
This article was downloaded by:[Rogers, E.]
On: 5 June 2008
Access Details: [subscription number 793777376]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Unified optimal projection equations for simultaneous
reduced-order, robust modelling, estimation and control
Wassim M. Haddad a; Dennis S. Bernstein b
a Department of Mechanical Engineering, Florida Institute of Technology,
Melbourne,, FL 32901, U.S.A.
b Harris Corporation, Government Aerospace Systems Division, Melbourne,, FL
32902, U.S.A.

Online Publication Date: 01 April 1988

To cite this Article: Haddad, Wassim M. and Bernstein, Dennis S. (1988) 'Unified
optimal projection equations for simultaneous reduced-order, robust modelling,
estimation and control', International Journal of Control, 47:4, 1117 — 1132

To link to this article: DOI: 10.1080/00207178808906078
URL: http://dx.doi.org/10.1080/00207178808906078

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207178808906078
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

09
:4

9 
5 

Ju
ne

 2
00

8 

Unified optimal projection equations for simultaneous reduced-order, 
robust modelling, estimation and control 

WASSIM M. HADDADt a n d  DENNIS S. BERNSTEINS 

An optimal design problem which unifies reduced-order modelling, estimation and 
control problems is stated. Necessary conditions for optimality are obtained in the 
form of a coupled system of modified Riccati and Lyapunov equations. The results 
permit treatment of several new problems, such as reduced-order dynamic compen- 
sation with partially known disturbances and unified reduced-order control and 
estimation. Upon appropriate specialization, results obtained previously for the 
individual problems of reduced-order modelling, estimation and control are 
recovered. An additional feature is the inclusion of parameter uncertainty bounds so 
that the necessary conditions for an auxiliary minimization problem serve as 
sufficient conditions for simultaneous robust, reduced-order modelling, estimation 
and control. 

Notation and definitions 
Note. All matrices have real entries. 

real numbers; r x s real matrices; R'" ' 
r x r identity matrix, transpose 
Kronecker sum; Kronecker product (Brewer 1978) 
r x r symmetric matrices 
r x r symmetric non-negative-definite matrices 
r x r symmetric positive-definite matrices 
z,-Z,EN', Z , ,Z ,E~ '  
z,-Z,EB', zl,z2ESr 

matrix with eigenvalues in open left half-plane 
positive integers 
n + n, 
n, m, I, f ,  n,, q, f ,  ri-dimensional vectors 
n x n matrices; n x m matrices; 1 x n matrices 
n x n, n x m, 1 x n matrices, i = 1, ..., p 
positive numbers, i = I, ..., p 

n , x n , , n , x l , n , x ~ , m x n , , q x n , , l x n , m a t r i c e s  
n x A, i x  n matrices 

q x n matrix 

Received 9 March 1987. Revised 20 May 1987. 
t Department of Mechanical Engineering, Florida lnstitute of Technology, Melbourne, FL 

32901, U.S.A. 
f Harris Corporation, Government Aerospace Systems Division, Melbourne, FL 32902, 

U.S.A. 



D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

09
:4

9 
5 

Ju
ne

 2
00

8 W. M. Haddad and D. S .  Bernstein 

estimation-error weighting in pq 
model-error weighting in p1 
state weighting matrix in fin 
control weighting matrix in pm 
n x m cross weighting matrix such that R, - R,,R;'RT, 
> 0 
m-dimensional white noise independent of w,( .) and 
w2( ' 1  
n-dimensional white noise 
/-dimensional white noise 
intensity of wl( . )  in fin 
intensity of w2( 0 )  in k' 
n x 1 cross intensity of wl( . ), w2( . ) 
intensity of w( ) in k' 
expected value 

1. Introduction 
The problems of quadratically optimal reduced-order modelling, estimation and 

control have been treated in a common framework by Hyland and Bernstein (1985), 
Bernstein and Hyland (1985), and Hyland and Bernstein (1984), respectively. 
Specifically, by carrying out a judicious transformation of variables, it was shown that 
the necessary conditions for optimality could be cast as  coupled systems of 2, 3 and 4 
modified Lyapunov and Riccati equations, respectively. The coupling is via an  oblique 
projection (i.e. idempotent matrix) which arises as a direct consequence of optimality 
and which determines the geometric structure of the reduced-order model, estimator, 
o r  compensator. When the order of the estimator or compensator is set equal to the 
order of the plant, the additional modified Lyapunov equations drop out and the 
remaining modified Riccati equations reduce to the standard steady-state Riccati 
equations of Kalman filter and L Q G  theory. 

An immediate benefit of this formulation of the necessary conditions is clarifi- 
cation of the relationship between the operations of model reduction and estimator o r  
controller design. Specifically, although the additional pair of modified Lyapunov 
equations arising in the reduced-order estimation and control problems are analo- 
gous to the pair of modified Lyapunov equations characterizing the optimal reduced- 
order model, these equations are now inextricably coupled with the modified Riccati 
equations characterizing the estimator and controller design. Hence, because of the 
coupling, this approach is distinct from LQG controller-reduction techniques (see, for 
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8 Unified optimal projection equations 1119 

example, Liu and Anderson 1986, and Jonckheere and Silverman 1983). A com- 
parison between the LQG reduction methods reviewed by Liu and Anderson (1986) 
and the optimal projection approach has been given by Greeley and Hyland (1988). 

The goal of the present paper is to unify the results obtained previously for 
reduced-order modelling, estimation and control by deriving a single result which, 
upon appropriate specialization, yields the reduced-order modelling, estimation and 
control results as special cases. This is accomplished by defining a generalized 
performance functional which incorporates features of all three criteria. Thus the 
optimization problem involves determining a single reduced-order system which 
simultaneously serves as a reduced-order model, estimator and controller (or any two 
of these as desired). The necessary conditions now take the form of a coupled system 
of two modified Lyapunov equations and two modified Riccati equations which can 
be specialized to the necessary conditions obtained previously for the reduced-order 
modelling, estimation and control problems. 

There are several motivations for developing a unified formulation encompassing 
all three results. For example, in the full-order case the certainty equivalence principle 
implies that the states of the optimal dynamic compensator are also optimal estimates 
of the plant states. This is definitely not the case for an optimal reduced-order 
controller in which the states may bear no resemblance to the plant states. The unified 
formulation of the present paper, however, expresses the desire that compensator 
states also provide estimates of selected plant states. Of course, except in the full- 
order case, such a compensator will generally be suboptimal from a strictly control 
point of view since the design also serves as  an  estimator. A similar formulation has 
been considered by Wilson and Kumar (1983). 

Additional problems which can be handled in the unified setting involve reduced- 
order estimation and control in the presence of partially known plant disturbances. 
When measurements of disturbance components arc available during real-time 
operation, such measurements can be used as inputs to the estimator or controller to 
improve performance. Note that this problem incorporates aspects of the model- 
reduction formulation in which the same white noise signal is injected into both the 
plant and the design system. 

A practical motivation for the unified problem setting is convenience in developing 
numerical algorithms for treating different problems. In particular, a single algorithm 
for solving the unified optimal projection equations can readily be used for all special 
cases without reprogramming. (For discussions of numerical algorithms for the 
optimal projection equations, see Greeley and Hyland 1988, and Richter 1987.) 

An additional feature of the results given herein is the treatment of parametric 
uncertainty in the plant matrices. By bounding the effects of parameter uncertainty on 
worst-case system performance, the necessary conditions for optimality effectively 
serve as sufficient conditions for robust stability and performance. A similar approach 
has been carried out by Bernstein and Haddad (1988), using structured stability 
radius bounds. In the present paper we use an  alternative bound which corresponds to 
a right shift of the dynamics matrix (or equivalently, an exponential cost weighting) in 
conjunction with multiplicative white-noise type terms. The effect of multiplicative 
noise on the optimal projection equations has been developed by Bernstein and 
Hyland (1988). In the present paper such underlying interpretations will be suppres- 
sed since only the bound per se will be needed. Hence, although we use the phrase 
'multiplicative white noise' for convenience in referring to the type of bound used, it 
should be stressed that our treatment of parameter uncertainty is wholly determin- 
istic. (See Bernstein 1987 a, and Haddad 1987, for further background and discussion.) 
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2. Simultaneous reduced-order, robust modelling, estimation and control 
In this section we state the 'robust performance problem' for simultaneous 

reduced-order modelling, estimation and control along with related notation for later 
use. Let U c R""" x RnXm x R'"" denote the set of uncertain perturbations 
( A A ,  AB, AC) of the nominal system matrices A, B and C. 

Robust performance problem 
For fixed n,< n, determine (A,, B,, B,, C,, C,, C,) such that, for the augmented 

system consisting of the nth-order controlled and disturbed plant 

i ( t )  = ( A  + AA)x( t )  + ( B  + AB)u(t) + Bw(t) + w ,  (r) ,  t E [0, co) (2.1) 

with noisy and non-noisy measurements 

y(t) = ( C  + AC)x(t)  + w,(t) (2.2) 

j ( t )  = e x ( d  (2.3) 

and n,th-order design system 

i , ( t )  = A,x,(t) + B , Y ( ~ )  + B,w(t) (2.4) 

= C,x,(t) (2.5) 

y.(t) = C,x,(t) (2.6) 

y,(t) = C,x,(t) (2.7) 

the performance criterion 

J(A,,  B,, B,, C,, C,, C,) LA J ,  + J ,  + J ,  (2.8) 

is minimized, where 

J,  A sup lim sup E[xT( t )R ,x ( t )  + 2 x T ( t ) R I 2 u ( t )  + uT(t)R2u(t )]  (2.9) 
IAA.AB.AC) e U  I- m 

J ,  A sup lim sup E[Lx(t)  - y, ( t ) lTRILx( t )  - ye(t)] (2.10) 
I A A . A B . A ~ E U  I - m  

J ,  A sup Iim sup E[j ( t )  - ~ , ( t ) ] ~ R [ j ( t )  - y,(t)] (2.1 1 )  
I A A . A B . A C ) € U  I-m 

Remark 2.1 
Suppose there are no uncertainties present, i.e. AA, AB, AC = 0. By setting L= 0 

and d = 0 ,  it follows that J ,  and J ,  play no role in the optimization problem when C ,  
and C,  are both taken to be zero. As will be seen in Theorem 6.1, this is indeed the 
optimal solution in this case. If, furthermore, 6 = 0, then the reduced-order dynamic- 
compensation problem of Hyland and Bernstein (1984), is recovered. If, alternatively, 
R ,  = 0, R , ,  = 0, B = 0, B = 0 and e = 0 then the reduced-order state-estimation 
problem of Bernstein and Hyland (1985) is obtained. Finally, setting R ,  = 0, R, ,  = 0 ,  
L= 0, V, = 0, B = 0 and C = 0 yields the model-reduction problem considered by 
Hyland and Bernstein (1985). 

Remark 2.2 
Suppose L=O and 6 = 0  (so that with C, and C ,  both zero J ,  and J ,  are 

ineffective) but that B # 0. In this case, a portion of the plant disturbance, which is 
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8 Unified optimal projection equations 1121 

assumed to be measurable during on-line operation, is being fed directly into the 
compensator. Hence this problem, which generalizes that of Hyland and Bernstein 
(1984), can be thought of as reduced-order dynamic compensation with partially 
known disturbances. Similarly, the case R ,  = 0, R, ,  = 0, B = 0 and e = 0 but B # 0 
provides a generalization of Bernstein and Hyland (1985), which can be thought of as  
reduced-order state estimation with partially known disturbances. 

For each variation ( A A ,  AB, AC) E U, the augmented system (2.1)-(2.5) can be 
written as 

k( t )  = ( A  + ~ A ) i ( t )  + w), t E [o, W )  (2.12) 

where 

and G(t) is white noise with intensity PE fi'. 
For the 'robust performance problem' the cost can be expressed in terms of the 

second-moment matrix of f ( t ) .  The following result is immediate. 

Proposition 2.1 

For given (A,, B,, El,, C,, C,, C,) and ( A A ,  AB, AC) E U the second-moment 
matrix 

QAn(t) E [ i ( t ) f T ( t ) ] ,  t E [0, W )  (2.14) 

satisfies 

eAn( t )  = ( A  + ~ A @ d t )  + QA2(t) (A + A A ) ~  + R t E [o, a) (2.15) 

Furthermore, 

J(A,,B,,B,,C,,C,,C,)= sup Iimsup t roA2( t ) I?  (2.16) 
(AA. AB. AC) E U I -  m 

3. Sufficient conditions for robust stability and performance 
In practice, steady-state performance is only of interest when the augmented 

system is stable over U. The following result is immediate. 

Lemma 3.1 
Suppose the system (2.12) is stable for all ( A A ,  AB, AC) E U. Then 

where QAx E is the unique solution to 

O = (A + A A ) & ~  + OAn(A + A A ) ~  + P 

Remark 3.1 
When U is compact, 'sup' in (3.1) can be replaced by 'max'. 

Since it is difficult to determine J(A,, B,, B,, C,, C,, C,) explicitly, we shall seek 
upper bounds. 
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Theorem 3.1 
Let R :  A% RnCxX' x Rm "".+ 8 9 e  such that 

AAQ + QAAT < R(Q, B,, C,) 

(AA,  AB, AC) E U, ((1, B,, C,) E RRxX'  x RmXnC (3.3) 

and, for given (A,, B,, B,, C,, C,, C,), suppose there exists O E A5atisfying 

o = Aa + aAT + n(a, B,, c,) + B (3.4) 

Furthermore, suppose the pair ( P 1 l 2 ,  A + AA) is detectable for all ( A A ,  AB, AC) E U. 
Then A + AA is asymptotically stable for all ( A A ,  AB, AC) E U, 

< Q, ( A A ,  AB, AC) E U (3.5) 

and 

Proof 
For all (AA,  AB, AC) E U, (3.4) is equivalent to 

where 

Note that by (3.3), Y ( Q ,  B,, C,, AA) 3 0  for all ( A A ,  AB, AC) E U. Since (8'12, A 
+ AA) is detectable for all (AA,  AB, AC) E U, it follows from Theorem 3.6 of Wonham 
(1979), that ( ( B +  Y ( Q ,  B,, C,, AA))'I2, A+ AA) is detectable for all 
( A A ,  AB, AC) E U. Hence Lemma 12.2 of Wonham (1979), implies that A + AA is 
asymptotically stable for all ( A A ,  AB, AC) E U. 

Next, subtracting (3.2) from (3.7) yields 

O=(A + AA)(Q - QA,) + ( Q  - QAn)(A + A A ) ~  + Y(0 ,  B,, C,, AA) 

or, equivalently (since A + AA is asymptotically stable), 

- QAA = J: exp ( A  + A d ) t  Y(O,  B., C,, A 4  exp (2  +  AX)^^ dt > 0 

which implies (3.5). Finally, (3.5) and (3.1) yield (3.6). 0 

Remark 3.2 
For the dynamic-compensation problem the result that A + AA is asymptotically 

stable for all (AA,  AB, AC) E U is equivalent to robust stability of the closed-loop 
system. For the state-estimation and model-reduction problems, however, A + AA is 
lower block triangular (since B = 0 )  and block diagonal (since C = O) ,  respectively. 
Thus robust stability is equivalent to A, stable and A +  AA stable for all 
( A A ,  AB, AC) E U. 

We also note a sufficient condition for the solution Q of (3.4) to be positive 
definite. 
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Proposition 3.1 
Let R be as in Theorem 3.1, let (A,, BCLB,, C,, C,, C,) be given, and suppose there 

exists Q E AQatisfying (3.4). If (VIIZ, A + AA) is observable for some 
(AA, AB, AC) E U, then Q is positive definite. 

Proof 
If (P1/', A +  AA) is observable for some (AA, AB, AC) E U, then, by Theorem 3.6 

of Wonham (1979), ( ( P +  Y(Q, B,, C,, A A ) ) ~ / ~ ,  A + AA) is also observable for the 
same (AA, AB, AC) E U. It thus follows from (3.7) and Lemma 12.2 of Wonham 
(1979), that Q is positive definite. 0 

Remark 3.3 
If is positive definite then the detectability and observability hypotheses of 

Theorem 3.1 and Proposition 3.1 are automatically satisfied. 

Remark 3.4 
Theorem 3.1 can be strengthened by noting that the detectability assumption is, in 

a sense, superfluous. To see this, first note that robust stability concerns only the 
undisturbed system while P involves the disturbance noise. Hence robust stability is 
guaranteed by the existence o fa  solution Q E A"atisfying(3.4) with Preplaced by a l ,  
for some a > 0. For this replacement detectability is automatic (see previous remark). 
For robust performance, however, Q in (3.5) must be obtained from (3.4). 

4. Uncertainty structure and right shift multiplicative white noise bound 
The uncertainty set U is assumed to be of the form 

where, for i = 1, ..., p: Ai E R""", Bi E R""" and Ci E R I X n  are fixed matrices denoting 
the structure of the parametric uncertainty; 6, is a given uncertainty bound; and ai is 
an  uncertain real parameter. The closed-loop system thus has structured uncertainty 
of the form 

where 

To obtain an  explicit gain expression for (A,, B,, B,, C,, C,, C,) we require that 

That is, for each i E {l ,  ..., p} either Bi o r  Ci is zero. Of course, both Bi = 0 and Ci = 0 
are possible for a given i, and there are no  restrictions on Ai. 
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Given the structure of U defined by (4.1) we can define the bound satisfying (3.3). 

Proposition 4.1 
Let a , ,  ..., up  be arbitrary positive scalars. Then the function 

P 

R(Q, B,, C,) = 1 6,(cciQ + u; ' z ic lAT)  
i =  l 

satisfies (3.3) with U given by (4.1) 

Proof 
Note that 

0 < [ U ~ ( U ~ / G ~ ) ' / ~  I d  - (6i/ui)L/2Ai]Q[ui(ui/6i)11Z I* - (6i /ui j ' /2Ai]T 

= u?(ui/&)Q + ( 6 i / u i ) A ' i ~ ~ ~  - ui (AiQ + QA') 

which, since u? < B ? ,  implies (3.3). 0 

5. Auxiliary minimization problem 
Rather than minimize the actual cost (2.8), we shall consider the upper bound 

(3.6). This leads to the following problem. 

Auxiliary minimization problem 
Determine (A,, B,, B,, C,, C,, C,) and 0 E 1(1"hich minimize 

J(A, ,B, ,B, ,C, ,C, ,C, ,Q)~trQ~ (5.1) 
subject to 

and 

(V l iZ ,  A + AA) is detectable, ( A A ,  AB, AC) E U (5.3) 

Proposition 5.1 
If (A , ,  B,, B,, C,, C,, C,, Q) is admissible, i.e. (A,,  B,, B,, C,, C,, C,, 0) satisfies 

(5.2) and (5.3), then A + AA is asymptotically stable for all ( A A ,  AB, AC) E U and 

Proof 
With R given by (4.4), Proposition 4.1 implies that (3.3) is satisfied. Furthermore, 

admissibility implies that (3.4) has a solution Q E  N ?  Hence, with (5.3), the 
hypotheses of Theorem 3.1 are satisfied so that robust stability with the performance 
bound (3.6) is guaranteed. Note that with the definition (5.1), (5.4) is merely a 
restatement of (3.6). 0 

6. Necessary conditions for the auxiliary minimization problem 
The derivation of the necessary conditions for the 'auxiliary minimization 

problem' is based upon the Fritz John form of the Lagrange multiplier theorem. 
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Rigorous application of this technique requires additional technical assumptions. 
Specifically, we further restrict ( A , ,  B,, B,, C,, C,, C,) to the set 

S { ( A , ,  B,, B,, C,, C,, C,, 0) : Q E p" A is asymptotically stable, and 

( A , ,  B,, C,) is minimal) 
where 

with, for convenience, 
yi A 6,/ai 

The following observation assures us that we can apply Lagrange multipliers over an 
open constraint set. 

Proposition 6.1 
The set S is open. 

Proof 
It need only be noted that S is the intersection of three open sets. 0 

Remark 6.1 
The constraint ( A , ,  B,, B,, C,, C,, C,, Q)  E S is not required for either robust 

stability or robust performance. As can be seen from the proof of Theorem 6.1 in the 
Appendix, the set S constitutes sufficient conditions under which the Lagrange 
multiplier technique is applicable to the 'auxiliary minimization problem'. Specifi- 
cally, asymptotic stability of A serves as  a normality condition which further implies 
that the dual P of Q is non-negative definite. Furthermore, ( A , ,  B,, C,) minimal is a 
nondegeneracy condition which implies that the lower right n, x n, subblocks of Q 
and P are positive definite. It is extremely important to emphasize that Proposition 
5.1 implies that it is not necessary for guaranteed robust stability and performance 
that an admissible quadruple, obtained by solving the necessary conditions, actually 
be shown to be an  element of S. 

For arbitrary Q ,  P, Q, 6 E Rnx" define the following notation: 

A , P A , - Q s V t l C ,  A P A A o - B R ; s l P s  

The following factorization lemma is needed for the statement of the main result. 

Lemma 6.1 
If Q, P E  fin then QP is diagonalizable with non-negative eigenvalues. If, in 

addition, rank QP = n,, then there exist n, x n G ,  r and n, x n, invertible M such that 
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r-GT = I"< (6.2) 

Furthermore, G, M and r are unique except for a change of basis in Rnc. 

Proof 
The result is an immediate consequence of Rao and Mitra (1971), Theorem 6.2.5, 

p. 123. 0 

A triple (G, M, T) satisfying (6.1) and (6.2) will be called a projective factorization 
of&P. Since QP is diagonalizable it has a group generalized inverse (&p)# = GT M -  r 
and 

a Q P ( Q ~ ) # =  GT 

is an oblique projection. Furthermore, define the complementary projection 

Tl A I" - 7. 

Theorem 6.1 
Suppose (A,, B,, B,, C, ,  C,,-C,, Q) E S solves the 'auxiliary minimization 

problem'. Then there exist Q, P, Q, P E fin such that, for some projective factorization 
(G, M, r) of QP, Ac, Bc, B,, C, ,  C , ,  C ,  and Q are given by 

and such that Q, P, Q and P satisfy 

-P:R;~P,+TI[P~R,~P,+ L ~ R L +  CTRelr, (6.1 1) 

o = A , Q + Q A ~ + Q , v ~ ; ' Q : + B v ~ ~ - T , [ Q , v ~ ; ' Q : + B v B ~ ] T ~  (6.12) 

o= A;P+ PA~+P:R;~P,+  L ~ R L +  P R ~ - T I [ P : R ; ~ P ~ +  L ~ R L +  P R Q T ,  
(6.13) 

rank Q = rank P = rank QP = n, (6.14) 
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Proof 
For the proof see the Appendix. 

Remark 6.2 
As in Remark 2.1 suppose AA, AB, AC = 0. By setting L= 0, B = 0 and C = 0, 

(6.10)-(6.13) specialize to  the optimal projection equations (2.18)-(2.21) derived by 
Hyland and Bernstein (1984), with the added features of correlated plant/measure- 
ment noise (V,,) and cross weighting (R , , ) .  If R ,  = 0, R , ,  = 0, B = 0 ,  B = 0 and e = 0 
then, since P,= 0, (6.11) drops out and the remaining equations (6.10), (6.12) and 
(6.13) specialize to (2.10)-(2.12) of Bernstein and Hyland (1985). Finally, if R ,  = 0, 
R,,=O,L=O, Vl=O,B=OandC=0,then,sinceQ,=P,=0,(6.10)and(6.11)drop 
out and the remaining equations (6.12) and (6.13) specialize to (2.21) and (2.22) of 
Hyland and Bernstein (1985). 

Remark 6.3 
A more restrictive formulation for unified modelling, estimation and control is to 

require C, = C, = C,  so that u = y e  = y,. In this case the three outputs of the design 
system (2.4)-(2.7) are replaced by a single output. Again, the necessary conditions 
involve a system of four coupled matrix equations similar to  (6.10)-(6.13) which 
specialize to  previously known results. Since this formulation requires m = q = f$ it 
appears to  be less useful than the three-output formulation. 

7. Sufficient conditions for robust stability and performance 
The main result guaranteeing robust stability and performance for the unified 

problem can now be stated. 

Theorem 7.1 
Suppose there exist Q, P, Q, E 8" satisfying (6.10)-(6.14) and assume ( A 

+ AA) is detectable for all ( A A ,  AB, AC) E U with A,, B,, B,, C,, C,, C ,  given by 
(6.3)-(6.18). Then A + AA is asymptotically stable for all ( A A ,  AB, AC) E U and the 
closed-loop'system satisfies the performance bound 

where the controllability gramian W ,  satisfies 

Proof 
Theorem 7.1 implies Q given by (6.9) satisfies (5.2). With the detectability 

assumption the result follows from Proposition 5.1. 0 

8. Directions for further research 
Several generalizations remain to be explored. These include: 

(a )  permit w( . ) to  be correlated with w, ( . ) and w2( ); 
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The extension (8.3) has been studied by Bernstein (1987 b), for control and by Haddad 
and Bernstein (1987), for estimation. 
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Appendix 
Proof of Theorem 6.1 

Partition A x  ti Q, P into n x n, n x n,, and n, x n, sub-blocks as 

and the n, x n, n, x n,, n, x n matrices 

GPQ;~Q;, ,  M & Q , P , ,  rP -P;~P:, 

The existence of Q; ' and P; ' is shown below. 
Clearly, Q, P, Q and P are symmetric and Q and are non-negativ:: definite. To 

show that Q and P are non-negative definite, note that Q is the upper left-hand block 
of the non-negative-definite matrix Q*QQ*T, where 

Similarly, P is non-negative definite. 
To  optimize (5.1) over the open set S', where 

S' A {(A,, B,, B,, C,, C, ,  C, ,  O) E S: (5.3) is satisfied) 
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8 Unified optimal projection equations 1129 

and subject to the constraint (5.2), form the lagrangian 

YAc, Bc, Bm,Cc, Ce,Cm,Q, P,).) 

A Q + Q A ~  + t G i ( a i ~ + a ; 1 2 i ~ A , ? )  + P P 
i =  1 1 1  

where the Lagrange multipliers 12 0 and P E B""%re not both zero. We thus obtain 

Setting dL /dQ = 0 yields 

ATvec P =  - I v e c K  

where 'vec' is the column-stacking operation (see Brewer 1978). Since A is assumed to 
be stable and thus invertible, 1. = 0 implies P = 0. Hence, it can be assumed without 
loss of generality that 1 = 1. 

Furthermore, the stability of A implies that P is non-negative definite. The 
stationarity conditions are given by 

Expanding (A 1) and (A 2) yields 
P 

O=A,QI +BCcQT2 + Q I A : + Q I ~ C T B ~ +  C Yi 
i =  1 

x [A,Q,A:+ B~C~Q:~A:+ AiQ12C:BT+ BiCcQ2C:13T]+ Vl + B V B ~  (A 9) 
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Lemma A l 
Q2 and P2 are positive definite. 

Proof 
By a minor extension of the results from Albert (1969), (A 11) can be rewritten as 

o=(Am+BcCQ~2Q: )Q2+Q2(Ac ,+  B ~ C Q I ~ Q : ) ~ + A  

where A = B, V2,BT + B, VB; and Q: is the Moore-Penrose o r  Drazin generalized 
inverse of Q,. Next note that since (A,, B,) is controllable then, by Theorem 3.6 of 
Wonham (1979), (A,, + B,CQ12Q:, All2) is also controllable. Now, since Q, and A 
are non-negative definite, it follows from Lemma 12.2 of Wonham (1979), that Q2 is 
positive definite. Using (A 14), similar arguments show P, is positive definite. 

Since k ,  R, R,,, K V2,, Q2 and P, are invertible, (A 3)-(A 8) can be written as 

Note that because of (A 15), (6.1) and (6.2) hold. Since Q, and P2 are positive 
definite and 

Q2P2 = p;1/2(pll2Q p 1 / 2  
2 2 2 ) 2  

M is diagonalizable with positive eigenvalues. I t  is helpful to note the identities 

Q = Q ~ ~ G  = G ~ Q T ~  = G ~ Q , G .  B =  -p12r = -rTPT2 = r T P 2 r  (A 21) 

5GT= GT, r5 = r (A 22) 

Q = T Q ,  P = P T  
- - (A 23) 

Q P =  -Q12PT2 (A 24) 
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Using (6.2) and Silvester's inequality, it follows that rank G = rank r = rank Q,, 
= rank PI,  = n, which in turn imply (6.14). 

The components of Q and P can be written in terms of Q, P, 0, P, G and r as 

The gain expressions (6.3)-(6.8) and (6.9) follow from (A  16)-(A 20) and the 
definition of Q. Substituting (A  25)-(A 27) into (A  9)-(A 14) yields 

Next, computing either T(A 29) - (A  30) or G(A 32) - (A  33) yields (6.3). Substituting 
this expression for A, into (A  28), (A 29), (A 31) and (A  32) and using 

and 

GTT(A 29)G - (A 29)G - (A 29 G)T 

yields (6.10) and (6.12). Using 

and 

rTG(A  32)T - ( A  32)r  - (A 32 T)' 

yields (6.1 1) and (6.13). 
Finally, to show that the preceding development entails no loss of generality in the 

optimality condition we now use (6.3)-(6.14) to obtain (A  1)-(A 8). Let A,, B,, B,, C, ,  
C,, C,, G ,  T, T, Q, P, Q, P, O be as in the statement of Theorem 6.1 and define Q,, Q,,, 
Q2, P I ,  P12,  PZ by (A  25)-(A 27). Using (6.2) and (6.4)-(6.8) it is easy to verify 
(A4)-(A 8). Finally, substitute the definitions for Q, P, Q, P, G and T into 
(6.10)-(6.13), reverse the steps taken earlier in the proof and use (6.3)-(6.8) to obtain 
(A  1) and (A 2), which completes the proof. 0 
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