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Abstract: In this paper we consider a semilinear Duhem model. The input-output
map of the model is rate-independent, thus yielding persistent phase shift (that
is, hysteresis) at arbitrarily low frequency. For the semilinear Duhem model we
reparameterize the response in terms of the control input, and we provide sufficient
conditions for convergence to a hysteresis map. A constrained least squares method
is developed to identify the hysteresis map using the semilinear Duhem model.
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1. INTRODUCTION

Hysteresis is a widespread phenomenon in many
engineering areas. Although there is no precise
definition of hysteresis, we adopt the intuitive
notion that hysteresis is effectively DC phase shift,
that is, phase shift that persists as the frequency
content of the input signal approaches DC. Con-
sequently, hysteresis is an inherently nonlinear
phenomenon since the phase shift of linear sys-
tems always approaches zero degrees as the input
frequency decreases.

To illustrate this point of view, consider the mech-
anism shown in Figure 1. The equation of motion
is given by

mq̈(t) + cq̇(t) + kdw (q(t)− r(t)) = 0, (1)

where dw(z) is the deadzone function with width
w. Because of the deadzone at the attachment
point, there is a phase shift between r(t) and
q(t). The presence of hysteresis is not obvious
during dynamic operation, since the phase shift is
a consequence of both the gap and the dynamics.

1 This research was supported in part by the National

Science Foundation under grant ECS–0225799.
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Fig. 1. Mass-dashpot-spring system with dead-
zone.

However, Figure 2 reveals that the phase shift
persists near DC, that is, at asymptotically low
frequency.

Alternatively, consider the relationship between
the magnetic fieldH(t) and the magnetic fluxB(t)
of ferromagnetically soft materials of the isoperm
type (Coleman and Hodgdon, 1986)

Ḃ(t) = α|Ḣ(t)|[bH(t)−B(t)] + aḢ(t). (2)

Figure 3 shows the relationship between H(t) and
B(t). The presence of phase shift for low frequency
inputs indicates that this system is hysteretic.

Although the examples discussed above are both
hysteretic, the response of the mass-spring system
depends on the input frequency, or more generally,
is affected by the time dependence of the input.
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Fig. 2. Input-output map for the mass-dashpot-
spring system with deadzone.

However, the ferromagnetic material model has
the same input-output response for all frequencies
and types of input.

One of the most successful hysteresis models is
the Preisach model(Macki et al., 1993, and refer-
ences therein). Preisach models are frequency in-
dependent and thus they are inherently kinematic.
However, Preisach models are computationally de-
manding, requiring gridding of the plane.

In contrast, the examples discussed above are
finite dimensional, and thus they suggest alter-
natives to the Preisach model. In fact, both of
these examples illustrate hysteresis models that
have been studied in the literature. In partic-
ular, the mass-spring example is suggested in
Kransnosel’skii and Pokrovskii (1980), p. 93, as
an approximation to a hysteron model, while the
ferromagnetic material model is a Duhem model,
a class of hysteresis models extensively studied in
Chua and Bass (1972).

The purpose of this paper is to extend the existing
analysis of Duhem models in order to understand
their properties for modeling and identification.

2. GENERALIZED DUHEM MODEL

Consider the single input-single output general-

ized Duhem model given by

ẋ(t) = f(x(t), u(t))g(u̇(t)), (3)

y(t) = h(x(t), u(t)), x(0) = x0, t ≥ 0, (4)

where x ∈ R
n, y ∈ R, u ∈ R, f : R

n × R → R
n×r,

and g : R → R
r. We assume that the solution to

(3) exists and is unique on all finite intervals. The
following definition will be useful.

Definition 1. The generalized Duhem model (3),
(4) is time-scale invariant if, for all x(t) and u(t)
satisfying (3), all initial conditions x0, and all α >

0, it follows that xα(t)
4

= x(αt) and uα(t)
4

= u(αt)
also satisfy (3).
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Fig. 3. Input-output map for the model of fer-
romagnetically soft materials of the isoperm
type.

The following definition is needed to characterize
time-scale invariant generalized Duhem models.

Definition 2. The function g is positively homoge-
neous if g(αv) = αg(v) for all α ≥ 0 and v ∈ R.

The following result generalizes Property 9 of
Chua and Bass (1972).

Proposition 1. Assume that g is positively homo-
geneous. Then the generalized Duhem model (3),
(4) is time-scale invariant.

The time-scale invariant generalized Duhemmodel
has several alternative representations. The fol-
lowing lemma is needed for further discussion.

Lemma 1. Assume g is positively homogeneous.
Then there exist h+ ∈ R

r and h− ∈ R
r such that

g(v) =

{

vh+, v ≥ 0,

vh−, v < 0.
(5)

Assume g is positively homogeneous. Then (3) and
(4) can be rewritten as

ẋ(t) =

{

f+ (x(t), u(t)) u̇(t), u̇(t) ≥ 0,

f− (x(t), u(t)) u̇(t), u̇(t) < 0,
(6)

y(t) = h(x(t), u(t)), x(0) = x0, t ≥ 0, (7)

where f+(x(t), u(t))
4

= f(x(t), u(t))h+ and f−(x(t),

u(t))
4

= f(x(t), u(t))h−. Note that (6) can be
viewed as a switching system with respect to the

sign of u̇(t). Next define u̇+(t)
4

= max{0, u̇(t)},

and u̇−(t)
4

= min{0, u̇(t)}. Then (6) can be written
as

ẋ(t) = [u̇+(t)In u̇−(t)In]

[

f+(x(t), u(t))
f−(x(t), u(t))

]

, (8)

y(t) = h(x(t), u(t)), x(0) = x0, t ≥ 0. (9)

which is the classical Duhem model (Macki et

al., 1993).
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Fig. 4. Input-output maps of Example 1 with
g(u̇) = |u̇| and u(t) = sin t.

Example 1. Consider the generalized Duhemmodel

ẋ(t) = (−x(t) + u(t))g(u̇(t)), (10)

y(t) = x(t), x(0) = 0, t ≥ 0, . (11)

First, let g(u̇) = |u̇|. Since |u̇| is positively ho-
mogeneous, Proposition 1 implies that (10), (11)
is time-scale invariant and the input-output maps
of the model with different input frequencies are
identical as shown in Figure 4. Next let g(u̇) = u̇2,
which is not positively homogeneous. Figure 5
shows that the input-output map of (10) and (11)
depends on input frequency.

3. REPARAMETERIZATION OF THE
TIME-SCALE INVARIANT GENERALIZED

DUHEM MODEL

Consider the time-scale invariant generalized Duhem
model (6), (7), where u(t) is piecewise monotonic.
Suppose u̇(t) 6= 0. Then dividing both sides of (6)
by u̇(t) yields

dx(t)

du(t)
=

{

f+(x(t), u(t)), u̇(t) > 0,

f−(x(t), u(t)), u̇(t) < 0.
(12)

Now suppose u̇(t) = 0. Then (6) becomes ẋ(t) = 0
and thus x(t) is constant. Therefore, the time-
scale invariant generalized Duhem model (6), (7)
can be reparameterized with u considered as the
independent variable. Let x̂(u) and ŷ(u) be the
reparameterized variables of (6) and (7) such that

x̂(u)
4

= x(u(t)) and ŷ(u)
4

= y(u(t)). Then the
reparameterized time-scale invariant generalized
Duhem model becomes

dx̂(u)

du
=

{

f+(x̂(u), u), if u increases,

f−(x̂(u), u), if u decreases,
(13)

ŷ(u) = h(x̂(u), u), x̂(u0) = x0, (14)

where u0 = u(0). Note that (13) and (14) can be
viewed as a time-varying dynamical system with
nonmonotonic time.
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Fig. 5. Input-output maps of Example 1 with
g(u̇) = u̇2 and u(t) = sin t.

Example 2. Reconsider Example 1 with two dif-
ferent inputs, namely, sinusoidal and triangle in-
puts with same period and amplitude. When
g(u̇) = |u̇|, the input-output maps under different
inputs are identical. This shows that the input-
output map is not affected by the time dependence
of u. However, when g(u̇) = u̇2, the input-output
maps under different inputs are different as shown
in Figure 6.
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Fig. 6. Input-output maps of Example 2 with
g(u̇) = u̇2 under (a) sinusoidal input, and (b)
triangle input.

4. SEMILINEAR DUHEM MODEL

As a specialization of (8) and (9), in this section
we consider the semilinear Duhem model

ẋ(t) =[u̇+(t)In u̇−(t)In]×
([

A+

A−

]

x(t) +

[

B+

B−

]

u(t) +

[

E+

E−

])

,
(15)

y(t) =Cx(t) +Du(t), x(0) = x0, t ≥ 0, (16)

where A+ ∈ R
n×n, A− ∈ R

n×n, B+ ∈ R
n,

B− ∈ R
n, E+ ∈ R

n, E− ∈ R
n, C ∈ R

1×n, and
D ∈ R. Note that (15), (16) are a time-scale
invariant generalized Duhem model of the form
(8), (9) with f+(x(t), u(t)) = A+x(t) + B+u(t) +
E+, f−(x(t), u(t)) = A−x(t) +B−u(t) + E−, and
h(x(t), u(t)) = Cx(t) +Du(t). We exclude patho-
logical inputs by assuming that u(t) is piecewise
monotonic. Reparameterizing (15) and (16) in
terms of u yields

dx̂(u)

du
=

{

A+x̂(u) +B+u+ E+, if u ↑,

A−x̂(u) +B−u+ E−, if u ↓,
(17)



ŷ(u) = Cx̂(u) +Du, x̂(u0) = x0, (18)

where u0 = u(0). For the following lemma, AD

denote the Drazin generalized inverse of A and
let indA denote the index number of A (p. 122,
Campbell and C. D. Meyer, 1979).

Lemma 2. Let r+ = indA+ and r− = indA−.
Then the forward-time ramp response of (17) is
given by x̂(u) = eA+(u−u0)x0+X+(u, u0)+Y+(u−
u0) − Z+(u, u0), u ≥ u0, and the backward-
time ramp response of (17) is given by x̂(u) =
eA−(u−u0)x0+X−(u, u0)+Y−(u−u0)−Z−(u, u0),
u ≤ u0, where

X+(u, u0)
4

=
(

I −A+A
D
+

)

r+
∑

k=1

u+ ku0

(k + 1)!
(u− u0)

kAk−1
+ B+,

X
−
(u, u0)

4

=
(

I −A
−
AD
−

)

r−
∑

k=1

u+ ku0

(k + 1)!
(u− u0)

kAk−1
−

B
−

Y+(u)
4

=
(

I −A+A
D
+

)

r+
∑

k=1

1

k!
ukAk−1

+ E+,

Y
−
(u)

4

=
(

I −A
−
AD
−

)

r−
∑

k=1

1

k!
ukAk−1

−

E
−
,

Z+(u, u0)
4

=AD
+(uI − u0e

A+(u−u0))B+ +A2D
+ ×

(I − eA+(u−u0))B+ +AD
+(I − eA+(u−u0))E+,

Z
−
(u, u0)

4

=AD
−

(uI − u0e
A−(u−u0))B

−
+A2D

−

×

(I − eA−(u−u0))B
−
+AD

−

(I − eA−(u−u0))E
−
,

Let ρ(A) denote the spectral radius of A ∈ R
n×n.

We now state the main result on the existence of
hysteretic maps of the semilinear Duhem model.

Theorem 1. Let u(t) and y(t) satisfy the semi-
linear Duhem model (15), (16). Suppose u(t) is
piecewise monotonic and periodic with period T

and has exactly one local maximum umax in [0, T )
and exactly one local minimum umin in [0, T ).

Furthermore, let β
4

= umax − umin and assume
that ρ

(

eβA+e−βA−
)

< 1. Then the input-output
map of u(t) and y(t) converges to the closed curve
in R

2 given for u ∈ [umin, umax] by

ŷ+(u) = CeA+(u−umin)x̂+ + CX+(u, umin)

+ CY+(u− umin)− CZ+(u, umin) +Du,

ŷ−(u) = CeA−(u−umax)x̂− + CX−(u, umax)

+ CY−(u− umax)− CZ−(u, umax) +Du,

where

x̂+
4

=
(

I − e−βA−eβA+

)

−1 (

e−βA−W+ +W−
)

,

x̂
−

4

=
(

I − eβA+e−βA−
)

−1 (

eβA+W
−
+W+

)

,

W+
4

=X+(umax, umin) + Y+(β)−Z+(umax, umin),

W
−

4

=X
−
(umin, umax) + Y−(−β)−Z+(umax, umin).

As a special case of (15), (16), consider the semi-
linear Duhem model

ẋ(t) =
[

u̇+(t)I u̇−(t)I
]

× (19)
([

h+A

h−A

]

x(t) +

[

h+B

h−B

]

u(t) +

[

h+E

h−E

])

,

y(t) =Cx(t) +Du(t), x(0) = x0, t ≥ 0, (20)

where A ∈ R
n×n, B ∈ R

n, E ∈ R
n, h+ ∈ R,

h− ∈ R, C ∈ R
1×n, and D ∈ R. The following

result is the specialization of Theorem 1 to (19),
(20).

Corollary 1. Let u(t) and y(t) satisfy the semilin-
ear Duhem model (19), (20). Suppose A is asymp-
totically stable, and u(t) is piecewise monotonic
and periodic with period T and has exactly one
local maximum umax in [0, T ) and exactly one lo-
cal minimum umin in [0, T ). Furthermore, assume
h− < h+. Then the input-output map of u(t) and
y(t) converges to the closed curve in R

2 given for
u ∈ [umin, umax] by

ŷ+(u) = Ceh+A(u−umin)x̂+ + CV+(u) +Du,

ŷ−(u) = Ceh−A(u−umax)x̂− + CV−(u) +Du,

where

x̂+
4

= (I − eβ(h+−h−)A)−1(e−βh−AV+(umax) + V−(umin)),

x̂
−

4

= (I − eβ(h+−h−)A)−1(eβh+AV
−
(umin) + V+(umax)),

V+(u)
4

= A−1(uI − umine
h+A(u−umin)B + h−1

+ A−2×

(I − eh+A(u−umin))B −A−1(I − eh+A(u−umin))E,

V
−
(u)

4

= A−1(uI − umaxe
h−A(u−umax)B + h−1

−

A−2×

(I − eh−A(u−umax))B −A−1(I − eh−A(u−umax))E,

Example 3. Consider the semilinear Duhemmodel
(19), (20) with

A =

[

−1 4
−4 −1

]

, B =

[

0
1

]

, C =
[

0 1
]

,

x0 =
[

0.15 0.15
]T

.

Suppose u(t) = sin t, t ≥ 0 and let h+ = 1
and h− = −1. Then since A is asymptotically
stable and h− < h+, Corollary 1 implies that the
input-output map of u(t) and y(t) converges to a
closed curve as t→∞. Indeed, ρ(e2h+Ae−2h−A) =
0.0183 < 1, and the closed curve is shown in
Figure 7a. Now let h+ = 1 and h− = 1.1. Then
h− > h+ and the input-output map of u(t) and
y(t) does not converge, as shown in Figure 7b. In
this case, ρ(e2h+Ae−2h−A) = 1.2214 > 1.
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Fig. 7. Input-output maps of Example 3 with
h+ = 1 and (a) h− = −1, and (b) h− = 1.1.



5. IDENTIFICATION OF THE SEMILINEAR
DUHEM MODEL

In this section we develop an identification method
based on the semilinear Duhem model. Specif-
ically, consider input-output curves ŷ+(u) and
ŷ−(u), u ∈ [umin, umax], that form a closed curve
in R

2. Then the semilinear Duhem model identifi-
cation problem is to find an order n and matrices
A+ ∈ R

n×n, A− ∈ R
n×n, B+ ∈ R

n, B− ∈ R
n,

and C ∈ R
1×n such that, ŷ+(u), ŷ−(u) satisfy

(17), (18) in steady state with E+ = E− = 0 and
D = 0. Furthermore, to guarantee convergence to
the hysteresis map, we require that the stability
condition ρ(eβA+e−βA−) < 1 be satisfied.

The semilinear Duhem model identification prob-
lem is equivalent to identifying two linear systems
whose forward-time ramp response and backward-
time ramp response coincide with ŷ+(u) and
ŷ−(u), respectively under the stability condition.
Note that the independent variable of the lin-
ear system (17) is nonmonotonic, since u is in-
creasing for ŷ+(u) and decreasing for ŷ−(u). To
avoid backward-in-time identification, we intro-
duce a monotonically increasing independent vari-
able, û ∈ [umin, 2umax − umin]. Since the time-
scale invariance property of the semilinear Duhem
model renders the input-output map unaffected
by the time dependence on u, we reparameterize
ŷ+(u) and ŷ−(u) in terms of û. Specifically, we
‘flip over’ ŷ−(u) as shown Figure 8 and define

ŷ(û)
4

=

{

ŷ+(û), umin ≤ û < umax,

ŷ
−
(umax + umin − û), umax ≤ û ≤ 2umax − umin,

u(û)
4

=

{

û, umin ≤ û < umax,

ûmax + umin − û, umax ≤ û ≤ 2umax − umin.

Then the identification problem is to find system
matrices associated with the input û(û) and the
output ŷ(û), u ∈ [umin, 2umax − umin].

Now, let yk and uk, k = 0, . . . , 2l − 1, be 2l mea-
surements taken from ŷ(û) and u(û), respectively.
Then we determine system matrices Â+, Â−, B̂+,
B̂−, and Ĉ to approximately satisfy the discrete-
time semilinear Duhem model

xk+1 =

{

Â+xk + B̂+uk, k = 0, . . . , l − 1,

Â−xk + B̂−uk, k = l, . . . , 2l − 1,
(21)

yk = Ĉxk, (22)

Note that the stability condition for (21), (22) is
ρ(Al

+A
l
−
) < 1.

Finding system matrices is nontrivial, since the
input uk is not persistently exciting. Nevertheless,
we use the nonminimal input/state/output repre-
sentation approach. Suppose uk and yk satisfy the
m-dimensional ARX model

yk+1 = −α+
1 yk − · · · − α+

myk−m+1

+ β+
1 uk + · · ·+ β+

muk−m+1,
(23)

for k = 0, . . . , l − 1, where α+
i ∈ R and β+

i ∈ R,
i = 1, . . . ,m, are system parameters. Then (23)
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Fig. 8. The given input-output curves ŷ+(u) and
ŷ−(u) in (a) are considered as the input-
output map of ŷ(û) and u(û) in (b).

has a nonminimal state space representation of
order 2m− 1th given by

xk+1 = Â+xk + B̂+uk, k = 0, . . . , l − 1, (24)

yk = Ĉxk, (25)

where

xk
4

=
[

yk . . . yk−m+1 uk−1 . . . uk−m+1

]T
,

Â+
4

=
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,

B̂+
4

=
[

β+
1 0 · · · 0

]T
, Ĉ

4

=
[

1 0 · · · 0
]

.

We define Â− ∈ R
(2m−1)×(2m−1) and B̂− ∈

R
2m−1 for k = l, . . . , 2l − 1 analogously. Note

that the initial state x0 for (24) involves data
taken from the backward system of (21), namely,
y2l−1, . . . , y2l−m+1, and analogously for xl. This
ensures continuity of the state over [umin, 2umax−
umin].

Since xk consists of inputs and outputs, we can
immediately determine the state xk for all k =
0, . . . , 2l−1. Now, define Φ1+

∈ R
(2m−1)×l, Φ2+

∈

R
(2m−1)×l, and U1+

∈ R
1×l as

Φ1+

4

=
[

x0 x1 · · · xl−1

]

, Φ2+

4

=
[

x1 x2 · · · xl
]

,

U1+

4

=
[

u0 u1 · · · ul−1

]

.

Then Â+, B̂+, Â− and B̂− are determined from
minimizing
∥

∥

∥

∥

Φ2+
− [Â+ B̂+]

[

Φ1+

U1+

]∥

∥

∥

∥

F

+

∥

∥

∥

∥

Φ2− − [Â− B̂
−
]

[

Φ1−

U1−

]∥

∥

∥

∥

F

,

(26)

subject to
ρ(Al

+A
l
−
) < 1. (27)

Since the stability condition (27) is not convex, we
use the fact that if σ̄(A) < 1, where σ̄(A) is the
maximum singular value of A, then ρ(A) < 1 and
thus ρ(Al) < 1. Then from the submultiplicative
property of the maximum singular value, we have
the alternative stability condition

σ̄(A+) < 1 and σ̄(A−) < 1. (28)
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Fig. 9. The identification of ŷ+(u), ŷ−(u) from
Example 3 with (a) p = 1 and (b) p = 7.

Therefore, the original constrained least squares
problem (26), (27) can be rewritten as two sep-
arate least squares problems with a convex con-
straint

min
A+,B+

∥

∥

∥

∥

Φ2+
−
[

Â+ B̂+

]

[

Φ1+

U1+

]∥

∥

∥

∥

F

,

subject to σ̄(A+) < 1,

(29)

and

min
A−,B−

∥

∥

∥

∥

Φ2− −
[

Â− B̂−
]

[

Φ1−

U1−

]∥

∥

∥

∥

F

,

subject to σ̄(A−) < 1.

(30)

The constrained least squares problems (29) and
(30) are quadratic programming problem with
positive-semi-definite constraints. Then we can
find Â+, Â−, B̂+, and B̂− by minimizing a linear
function over symmetric cones. For details of a
similar algorithm, see Lacy and Bernstein (2003).

Remark 1. The alternative stability condition (28)
is conservative and may result an overly con-
strained solution. To avoid the conservatism, we
consider σ̄(A+) < p and σ̄(A−) < p, where p ≥ 1.
The condition ρ(Al

+A
l
−
) < 1 is checked a posteri-

ori to verify stability.

Example 4. Suppose ŷ+(u) and ŷ−(u) are given
as Figure 9 from Example 3. The identification
is performed with m = 2, and thus the identified
system is of order 3. Figure 9a shows the input-
output map of the identified system with p =
1. Although ρ(Al

+A
l
−
) = 0.0262 and thus the

stability condition is met, the least squares cost
is 0.0553 and the input-output map poorly fits
ŷ+(u) and ŷ−(u). Then the upper bound p = 1
is increased to p = 7, where ρ(Al

+A
l
−
) = 0.0134.

The input-output map fits the original hysteresis
better as shown in Figure 9b, and the least squares
cost is 5.12× 10−9.

Example 5. Consider a dynamic stall model of an
oscillating 2-D airfoil. The dashed line of Figure
10 represents dynamic stall between the angle of
attack and the lift coefficient of an airplane (Carr
et al., 1977). The identification is performed with
m = 20, hence the identified system is of order
39. Figure 10a shows the input-output map of the
identified system and it does not fit the stall loop
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Fig. 10. The identification of the dynamic stall
model (a) without additional subintervals
and (b) with 10 subintervals.

well. To improve the fit, we divide [umin, umax]
into 10 subintervals and identify the system ma-
trices for each subintervals. Hence the model is
a switching system which switches according to
the subinterval of u. Figure 10b shows the input-
output map of the identified system.

6. Conclusion

In this paper we introduced the rate-independent
semilinear Duhem model. The analysis of this
model was facilitated by a reparameterization
in terms of the control input. By analyzing the
iterated ramp response, we obtained sufficient
conditions for convergence to a hysteresis map.
Finally the semilinear Duhem model provided the
basis for a least squares identification method
based on a convex optimization algorithm.
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