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1 Introduction

Thermodynamics is an inherently empirical branch
of science based on “laws” that govern the thermat be-
havior of physical systems. The development of these
laws and associated concepts has a long and tortuous
history, see [1-6]. From a systems perspective, ther-
modynamics is a theory of large scale systems, whose
properties, in modern terminology, are a manifestation
of emergent behavior.

There have been many attempts to develop the laws
of thermodynamics from first principles, that is, in terms
of discrete, coupled entities. In classical statistical ther-
modynamics, a crystalline solid is modeled as alattice of
vibrating molecules, whose degrees of freedom satisfy
the principle of equipartition of energy, which implies
that the temperature of each subsystem converges to the
same value. Therefore, the temperature of a subsys-
tem whose initial temperature is greater than the average
temperature will ultimately decrease, while the tempera-
ture of a subsystem whose initial temperature is less than
the average temperature will ultimately increase. This
is a statement of the zeroth law of thermodynamics, that
is, that heat flows from hot to cold. These properties
hold for systems with linear dynamics; for nonlinear
systems it is well known that equipartition does not gen-
erally occur (see, for example, [7] and the references
cited therein).

One explanation for the emergence of damping
can be given in terms of Poincare’s recurrence theo-
rem, which implies that every finite-dimensional, iso-
lated system will return arbitrarily close to its initial state
infinitely often [4]. As the dimensionality increases, the
time for recurrence increases (presumably at a very fast
rate), and thus the practical inability for energy to return
to its starting configuration (flowing from hot to cold
and back to hot) is intuitively clear. The shortcoming of
this classical view is that no decay-like damping model
per se emerges,

The principle of equipartition of energy is usu-
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ally viewed as a statistical result formulated in terms
of the probability distribution of configurations, that is,
entropy. The derivation of the empirical laws of ther-
modyaamics from large scale systems of discrete sub-
systems thus depends on the statistical sense in which
the former are valid. Stochastic averaging can be per-
formed with respect to the statistics of initial conditions,
exogernious disturbances, or subsystem and coupling pa-
rameters. Whichever technique is used, the ultimate
objective is to approximate the high-order dynamics of
an oscillatory system with the low-order dynamics of
a non-oscillatory system. Consequently, wave dynam-
ics are approximated by diffusion dynamics, However,
there is a distinction between the response of an aver-
aged model, which is an inteilectual construct, and the
physical response that is actually observed in the real
world.

In the area of mechanical and acoustic vibrations,
there has been extensive work on thermodynamically
motivated energy flow modeling [10-19]. This kind of
analysis is often used when finite element and modal
modeling are ineffective due to dimensionality or un-
certainty.

A thermodynamic model is concerned with the
flow of energy among subsystems. This is a special
case of a compartmental system, which involves the ex-
change of nonnegative quantities such as energy, mass,
and chemical reactants [20-22]. An interesting aspect
of compartmental systems is the fact that they possess a
continuum of equilibria and thus cannot be asymptoti-
cally stable. Nevertheless, compartmental models have
convergent trajectories and Lyapunov stable equilibria,
a property known as semistability [23, 24]. Equiparti-
tion of energy in compartmental models was studied in
[22].

In this paper we use deterministic linear systems
techniques to analyze the vibrational energy of sys-
tems of undamped coupled oscillators with identical
coupling. Qur approach is based on time averaging of
squared outputs of the system and thus avoids both re-
currence and statistical arguments. We first consider
a single undamped oscillator and show that the time-
averaged potential energy and the time-averaged kinetic
energy converge to the same value. This result, which
is completely intuitive, follows from the classical virial



theorem of mechanics [25], p. 23. However, we provide
a novel proof of this result by direct computation to es-
tablish notation and techniques for energy equipartition
in multiple oscillators.

Next, we consider a collection of n identical un-
damped oscillators with lossless conpling. Asinthecase
of a single oscillator, equipartition of energy holds for
the total system kinetic and potential energies. Again,
this is a consequence of the virial theorem. However,
this is not the problem we are interested in. Rather, we
focus on the equipartition of oscillator energy, that is,
the equal distribution of energy among osciliators, re-
gardless of the form of energy.

For this problem, we derive expressions for the
transient and steady-state behavior of each oscillator.
Then we prove that equipartition of energy holds for a
pair of identical, coupled oscillators with disrinct cou-
pled frequencies. This result shows that, in terms of
time-averaged quantities, energy flows from the initially
higher-energy oscillator to the initially lower-energy os-
cillator, in agreement with the zeroth law of thermody-
namics, that is, that energy flows from hot to cold, for a
pair of coupled osciilators. The assumption of distinct
coupled frequencies is necessary. In fact, somewhat
surprisingly, numerical results show that equipartition
of energy can fail if the coupled system has repeated
frequencies (see Figure 4). Finally, we give numerical
evidence to suggest that the analogous result holds for
a collection of coupled oscillators. The requirement for
distinct coupled frequencies, without which equiparti-
tion fails, seems to have been overlocked in the litera-
ture.

Implications of these results for the emergence of
damping in lossless systems are discussed in Section 4.

For convenience we use the following standard no-
tation: “vec” denctes the column stacking operator, &
denotes Kronecker product, & denotes Kronecker sum,
and (-)* denotes the Moore-Penrose generalized in-
verse, which, for normal matrices, coincides with the
Drazin and group generalized inverses [26].

2 Equipartition of Energy for a Single Oscillator

We begin by considering a single oscitlator of the
form

x(t) = Ax(D), 2.1
where the matrix A given by
A 0 1
A= [ —w? 0 :| (2.2)

represents the dynamics of an undamped oscillator with
position and velocity states

X & [ q(1)

) 23)
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The natural frequency is given by @ C Ak fm, where
k > Oandm > Odenote stiffness and inertia parameters.

Next consider the instantaneous potential energy
Epqi(t) and the instantaneous kinetic energy Eyn(?)
given by

1 1 .
Epo(t) = 5’“’2(’)’ Exin(t) = quz(,)_ (2.4)

Since mi (1) +kq(t) = O, it follows that the total energy
Epot(1)+ Exin(t) is constant forall 1 = 0. We thus define
the total energy by

A
Ewt = Epot(0) + Exin(0). (2.5)
Hence, forallt > 0,
Etor = Epot{?) + Exin(1). (2.6)

Analysis of the kinetic and potential energy is sim-
plified by performing a change of basis. Hence define

al k0
- L0 m }’
AL k\Pak-12 = [ 0 o ]
—-w 0 .
con A o | F0 ] [ Ve
) =K"x(@t)= | 20 ] = [ Jma)
so that
) =A%), t = 0, QN0
1. 1,
Epor(t) = Exf(t), Exin(t) = 5122(0, (2.8)
o= 3804380, 120 Q9)

Next, define the 2 x 2 symmetric nonnegative-
definite matrices H (¢) and M (1) by

~

t
A 2 f 2T (s)ds, M) 2 %H(r). (2.10)
Q

Note that
o 1~
—[ Epu(s)ds = ~M11(1) .11
tJo 2
1 1.
—f Exin{s)ds = — M (r). (2.12)
rJo 2
Lemma 2:1. The matrix M (t) satisfies
tr M(t) = 2E i, t > 0. (2.13)

Proof. Note that (2.9) implies that, for all¢ > 0,

R 1
M)y =tr ; f #5)ET (5)ds
G

[ R S
fx (s)x(s)ds
rJo

| I AT _
= ?[0 tr[£(s)x " {s5)]ds =

=200 4 2 ds =
=+ [ o)+ aate e = 5

r
f 2Etotds = 2E10t-
0



Lemma 2.2, The matrix M () satisfies
M (1) = Mians(t) + Moo, 1 2 0, (2.14)
where

Mians(t) 2 }vec" [d @ Ay (clAedh 1vectz 57O},

Moo 2 vec [[1 —deade A)"']vec[f(O)J?T(O)]].

Furthermore,
lim Mians(t) = 0, (2.15)
1—00
lim M) = M, 2.16)
00
tr Mygns(0) = 0, 1 > 0, (217
tr Moo = 2Er. (2.18)

Proof. Using Theorem 9.2.4 of [26] it follows that
- 1 ; :
M@ = - f e 2(0)£T(0)ed *ds
0
a1 .
=vee - f (eA’ ®eA5)vec[f(O)fT(0)]ds
! Jo

..
= veg ;f A8 et 2(0)2T(0)]ds

]
I I PP
“lA@ A)t[eeN _
vec r[( @ A) (e )

ril-(Aediie A)*]vec[f(O)x‘T(O)]ds]

= Jfﬁftrarls(f) + ﬂoo—

Since e(AeA)' is bounded, it follows that (2.15) holds.
Now (2.14) and (2.15} imply (2.16). Finally, (2.13) and
{2.16) imply (2.18), while (2.13), (2.14), and (2.18) im-
ply (217, O

Lemma 2.3. The matrices H(¢), M(z), and Moo
satisfy

AR + AOAT = 208w - 20270, (219
i)+ MnAT = -[x(r)x 0 — 2T, (220)
fmw + MooAT = 0. 221

Proof. Integrating by parts yields

A = A7 [eM30FT O H - 20)FT©] - A oA,
which implies (2.19). Now (2.20) and (2.21) are imme-
diate. . o

The following result shows that the time-averaged
potential and kinetic energies are asymptatically equal.

‘Theorem 2,1, The undamped oscillator (2.1) sat-
isfies the property
I
lim —
I—=00 0

Proof. It follows from (2.21) that

l: . 214;-’0013 Moo22 - Moot1 ] -0
M2 — Mooy —2My12

.1 1
Epor{s)ds = r]_x)ngo ?fo Eyin(s)ds = iEml(Z.22)

Therefore, Mwn = Mng
(2 18) that Moo” + Moczz 2E;,. Therefore,
Mm“ = Moozz = Ein. Finally, usmg (211) we
have fimy_ o0 1 ; fo Epa(s)ds = lim,_ §M11(r)

2Moo“ = 2Et°t and likewise for Exj,. a

Next, it follows from

3 Equipartiticn of Energy for a Collection of
Oscillators

In this section we consider the dynamics of » iden-
tical coupled oscillators modeled by

x(@) = Ax(1), 3.1
where o4 is the 2n x 2n matrix
A C C e C
LK V2eT R A c e C
_K-VIETKIZ  _g-VIcT U2 _g-lITRIZ L 4

The position and velocity of the ith oscillator are given
by x2;_1 (¢t} and x2; (r), respectively. The 2 x 2 coupling
¢« b
d

" Next, define X 2 diag(K, ...,

matrix C is written as C =

K),

A2 HV2AKV2, and 3(1) 2 JV2x (7). Note that
A ¢ ¢ ¢
. T A ¢ ... ¢
A= . ) ) . R I 3]
IR R B
which is skew symmetric, where
CL g V20K [ a b ] (3.3)
¢ d

Next, note that the energy €qq; (2} of the fth oscil-
lator is given by
1.
XZ,. ](I) + Xz,({)

1
Eouei (1) = —kx2, {0+ mle(t) =

while the total energy of the system is given by

G = Zam 0= —x Tnxx() = —‘T(r)x(r)

i=I
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Proposition 3.1, &, is constant for all initial con-
ditions x(Q).

Proof. Forallt > 0, &) = T =
FT(NAXD =0 o

Next as in (2.10) we define the 2n x 2n symmetric
nonnegative-definite matrices #(¢) and .AZ(t) by

i
R = [ £()ET(s)ds, M) 2 ;.}2’(1). (3.4)
(i}

We thus obtain the foliowing extensions of Lemma 2.1,
Lemma 2.2, and Lemma 2.3.

Lemma 3.1. The matrix J\Z(r) satisfies

tr M{t} = 28, ¢ > 0. (3.5)
Lemma 3.2. The matrix J\Z(t) satisfies
M) = Mipans (1) + Moo, £ = 0, (3.6)
where
St t) & Tvec™ [ch @ ¥ (424 — PYsectziorTon]

Moo & vee™! [i1 - Ao ade dT ez ©)].

Furthermore,
lim Mians(t) = 0, lim M) = Moo,  (3.7)
F—00 =00
tr Myans (1) =0, 1> 0,t Moo = 26, (3.8)

_ Lemma 3.3. Assume that 44 is nonsingular. Then
F(r), M(r), and M satisfy

AR + ROAT = 207 Ti) — 20027 @), GO

AME) + M AT = —[x(r)xT(:) — 20T, (3.10)

AMog + Mool = 0. (3.11)

It thus remains to derive a generalization of the
energy equipartition result (2.22) given by Theorem 2.1.
\Ye first consider the case of a pair of oscillators, where
A is given by

0 1) a b

. - 0 ¢ d

A= @ v, 12
-a —¢ 0 w (3.12)
—b —d -w 0

Since Lemma 3.3 requires that 4 be nonsmgular, it is
useful to note that, for n = 2, det A= (w? — det C)2
Therefore, 4 i is nonsingular if and only if det € # o?
Note that if 4 is singular, then, since A is skew sym-
metric and has even order 4, its eigenvalue 0 is repeated.
The following result gives necessary and sufficient con-
ditions under which A has a repeated eigenvalue.
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Lemma 3.4. The matrix / has a repeated eigen-
value if and only if either i)  is singular or if) & = —d
and b = &. In case i), # has the repeated eigenvalue
0, while in case ii), /4 has the repeated eigenvalues

}\/cu2+&2+52 and —)vVw? + 42 + b2,

Proof. First note that /A has a repeated eigenvalue
if and only if there exists & > 0 such that det(sJ —+4) has
either the form det{s [ — A) = s2(s®+ ), in which case
A has the repeated cigenvalue 0, or the form det(s/ ~
o@) = s* +205% + 02 = (s? + )2, in which case A has
the repeated imaginary eigenvalues ;./e and — /.
The former case occurs if and only if det A=0

Next note that the characteristic po]ynomzai of Ai is
det(s]— A) = s +(&2+b2+ +d2+2w2)s *+det A.
Hence set o = det € — w? and 42 + b2 + &% +d° +
20? = 2@. This condition implies (& ~ d)2 + (13 +
&% 4 2w® = 0, which yields w = 0, which contradicts
w # 0. Altemanvely, seta = w? —det Cand 82+ 52 +

2447+ Zw = 2¢, This condition is equivalent to
(a «{-d)2 +(b—&? = 0, which is equwalent tod = *d
andb = ¢. Furthermore, in this case, ¢ = w? —det € =
w? +a2+ b > 0. o

Lemma 3.4 implies that  does not have a repeated
mgcnvalue if and only if A is s nonsingular and either
d # —dorb # ¢. Note thatif € = Othenbotha =—d
and b = & and thus by Lemma 3.4 A has a repeated
eigenvalue. In fact, when € = 0, 4 has the repeated
eigenvalues jw and —jo.

The following result concerns the equipartition of
oscillator energy for a pair of coupled oscillators with
nonrepeated coupled frequencies.

Theorem 3.1. Let n = 2 and assume that 4 does
not have a repeated eigenvalue. Then

i
lim —
=00t

)
Eoxc (05 = fim = [ Guca(6)ds = 36
=01 Jo 2

Proof. Omitted due to lack of space. (]

The case of n > 3 oscillators is more involved.
Here we state the following conjecture concerning the
equipartition of oscillator energy.

Conjecture 3.1. Letn > 3 and assume that A does

not have a repeated eigenvalue. Then, fori =1,...,n,
o1 1

lim - Eosci{s)ds = —Et- (3.13)
t—00 0 n

4 Examples

Example 4.1. Consider a single oscillator with
k = 7 N/m and m = 13 kg and initial conditions
g{0) = 0 m and q(O) 1 m/s. As can be seen in
Figure 1, the energy is periodically exchanged between
kinetic and potential. However, Figure 2 shows that the



time-averaged kinetic and potential energies are asymp-
totically equal.

Example 4.2. Consider a pair of coupled oscilla-
tors with ¥ = 7 N/m and m = 13 kg and initial con-
ditions x1(0) = 1 m, x2(0) = 1 mfs, x3(0) = O m,
and x4(0) = 0 m/s. Furthermore, the coupling matrix
Cisgivenby C = [ 3 ¢ ]. With this coupling ma-
trix, the coupled system has distinct frequencies 1.388
rad/s and 0.38795 rad/s. As can be seen in Figure 3,
the time-averaged oscillator energies are asymptotically
equal,

Example 4.3, Consider a pair of coupled oscitla-
tors with k = 7 N/m and m = 13 kg and initial condi-
tions x;(0) = 1 m, x2(0) = 1 m/s, x3(0) = O m, and
x4(0) = 0 m/s. Furthermore, C =[ § ° ]. With this
coupling matrix, the coupled system has the repeated
frequency 1.24 rad/s. As can be seen in Figure 4, the
time-averaged oscillator energies are not asymptotically
equal, that is, equipartition fails. This is consistent with
Theorem 3.1, which assumes that the coupled frequen-
cies are distinct.

Example 4.4, Finally, as a test of Conjecture 3.1
we consider a collection of 10 coupled oscillators with
k = 7 N/m and m = 13 kg, randomly generated initial
conditions,and C =] § J, ]. As can be seen in Fig-
ure 3, the time-averaged oscillator energies are asymp-
toticaily equal, that is, equipartition of energy holds.

5 Implications for the Emergence of Damping

A fundamental implication of these results con-
cerns the emergence of damping in lossless systems. In
reality, energy is conserved, and, therefore, there can
be no energy “lost” to damping. Rather, the notion of
damping is merely a convenient fiction for modeling the
removal of energy from a mechanical subsystem. Yet it
is of intellectual interest to understand how the fiction
of damping emerges from the lossless dynamics of the
real world.

In view of Theorem 3.1 and Conjecture 3.1, we
can explain this paradox as follows. Suppose that a
single, low frequency oscillator is connected to a large
collection of identical, coupled, high-frequency oscilla-
tors. The response of the high-frequency oscillators is
effectively averaged overall finite intervals during which
their dynamics exhibit “decay” as shown, for example,
in Figure 5. However, this “decay” is not decay in the
sense of convergence to zero; if it did converge to zero,
then energy would truly be lost, which it is not. Rather,
the equipartition energy level represents an average tem-
perature, which is effectively the energy per oscillator.
The simple act of redefining this energy level to be zero
gives the impression that energy is lost through dissi-
pation. Hence cur analysis shows that damping is an
artifact of averaging. In other words, zime averaging
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causes damping. The derivation of an LTI approxima-
tion of this decay-like behavior is needed to complete
this mechanism of emergence.
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Figure 1: This plot of Epoi(7) and Eyin(r) shows the actual
potential and kinetic energies for the single oscil-
lator given by Example 4.1.

20 o

ume

7o

Figure 2: This plot of L f§ Epor(s)ds and 1 f§ Eiin(s)ds
shows that the time-averaged kinetic and potential
energies for the single oscillator given by Example
4.1 satisfy energy equipartition.
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Figure 3: This plot of 1 [ 8esc1(s)ds and 1 ff Boeea(s)ds
shows energy equipartition for the pair of coupled

oscillators given by Example 4.2,

20
timw

Figure 4: This plot of L [ 85sc5(s)ds and L [ Egeea(s)ds
shows time-averaged oscillator energies for a pair
of coupled oscillators with the coupling chosen in
Example 4.2 so that the coupled system has re-
peated frequencies. Consistent with Theorem 3.1,
equipartition fails for this choice of coupling.

Figure 5: This plot shows energy equipartition of the aver-
aged oscillator energies of % fé Eosci(s)ds fora
collection of 10 coupled oscillators.
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