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Abstract 

In this paper we develop explicit formulas for induced 
convolution operator norms and their bounds. These 
results generalize established induced operator norms 
for discrete-time linear systems with various classes of 
input-output signal pairs. 

1. Introduction 

In this paper we consider the dynamical system 

x ( k  + 1) = Az(k) + Bu(k),  z(0) = 0, IC E N ,  (1) 
Y(k) = C+), (2) 

where z ( k )  E Rn, .(IC) E R", y(k) E RI, k E N ,  A E 
RnXn is discrete-time asymptotically stable, B E E t n x m ,  
C E R'"", and where U(.)  is an input signal belonging to 
thz class tp,q of input signals and y(.) is an output signal 
belonging to the class er+ of output signals, where ep,q 
denotes the set of sequences in e, with q spatial norm. In 
applications, (1) and (2) may denote a control system in 
closed-loop configuration where the objective is to deter- 
mine the "size" of the output y(.) for a disturbance .(.). 

Operator norms induced by classes of input-output sig- 
nal pairs can be used to capture disturbance rejection per- 
formance objectives for controlled dynamical systems [l]. 
In particular, discrete-time H, control theory [2] has been 
developed to address the problem of disturbance rejec- 
tion for systems with bounded energy e2,2 signal norms 
on the disturbance and performance variables. Since the 
induced H, transfer function norm corresponds to the 
worst-case disturbance attenuation, for systems with 4 . 2  
disturbances which possess significant power within arbi- 
trarily small bandwidths, H, theory is clearly appropri- 
ate. Alternatively, to address pointwise in time worst-case 
peak amplitude response due to bounded amplitude per- 
sistent e,,, disturbances, el theory is appropriate [3]. 
The problem of finding a stabilizing controller such that 
the closed-loop system gain from e2,2 to where q = 2 
or CO, is below a specified level is given in [4]. 

In addition to the disturbance rejection problem, an- 
other application of induced operator norms is the prob- 
lem of actuator amplitude and rate saturation [5]. In par- 
ticular, since the convolution operator norm induced from 
4 2  to em,, captures the worst-case peak amplitude re- 
sponse due to finite energy disturbances, defining the out- 
put (performance) variables y to correspond to the actua- 
tor amplitude and actuator rate signals, it follows that the 
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induced C2,2 to l,,, convolution operator norm bounds 
actuator amplitude and actuator rate excursion. Further- 
more, since uncertain signals can also be used to model 
uncertainty in a system, the treatment of certain classes 
of uncertain disturbances also enable the development of 
controllers that are robust with respect to input-output 
uncertainty blocks [3,6]. 

In a recent paper [7], explicit formulas for convolution 
operator norms of continuous-time dynamical systems in- 
duced by several classes of input-output signal pairs were 
developed. In this paper we present analogous results for 
discrete-time dynamical systems. Specifically, for a large 
class of input-output signal pairs we provide explicit for- 
mulas for induced convolution operator norms and oper- 
ator norm bounds for linear dynamical systems. These 
results generalize several well known induced convolution 
operator norm results in the literature including results 
on em,, equi-induced norms (el operator norms) and el , l  

equi-induced norms (resource norms). 

integers, nonnegative integers 
real numbers, rn x n real matrices 
ith entry of vector x 
vector whose ith element is lzil 
vector with 1 in ith position and 0's elsewhere 
(i , j) th element of matrix A 
ith row of A 
ith column of A 
transpose of A 
maximum singular value of A 

Frobenius norm of A (= (tr AAT)'12 

9 1 5 P < 03 

m a i = ~ ,  ..., n A(i,i) 

1 l P  
[CL E;=' lA(i,j)lP] 

{CEO Ilf(k)ll;)$, 1 L P < CO 

m a i d ,  ..., n IA(i,j)I 

SUPk€N Ilf (k)Ilq 
CEO f T(k)g(k) 
{f N + Rn : lllf Illp,e < 4 
P l o ,  - I>, P E P, 4 

j=l, ..., m 

2. Mathematical Preliminaries 

Let II.II' and II.11" denote vector norms on Rn and Rm, 
respectively, where m,n 2 1. Then 1) . 11 : Rmxn + R 
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defined by 

is the mat+ n o m  induced by 11.11' and ~ ~ ~ ~ ~ ' ' .  If 1 1 . 1 1 '  = l l . l l p  
and I( . 11" = 11 . l l q ,  where p ,  q E [l, CO], then the matrix 
norm on RmXn induced by ( 1  - ( I p  and 1 1 .  l l q  is denoted by 
1 1 .  I I q , p .  Let 1 1 .  11 denote a vector norm on Rm. Then the 
dud n o m  I ( .  I / D  of 1 1 .  I( is defined by 

3. Induced Convolution Operator Norms for 
Discrete-Time Linear Systems 

In this section we develop induced convolution operator 
norms. For the system (l), (2), let G : Z -+ RlXm denote 
the impulse response function 

G(k) 2 { O, I '7 (10) CAk-lB, k > 0. where y E Rm [8]. Note that 11 . 1 1 ~ ~  = 11 . 1 1  [8]. F'ur- 
thermore, if p,q E [l, CO] satisfy l / p  + l /q = 1, then 
11 . l l p ~  = 11 . [8]. For p E [ ~ , c o ]  we denote the con- 
jugate variable q E [I, CO] satisfying l/p + l / q  = 1 by Next, let 6 : + f2q,s denote the convolution operator 

M B = P/o, - 1). 
y(k) = (6 * u)(k)  2 G(k - n)u(n), (11) 

Lemma 2.1 [7]. Let p E [ ~ , c o ]  and let A E Rmxn.  n=O 
Then 

llA112,2 = Glax(A), (3) and define the induced norm ~ [ Q ~ ~ ~ ( q , s ) , ( p , r )  as 

and 
(5) 

Remark 2.1. Note that (4) and ( 5 )  generalize the well- 
known expressions IIAll1,1 = maxi=1, ...,, Ilcoli(A)IIl [91, 
IIAllw,oo = maxi=l, ..., m Ilrowi(A)IIl [gl, and IIAlloo,i = 
llAllm [lo]. Furthermore, since maxi,l, ...,n Ilcoli(A)112 = 
dg&(ATA) and maxi=l,...,m llrowi(A)\\z = d%Zx(AAT), it 
follows from (4) with p = 2 that IIAll2,l = dg&(ATA) and 
from ( 5 )  with p = 2 that IIAllM,2 = dg&(AAT). 

mixed-signal norms. 

g E t ? # , ~ .  Then 

The following result generalizes Holder's inequality to 

Lemma 2.2. Let p , r  E [ ~ , c o ] ,  and let f E &,,. and 

The following lemma provides an explicit expression 
for IIIEIll(OO,m),(p,p) for the case in which Q is a single- 
input/single-output operator. 

Lemma 3.1. Let r E [1,00] and let 2 = rn = 1. Then 
B : tr ,r  + Cw,co, and 

Ill~lll(m,w),(r,r) = IllGlll~,~. (13) 

Proof. For T = 1 and r = CO, (13) is standard; see 
Ill] and [6, pp. 23-24] as applied to discrete-time signals, 
respectively. Next, let r E ( 1 , ~ )  and note for all k E N, 
it follows from Lemma 2.2 with p = r that 

l/F 

IIIuIIIr,r I IIIGIII+=,FIIIuIIIr,r, 
(f, 9)  I IllflllP,T 1l1g111P,F- (6 )  

Finally, the following two results are needed for the re- 
sults given in Section 3. The proofs of these results are 
similar to the results in [ll involving continuous-time sig- 

Lemma 2.3. Let p E [ ~ , c o )  and r E [ ~ , c o ] ,  and let 

which implies 

IU 6 111 (m,co), (r ,r)  I Ill G Ill P , T -  (14) 
nals and hence are omitte d . 

Next, let K > 0 and let U ( . )  be such that u ( k )  = 
sgn(G(K - k))lG(K - k)I1/("-l), k E N, where sgn(.) 

Illflllp,r = SUP (f, g>, (7) denotes the signum function. Now, since IIIuIlI,.,, = 

[Ego IG(K - k)Ip]l/', it follows that 

f E t?p,T. Then 

SE9 

where 9 4 i  {g E ep,F : lllglllP,F 5 1 ) .  

Lemma 2.4. Let p E 1, CO), T E [l, CO], and f : N x 

f ( . ,n)  E eP,,. for all IC. E N: and g E el,l, where g(n) i? 
N + Rn be such that f( 5, , .) is summable for all k E N, 

reg, Ilf(k, . ) l l f ' /" .  Then 
M 

00 12 G(K - n)u(n)l = IG(K - .)I' 
I n=O I n=O 
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which, with (14), implies (13). U 

Remark 3.1. Note that it follows from Lemma 3.1 
that there exists U E Cv,9- such that limk+@(G * u ) ( k )  = 
IU Glll p,c Ill 41 9-99. . 

Next define P E Rmxm and ZZ E Rzx l  by 

00 00 

P C G ~ ( ~ ) G ( ~ ) ,  a 2 C G ( ~ ) G ~ ( ~ ) .  (15) 
k=O k=O 

Note that P = BTPB and ZZ = CQCT, where the ob- 
servability and controllability Gramians P and &, respec- 
tively, are the unique n x n nonnegative-definite solutions 
to the discrete-time Lyapunov equations 

P = A ~ P A  + cTc, Q = A Q A ~  + mT. (16) 

Furthermore, let H ( z )  = C(zI-A)-’B correspond to the 
transfer function of (l), (2) and let GrD,ol denote the I x rn 

ii) Let T E [l, CO]. Then G : Cl,,.  + 4 2 ,  and 

lllGlll(2,2),(l,v) = llP1/2112>9-. 

IU 9 Ill (00,P) ,( 2,2) = I I 

iii) Let p E [1,00]. Then G : e2,2 3 and 

I12,P 

iw) Let p ,  T E [l, CO]. Then 9 : [I,,. -+ and 

111 G Ill (00,P), (1 , v )  = SUP I I G ( k )  I IPJ .  
L E N  

vi) Let p E [l, CO]. Then G : Cl,, -+ Cp,p, and 

Ill Glll (P,P) ,( 1 ,I) = I lcob (G[P>Pl) I IP. 

Proof. See Appendix A. 

Remark 3.2. Recall that the H2 norm of the system 
(I), (2) is given by 111G111~, = 11P1/211~ = 11ZZ1/211~.  Hence, 
using the fact that 11 . = a,,(.) for rank-one matrices, 
it follows from z) of Corollary 3.1 that if B (and hence T) is 
a rank-one matrix then lll9lll~, = ~ ~ / 9 ~ ~ ~ ( 2 , 2 ) , ( ~ , 2 ) .  Similarly, 
it follows from iii) of Coroll 3.1 that if C (and hence 12) 
is a rank-one matrix then I[3H2 = 1118111(00,2),(2,2). Hence, 
in the single-input/multi-output and multi-output/single- 
input cases the H2 norm of a dynamical system is induced. 

Remark 3.3. Theorem 3.1 also applies to the more 
general case where E is a noncausal, time-invariant op- 
erator. In this case, the input-output spaces ep,q and e , ,  

are defined for k E Z, H ( e J W )  is the discrete-Fourier trans- 
form of G(k), and the lower limit in the sums defining P 
and ZZ is replaced by -m. 

(18) 

(19) 

(20) 

(21) 4. Upper Bounds for el Operator Norms 

In this section we provide upper bounds for the Cl. op- 
erator norm II19111(00,p),(00,,). For p > 1, define the shifted 
impulse response function G, : Z + Rlxm by 

(22) 

0 
The following corollary specializes Theorem 3.1 to pro- 

vide analogous results to those given in (111 and [6, p. 261 
for discrete-time signals. 

and let 0, denote its convolution operator 
oc) 

~ ( k )  = (9, * u)(JC) 2 Gp(k - K ) u ( K ) .  (24) 
Corollary 3.1. The following statements hold: k=O 
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Theorem 4.1. Let p > 1 be such that JZiA is discrete- 
time asymptotically stable and let Qp E RnXn be the 
unique, nonnegative definite solution to the Lyapunov 
equation 

Then the following statements hold: 
Q~ = , I A Q , A ~  + ,OBB~. (25) 

i) Let p E [l, CO]. Then B : + and 

b p u t  Output Induced Norm 

e2,2 e2,2 SUP o m a x ( ~ ( e ~ W ) )  

el,,. e2,2 I I w2 I12 ,T 

W € [ O , 2 H ]  

ii) Let p , ~  E [l, CO]. Then 4 : ew,T + and 

Upper Bound 

Proof. See Appendix B. 0 
Next we specialize Theorem 4.1 to Euclidean and infin- 

ity spatial norms. 

Corollary 4.1. Let p > 1 be such that JZiA is discrete- 
time asymptotically stable, let Gp(-) be given by (23), 
and let Q p  E RnXn be the unique, nonnegative definite 
solution to (25). Then the following statements hold: 

i) 4 : -+ ew,2, and 

1 i ~ i n ( ~ , ~ ) , ( ~ , ~ )  I - q?Zx(CQpCT). (28) JP-T 

Proof. The proof is a direct consequence of Lemma 2.1 
and Theorem 4.1. 0 

Remark 4.1. Using set theoretic arguments involving 
closed convex sets and support functions the e1 norm 
bound in (28) was given by Schweppe [12]. Within the 
context of equi-induced norms, this el norm bound 
is referred to  as the star-norm in [13]. 

A summary of the results of Sections 3 and 4 is given 
in Table 1. 

Appendix A. Proof of Theorem 3.1 

i) is standard; see [14] for a proof. 
ii) It follows from Lemma 2.4 that 

CO W 

Table 1: Summary of Induced Operator Norms for p ,  T E 
[1,00] and p > 1 

Next, let U(-) = Gw(-), where 0 E Rd is such that lliillT = 
1, 11P/2ii112 = ~ ~ P ~ 2 ~ ~ 2 , T ~ ~ i i ~ ~ , . ,  and w : N + R is such that 
w(0) = 1 and w(k) = 0, k > 0, so that IIIwIII1,1 = 1 which 
implies that y(k) = G(k)ii, k E N.  Hence, 

k=O 

- - (QTIpQ)1/2 = lliP1/2Q112.= llfp1/2112,,, 

which implies that 11 B 111 (z , z ) ,  (1 ,T) = I I P'/' I I z , ~ .  

all k E N ,  
iii) With p = T = 2 it follows from Lemma 2.2 that for 

GT(K - k)ii,  1 
U @ )  = ~ 

II Q1'2 Il2,P 

CO 
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which implies that, for every K > 0, there exists U E e2,2 

such that IlluII2,2 5 1 and 

or, equivalently, 
K 

= llQ1/2112,P, 

which further implies that I[G[(m,P),(2,2) = lIQ1’2112,p. 

iw) Note that for all IC E N ,  

which implies that 

and hence, 

Next, let I E (1 , .  . . ,I} be such that I l r o w ~ ( G [ ~ , ~ ] ) l ( ~  = 
rnaxi=l,.,.,l IIr~wi(G[,-,~])ll~. Now, let ii E Rm be such that 
IIC(lv = 1, let ~OWI(G[~,~J)C = ((~OWI(G~,,F~)JJF, and let 
u j  E j = 1 ,..., rn, be such that 111~jIll,.,~ = iij and 
limk-,CO(G(I,j) * ~ j ) ( k )  = ~ ~ ~ G ( r , j ) ~ ~ ~ ~ , ~ l l l ~ j U l ~ , ~ .  Note that ex- 
istence of such a uj(.) follows from Lemma 3.1 and Remark 
3.1. Now, 

M 

where G(k)  4 Cp=o G T ( ~  - k)G(n). Now, with T = p ,  it 
follows from v)  that 

IIIGIII (p,p),(i ,i) I &SUP I l l ~ l l l o o , ~  j = y ~ m  I (G[p,p] ) Ilp . 
(31) 

Next, let J E (1 , .  . . , rn} be such that I I c o ~ J ( G [ ~ , ~ ~ ) ~ ~ ~  = 
maxj=l,...,m JJ~~lj(G[p,pl)llp and let U(.> !2 w ( . ) ~ J ,  where 
w : N -+ R is such that w(0) = 1, v(k) = 0, k > 0, so that 
IIIwIII1,l = 1 and y(k) = colJ(G(k)), k E N .  Hence, 

inyiitp.p=l 

which, with (31), implies (22). 0 
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Appendix B. Proof of Theorem 4.1 References 

Let K > 0, U E e,,2, and define 

Now, note that 

M 

K=O 
M 

Hence, 

Now, noting that y ( K )  = ~ K ( K )  it follows that 

which implies (26). 

given by (32). Then 
To show (27) let K > 0, U E e,,,., and let UK(.) be 

Hence, since y ( K )  = Y K ( K ) ,  
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