in time the controller has a linear 
structure. The time-varying parameters of the controller 
are varied by the update algorithm through adaptation. 

The adaptive control laws considered in this paper have 
two distinct parts. The controller G&) processes the ref- 
erence signal y(k) and outputs the actuation signal u(A), 
while the adaptive algorithm modifies parameters within 
the controller. The adaptive algorithm invokes the per- 
formance assumption as a means of adjusting parameters 
during the adaptation process by utilizing information con- 
tained in the performance measurement z( k). 

3.1. Filtered-X LMS Algorithm 
The filtered-x LMS algorithm (FXLMS), which is 

perhaps the most commonly used adaptive control algo- 
rithm in noise cancellation applications, is based on the 
least mean square (LMS) algorithm of [lo]. This section 
presents the LMS algorithm and then extends it to the 
filtered-x LMS algorithm developed in [15] and [16]. 

The controller considered in this section is assumed to 
have a finite impulse response (FIR) structure. Because 
the FIR structure only incorporates zeros into the feed- 
forward path, it is always stable. The update law adjusts 
the FIR filter coefficients on-line in order to minimize the 
performance measure. 

Adaptive 1 
Algorithm I L  

Figure 2: Block Diagram of Adaptive Control Law and 
Error Path 

Consider the block diagram of the control law shown 
in Figure 2, where y(k) E R is the input to the controller, 
u(k)  E R is the output of the controller, d ( A )  = G,,w(k) E 
R is the propagated disturbance, and c ( k )  E R is the can- 
cellation signal that arrives at the point of the performance 
measurement. The performance z(k) E R is chosen as the 
sum of d ( k )  and c (k )  and is fedback to the adaptive algo- 
rithm h. When c ( k )  = -d(k) perfect rejection is obtained. 



The transfer function of the controller Gc,k(z) is ex- 
pressed instantaneously as 

Gc,k(Z) = Qo(k) + Ql(k)S-l+. . . + Qn-l(k)Z-”+l, (4) 
where n is the order of the controller. The transfer function 
of (4) can be more conveniently represented by the vector 
q(k) 6 R” which contains the filter coefficients of the FIR 
filter as 

q ( k )  [ qo(k) ql(k) . * *  Qn-l(k) I T ,  ( 5 )  

u ( k )  = qT(k>Y(k> (6) 

Y(k)  e [ y(k) y(k - 1) . . . y(k - n+ 1) 1’. (7) 

where T denotes the transpose. Furthermore, u(k) can be 
expressed as 

where Y(k)  is defined by 

h 

Now consider the error performance measure J ( k )  = 
z 2 ( k ) .  The gradient of f(k) with repsect to q(k )  is given 

”(”/ 

bY 

Vq(k)T(k)  = 2%(k)Y(k). 
m d  this gradient is used in the steepest-descent 
.aw 

The update law (9) is the basic LMS algorithm. 
Q(k + 1) = d k )  - P4k)Y(k).  - B b ( Z )  

itailed analysis of the LMS algorithm including choices of 
convergence rate p is given in [6]. 

We note that the feedforward assumption is invoked, 
effectively ignoring propagation of the control signal to the 
feedback sensor. The presence of this feedback path may 
destabilize the closed loop system when this assumption 
is not valid. Additionally, the secondary path assumption 
is made, thus neglecting the dynamics of the secondary 
path G,,,. This assumption can adversely affect the per- 
formance of the algorithm if appreciable dynamics exist in 
ihis path. 

One way to circumvent the error path assumption is 
1,hrough the use of the filtered-x LMS algorithm (FXLMS), 
whose name comes from the original derivation in which 
the input to the controller y(k) was denoted “~(k)” and 
subsequently “filtered” by G,, [15]. 

The instantaneous gradient of the performance (with 
a slight abuse of notation) now involves the dynamics of 
G,, and is given by 

- 

V q ( k ) f ( k )  = 2z(k)G,,(z)Y(k). (10) 

Defining Y’(k) 
I/(k), the filtered-x LMS algorithm becomes 

G,,(z)Y(k) as the filtered version of 

q(k + 1) = q ( k )  - PZ(k)Y’(k) .  (11) 
We note that knowledge of G,, is required in order to 

implement the adaptive algorithm. One advantage of this 
method is its insensitivity to errors in the identification of 
G‘,, for cases of slow adaptation, as is shown in [17]. 

(8) 

(9) 

update 

A de- 

~ 
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Figure 3: IIR Controller 

Consider the IIR controller of Figure 3, and assume 
that A ~ ( z )  and &(z) are FIR transfer functions. Define 
the vector containing the coefficients of Ak(z) E R” and 
&(z) E Rm at time k as 

a(k) 2 [ uo(k) Ul(k) * e -  an-10)  1; (12) 

b(k)  2 [ bl(k) b2(k) . * *  bm(k) ]; 

U(k-1)  = [ u(k- 1) u(k-2)  e . .  u ( k - m )  1’. 

(13) 

and 
A 

(14) 

u(k) = qT(k) r (k ) .  (15) 

The output of the IIR filter u(k)  is now given by given by 

A where q(k )  [ u(k) b ( k )  1: r (k )  = 
[ Y(k)  U ( k  - 1) 1: and Y(k)  is defined in (7). 

As before, the instantaneous square of the performance 
is to be minimized with respect to the vector q(k). This 
minimization is performed by the method of steepest de- 
scent which involves the gradient of the performance z ( k ) .  
Assuming slow convergence, [6] has shown that 

Vq(k&k) = GzU(~)r(k). (16) 



Using (16) in the steepest descent algorithm, the filtered-U 
recursive LMS algorithm becomes 

and the ARMARKOV regressor vectors by 

q(k  + 1) = q ( k )  - P ’ ( @ ( k ) ,  (17) 
where r’ (k) is defined by 

r’(k) k? Gzu(a)r(k), (18) 
which is the filtered version of the reference vector r (k ) .  It 
should be noted that in previous derivations of this algo- 
rithm, the vector r (k )  was called “u(k)” which motivated 
the name of the algorithm. As in the FXLMS algorithm, 
the secondary path G,, must be identified off-line before 
implement at ion. 

A rigorous proof of convergence for this algorithm does 
not exist. The filtered-U recursive LMS algorithm can be 
ill-conditioned for large order IIR filters, so that in general 
the order of the filter should be chosen as small as possible. 

3.3. ARMARKOV/Toeplitz Adaptive Al- 

This algorithm uses the ARMARKOV/Toeplita sys- 
tem representation described in [19], [13]. The A R  
MARKOV/Toeplitz system representation relates win- 
dows of input and output information and explicitly in- 
volves the Markov parameters of the system. In [20] it is 
shown that these models are less sensitive to measurement 
noise during identification. 

gorithm 

Q~~ E [ z ( k  - z ( k  - 7 - n - p +  2) 

y(k - q - 12 - p + 2) 

~ ( k )  w ( k - q - n - p + 2 ) ] ?  (26) 
A 
= [ y(k - 7) ’ * * 

w(k)  w ( k - q - n - p + 2 ) ] ?  (27) 

with the positive integer p representing the length of the 
data window, and p ,  = 7 + n + p - 1. The matrices 
Wzw , B,, , Wvw and B,, are block-Toeplitz matrices which 
contain the ARMARKOV coefficients and Markov param- 
eters of the system. 

Let O(k) E ar~~xnc*r~+(nc+9c-1)*~~) denote the matrix 
of ARMARKOV parameters of an ncth order controller 
with qc Markov parameters such that 

U ( k )  = C!llLjO(k - j + l)Rj@uy(k). (28) 

Lj and Rj are constraint matrices that maintain the block- 
Toeplitz structure of the matrix C!flLjO(k -j+ 1)Rj and 

Q,,(k)  = [ u ( k - q c )  u(k-qc-nc-pc+2)  A 

Y(k - 1) ’ Y(k - rlc - nc - pc  + 2) IT (29) 

We now define the estimated performance k(k) and 
performance measure J^(k) by 

can be written in ARMARKOV form with v Markov pa- 
rameters as 

y(k) = 

The estimated performance is based on past dt ta  with the 
present controller parameters. We note that Z ( k )  can be 
calculated without access to w ( k )  as 

n 9 

-ajy(k - 7 - j + 1) + 
j=1  j=1 

Hj-lu(k - j + 1) 
n z ( k )  = z ( k )  + B,, (cp,r,e(s)q@,,(k) - U@)) . (32) 

+ C B j u ( k  - ’-’ + (20) 
The gradient based update law for O(k) to minimize 

B(k + 1) = O(k) - ~(k)C~~lL~B~uZ(k)Qu~(k)TR~, (33) 

. This where the adaptive SteP-siZe P ( k )  = 
adaptive step-size ensures the [ IO* - O ( k ) l l F ,  where O* min- 
imizes J^(k), is always decreasing. 

The use of the adaptive step-size yields fast conver- 
gence and stable adaptation. Like LMS algorithms, the 
ARMARKOV/Toeplitz alogrithm requires knowledge of 
the matrix Bzu which represents the Path Gzu.  

j=1 
J^(k) is given by 

where the coefficients aj E R, Bj E 7 2 ‘ u x m n 1  j = 1,. . ., n 
and the Markov parameters Hj E R’uXmn. The Markov 
parameters of a system are the impulse response coeffi- 
cients of a system. As shown in [13], the ARMARKOV 
representation of the standard problem described in Sec- 
tion 2 is 

(21) 
Y ( k )  = W,W@,W(k.) + By,U(k), (22) 

where the extended Performance, measurement and control 

1 
1 l B  JaJJ@,Uu(k)ll$ F 

qk.1  = W,w&u(~) + B%,U(k), 

vectors are defined by 4. Experimental Results 
A All of the algorithms presented in Section 3. were 

Z ( k )  = [ z ( k )  . a -  r(k-p+l)]T (23) tested on an acoustic duct with a circular cross section. 
The duct is 80 inches in length and has a diameter of 4 
inches. Speakers are used as actuators and their interface 

U ( k )  = [ u(k) u(k - pc + 1)IT (25) to the duct is through a 4 inch diameter opening, while 

(24) Y ( k )  !? [y(k) ... y(k-p+l)]T 
A 
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Parameters 

Algorithm Single Dual 
Tone Tones 

White Fan 
Noise Noise 

FXLMS 
FURLMS 

ARMIToeD 

Table 2: Disturbance Attenuation Comparison 

29.3dB 26.5 dB unstable unstable 
56.3 dB 24.3 dB unstable unstable 
89.5 dB 24.9 dB 6.5 dB 60.2 dB ~ 

microphones are used as sensors. The disturbance speaker 
is positioned at the closed end of the duct and the mea- 
surement microphone is located 4 inches away. The perfor- 
mance microphone is located 6 inches from the open end of 
the duct and the control speaker is located 16 inches from 
the open end. 

The performance and measurement signals are passed 
through a low pass anti-aliasing filter, which rolls off at 315 
Hz, while a dSPACE ds1102 real time controller running 
a C30 DSP processor samples at 800 Hz. 

Each algorithm was tested with the following distur- 
bance signals: a single tone at 115 Hz, dual tones at 115 
Hz and 125 Hz, a moving tone swept from 115 Hz to 125 
He, band-limited white noise and fan noise. 

The algorithm parameters are described in Table 1. 
Some of the representative open-loop and closed-loop fre- 
quency response plots are shown in Figures 4 - 7 and the 
experimental results are summarized in Table 2. 

0 

-20 

-40 

-60 

-80 

e, 
-110 

4 4 0  

-160 

-180 

10 100 110 to0 210 SO0 S I 0  MO 410 100 
-200; 4 a " ' n " 

f BlZ) 

Figure 4: Performance Spectrum z - FXLMS with a single 
tone 

5 .  Comments 
Three adaptive algorithms have been presented in the 

standard feedback control framework and implemented on 
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Figure 5: Performance Spectrum z - FUREC with a single 
tone 
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Figure 6: Performance Spectrum z - ARMARKOV with a 
single tone 

an acoustic duct experiment. All of the algorithms were 
successful in rejecting a computer-generated single tone, 
moving tones and dual tones to varying degrees. The con- 
vergence rate for the LMS algorithms was fixed at the max- 
imum value for which the algorithm was stable. Only the 
ARMARKOV/Toeplitz algorithm was capable of rejecting 
the computer generated band-limited white disturbance 
and the fan disturbance. Also, the ARMARKOV/Toeplitz 
algorithm converged faster in general as a result of the use 
of an adaptive step-size. 

All of the algorithms introduced high gain at the dis- 
turbance frequency, in turn creating a notch in the closed- 
loop transfer function at the this frequency. Some of the 
controllers exhibited spillover, making parts of the spec- 
trum louder, but this only occurred near the floor of the 
background noise. Because this spillover occurred in fre- 
quency bands that did not overlap with the disturbance 
spectrum it had only minor effects on the performance. 
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