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1 Introduction 

Despite advances in design and fabrication, back- 
lash remains a fundamental problem in precision me- 
chanical applications. Deadzone and "play" in mechan- 
ical couplings cause hysteretic behavior as can struc- 
tural components with memory. This behavior can de- 
grade the performance of mechanical systems. When 
the system involves servo control, backlash can cause 
undesirable limit cycle oscillations. Our goal in this 
paper is to present a controller to  reduce the effects of 
backlash. 

The effects of backlash are well understood thanks to 
describing function analysis. The texts [l, 2,4] provide 
detailed presentations of this approach. Limit cycle os- 
cillations in control systems involving hysteresis have 
been studied in [6], while adaptive control methods for 
suppressing the effects of backlash are studied in [7]. A 
backlash compensator is given in [3]. 

In the present paper we develop an anti-backlash 
controller for servo applications. This controller uses 
constant feedforward and feedback gains which can be 
chosen to  set the level of control authority. We demon- 
strate this controller by means of two standard prob- 
lems, namely, a pure backlash plant as well as a mechan- 
ical oscillator with position input through a deadzone. 
Using time domain analysis, we show that for both of 
these plants the compensator gains can be chosen to 
reduce the effects of backlash. Next, using describing 
function analysis for the linearized frequency response, 
we show that the controller suppresses the effects of 
the nonlinearity in reducing phase delay and achieving 
unity gain in the servo response. 

While the describing function technique is classical, 
the analysis of the anti-backlash controller is nonstan- 
dard. Specifically, because of the presence of the feed- 
back junction, gain and phase conditions must be satis- 
fied to characterize the servo response. While these con- 
ditions are difficult to solve analytically, we use them 
to show that the use of high controller authority sup- 
presses the effects of the backlash nonlinearity. 
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2 Anti-backlash Controller 
Consider the nonlinear system 

Y = JW, (2.1) 

with the controller shown in Figure 1, where a,P > 0. 
The control input U is given by 

U = (a + 1). - py, (2.2) 

where y is the output of the system and T is the com- 
mand. The closed-loop system can be redrawn as in 
Figure 2. Our goal is to  show that the anti-backlash 
controller reduces the effects of backlash. 

Next we let N denote a backlash nonlinearity de- 

y = max(u ,y+d)+min(u ,y -d ) -y ,  (2.3) 

where d is half of the width of the backlash (Figure 3). 
Then the closed-loop system consisting of (2.3) and the 
control law (2.2) is given by 

scribed by 

"> P + l  Y = max(mT,Y+ 

+min (=r, y - &) -Y- (2.4) 

a + l  

f f + l  

The closed-loop system is equivalent to a backlash non- 
linearity with input ((a + 1)/(/3 + 1)). and backlash 
width d / ( P +  1). It can thus be seen in Figure 3 that as 
a = p + 00, the width of the backlash block is reduced 
to zero. 

2.1 Describing Function Analysis 
In this section we use describing function analysis 

to investigate the performance of the anti-backlash con- 
troller. Suppose that the system is driven by a reference 
signal r ( t )  = A,e@ and the fundamental harmonic 
output signal is y(t) = AyeJ(wt+@'Y). It can be seen 
from Figure 2 that the fundamental harmonic control 
input to the backlash u(t) = A,e3(wt+@'u) satisfies 
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and the output y ( t )  satisfies 

AyeJb’ = A,  IN(A,)( e3bUe3LN(Au), (2.6) 

where the gain IN(A,)I and the phase LN(A, )  of the 
backlash describing function are given by 

(2.7) 
0 if A,  < d,  

,“A,) =tan-’ (a /b)  if A, 1 d, (2.8) 

U = 47-’(1--7-’), (2.9) 

-(1 - 27-1)Jl- (1 - 27-1)2, (2.10) 

where 

b = --A + cos-l(l- 27-l) 

A where 7 = A,/d.  

Using (2.5) and (2.6) we obtain the gain and phase 
relationships 

A, = d ( a  + 1)2Al + P2A$ - 2(a + l)PA,A, cos &,, 
(2.11) 

A, = A,IN(A,)I, (2.12) 
Ar Ay 
A ,  A ,  

COS+, = (a + 1)- - - COS+,, (2.13) 

Proposition 2.1 Let A,  > 0 and Q = P - 1. Then 
the describing function amplitudes of the closed-loop 
system satisfy 

(2.16) AT lim - = 1. 
~ - t m  A,  

Proof: Suppose N(A,)  = 0. From (2.12) it follows 
that A,  = 0, and thus (2.5) implies A,  = PA,. If 
P > d/A, we see from (2.5) and (2.7) that A,  > d and 
thus N(A, )  > 0, which is a contradiction. This implies 
that N ( A , )  > 0 for sufficiently large P. 

Now suppose N(A, )  + 0. Using (2.7) we obtain 
A, 4 d and from (2.12) we obtain A,  + 0. From (2.5) 
it follows that 

(2.17) 

Since A, + 0 the right-hand side approaches 00 while 
the left-hand side approaches d,  which is also a contra- 
diction. Thus we conclude that there exists E > 0 such 
that N(A,)  > E.  Therefore, 

A,  = PlAr - Aye3@MJ 2 P(A, - A,).  

For large P, we can use (2.12) to determine the 
amplitude of the input signal U for each value of A,. 
For large values of A,, it can be seen that A,  M A,. 

2.2 Numerical Examples 
To demonstrate the closed-loop system for the back- 

lash nonlinearity with the anti-backlash controller shown 
in Figure 2, we simulate the closed-loop system with in- 
creasing values of a and P. It can be seen from Figure 4 
that increasing CY and reduces the tracking error. 

3 Damped Rigid Body with Dead- 
zone 

Next we consider the damped rigid body with dead- 
zone shown in Figure 5. The equation of motion for the 
system is given by 

mq(t)  4- 4 ( t )  - kfd (U - q( t ) )  = 0, (3.1) 

where c is the damping coefficient, k is the spring con- 
stant and d is the halfwidth of the deadzone. The dead- 
zone function fd(z) is defined by 

z + d  if z < - d ,  

z - d  if z > d .  
0 if -d 5 z 5 d,  (3.2) 

To clarify the relationship between this system and 
the backlash nonlinearity we let u( t )  = sin(&) for a 
decreasing sequence of values of w. Figure 6 demon- 
strates that under quasi static operation the dynamics 
of the damped rigid body with deadzone coincides with 
the dynamics of the backlash nonlinearity [5]. 

Next we consider the closed-loop system (2.1) and 
(2.2) with the nonlinear system N(u) given by (3.1). 
The closed-loop system (Figure 7) is given by 

mq(t) + cQ(t) - kfd ((a + l)r - (P + l )q ( t ) )  = 0. (3.3) 

Letting Q = P, (3.3) can be rewritten as 

mi+> + cQ(t) - (P + f)kfd/(P+l) (7- - 4 t ) )  = 0. (3.4) 

The closed-loop system is equivalent to  the original sys- 
tem with increased spring constant (P + 1)k and de- 
creased deadzone width 2d/(P + l). It can thus be seen 
that as p + 03, the width of the deadzone is reduced 
to zero. 

3.1 Describing Function Analysis of the 
Open-loop System 

In this section we use describing function analy- 
sis to investigate the behavior of the open-loop system 

I 
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(3.1). Suppose that the system is driven by the signal 
u(t)  = A,eJut and the fundamental harmonic output 
signal is y( t )  = AyeJ(wt+@v). It can be seen from Fig- 
ure 8 that the fundamental harmonic control input to 
the deadzone e(t) = A,eJ(wt+@e) satisfies 

AeeJ@e = A, - AyeJ@u. (3.5) 

The output y( t )  satisfies 

3.2 Describing Function Analysis of the 
Closed-loop System 

In this section we use describing function analy- 
sis to investigate the effects of the anti-backlash con- 
troller. Suppose that the system is driven by a ref- 
erence signal r ( t )  = Arejut and the fundamental har- 
monic output signal is y(t)  = AyeJ(wt+@v). It can be 
seen from Figure 7 that the fundamental harmonic con- 
trol input to the damped rigid body with deadzone 
u(t)  = A,eJ(wt+@-) satisfies 

where Aue3@- = (a  + 1)AT - pAyeJ@v, (3.16) 

(3-7) and the input to the deadzone e(t)  = AeeJ(wt++e) satis- 
fies 

and the gain No(Ae) of the deadzone describing func- 
tion is given by = (a + 1)Ar - (p  + 1)Aye3@v, (3.17) 

0 if A, < d ,  and the output y ( t )  satisfies 
~ o ( ~ e )  = { :(cos-16-1- ij-ld-) if A, 2 d, 

(3.8) Aye3@~ = AeNo(Ae) IG(jw)I eJ@eeJLG(Jw), (3.18) 

where the gain No(A,) of the deadzone describing func- 
tion is given by (3.8). 

n where 6 = Ae/d. 

Using (3.5) and (3.6) we obtain the gain and phase 
relationships 

Using (3.16)-(3.18) we obtain the gain and phase 
relationships 

A, = A: + Ai - 2AuAy COS ((bu - (by)(3.9) 

Ay = AeNo(Ae) IG(.w)I 9 (3.10) A, = J(a + 1)2AF + A; - 2(a + 1)PArAy  COS(^^, 
(3.11) (3.19) 

(3.12) A, = JA: + A; - 2AuAy COS (4, - (by), (3.20) 

Therefore 
and 

proof of Proposition 2.1. 
Let A, be given. Then, for each choice of w, we 

compute A, and No(A,) by using (3.8) and (3.13). Now 

be determined as shown in Figure 9. Note that at low 
AT frequencies the phase plot of (3.14) resembles that of a lim - = 1. 

backlash describing function. /3+w A, 

Proposition 3.1 Let AT > 0 and a = f l -  1. Then 

the gain and phase of the left hand side of (3.14) can the describing fUnCtiOn amplitudes Of the ClOSed-lOOp 

system satisfy 

(3.26) 
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3.3 Numerical Examples 

U 
P -  r a + l  

- P  

To demonstrate the closed-loop system for the damped 
rigid body with deadzone with the anti-backlash con- 
troller shown in Figure 2, we simulate the closed-loop 
system with increasing values of a and p. It can be 
seen from Figure 10 that increasing a and p reduces 
the tracking error. 

Y * -  

Figure 1: Anti-backlash Controller 

Figure 2: Equivalent Form of the Anti-backlash Con- 
troller 

' t  

Figure 3: Hysteresis of Backlash Nonlinearity with and 
without Anti-backlash Controller 

I 

I 

Figure 4: Response of the Closed-Loop System with 
Backlash Nonlinearity 

Figure 5: Damped Rigid Body with Deadzone 

Figure 6: Response of the Damped Rigid Body with 
Deadzone for a Sequence of Successively Slowing Sinu- 
soidal Input 
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r(t)=sint. a =p=l 

r U 

Y 

Figure 7: Block Diagram of Closed-Loop System for 
Damped Rigid Body with Deadzone 

r(t)sint. a +20 

Figure 10: 
Damped Rigid Body with Deadzone 

Response of Closed-loop System with 

Figure 8: Block Diagram of Damped Rigid Body with 
Deadzone 
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Figure 9: Describing Function of Damped Rigid Body 
with Deadzone 
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