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Absiract— This paper introduces an estimator working on
errors-in-variables models whose all variables are corrupted
by noise. The necessary and sofficient condition minimizing
the criterion, defined by the square of empirical correlation
between residuals with a non-zero time interval, gives the least-
correlation estimates. The method of least correlation can be
interpreted as a generalization of the least-squares. Analysis
shows that the estimator has a capability to find out the best
fit without bias from noisy measurements even contaminated
by colored noise as the number of observations increases.
Monie Carle simulations for numerical examples support the
consistency of the estimator. The least-cerrelation estimate
is not an orthogonal projection bul an oblique projeciion.
© We discuss interesting geometric properties of the estimate.
Finally recursive realizations of the estimator in coatinuous-
time domain as well as in discrete-time are mentioned briefly.

I. INTRODUCTION

The method of least squares is still the most popular
approach to finding out the best fit to a given structure [20],
but it exhibits high sensitivity to errors in regressors [3, 19].
A generalized approach to medelling noise is to view all
variables as contaminated by noise, called errors-in-variables
(EIV) models [12, 14, 18] which has a broad application in
time series modelling, image processing, signal processing,
neural networks and system identification. A recent trend in
systems is trying to use powerful computers with Tow grade
instruments, which mmplies in general that the need for EIV
models is increasing.

We introduce a criterion defined by the square of empir-
ical autocorrelation between residuals with a non-zero time
interval and derive an estimate minimizing the criterion.
Analysis shows that the optimality in the sense of least
correlation has several attractive features. It works on static
systems as well as dynamic systems since it does not depend
on any specific structure of regressors. Only simple matrix
algebra gives the estimate. There is a direct relationship
between the criterion and the stochastic correlation. 1t works
on EIV modets with colored noises as well as with white
noises. Literature reveals that the ‘error whitening Wiener
filter’ [10, 11] can be considered as a stechastic counterparts
of the least-correlation estimate introduced in this work. Un-
der the setting in the previous works [10, 11], the estimation
residuals are whitened by the ‘error whitening Wiener filter’.
In the generalized formulation in this paper, however, the
estimate can not whiten the residuals any more but minimize
the magnitude of correlation. In this sense, the term ‘error
whitening’ can not be used for this work.

This paper reports some aspects of the least-correlation
estimate besides its consistency. The estimate is the suffi-
cient and necessary condition to minimize the criterion. The
method of least correlation yields four induced estimators
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and one of them can be interpreted as the instrumental
variable estimator {8, 9]. Analysis and simulations show that
the induced estimators also work on EIV models, The least-
correlation estimate shows interesting geometric property
that is partly similar to that of the least-squares estimates.
The estimate is not an orthogenal projection but a kind of
oblique projection.

{I. PROBLEM FORMULATION

Consider the linear regression model
2(t) = 6° ()8 + m(t), M

where z(t) € R is the system response at {th sampling,
@(t) € R™ is the regression vector, @ € R™ is the parameter
vector to be estimated and 7m;{t) € R denotes possible
residuals in modelling. The components of ¢(t) depend on
the type of system models. For exampie, ¢(¢) is composed
of current inputs in linear static systems, delayed inputs in
FIR (finite impulse response) systems, delayed outputs in
all-pole systems or in AR (autoregression) models, and both
delayed inputs and delayed outputs in ARX (avioregression
with exogenous variables)} models.

n,(t)

4(t)

an + 3 F

Fig. 1. Description of errors-in-variables linear regression models

Let y(¢) and ¢(t) denote noise-corrupted measurements
of z(t) and ¢{t), respectively, that is,

y(t) = 2(t) +nlt), @

¥(t) B(t) +¢(2), (3)
where 72(t) € R and {(t) € R are additive noises. Taking
into account the noises included in both the regressors
and the outputs constitutes an EIV problem [9, 12, 14, 18],
depicted in Fig. 1. In the approach in Fig. 1, the system
(1)} can be static or dynamic as far as it is written in linear
regression model. Applying (2)-(3) to (1) yields

yt) = U0 +elt), (4)

e(t) {t) - ¢T ()6, ()

where n{t} £ m (t)+n2(t) denotes the total error on output.
Now let us state the estimation problem for the EIV models,

il

i

It
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Problem 1. Given the system model (1) and the mea-
surement model (2)-(3), determine an estimate of the system
parameter § based on available measurements ¥(t) and y(t).

Estimation problems frequently work with signals that
are described as stochastic processes with deterministic
components. For a common framework for deterministic
and stochastic signals, we employ the definition of quasi-
stationary signals and the notation

N
Elf@1 & Jim 3" Elf() (©)
t=1

which works on the deterministic components as well as the
stochastic parts of the quasi-stationary signal f(t), where £
denoctes mathematical expectation [9, p.34]. We implicitly
assume that the Timit in (6) exists when £ is used.

We introduce the following assumptions.

A1, The system is represented as a linear regression model
and the number of parameters o be estimated is known a
priori. If the system is dynamic, it is asymptotically stable.

A2. The measured signals (¢) and y(f) are quasi-
stationary and jointly quasi-stationary.

A3, The noises n(t) and {(t) are zero-mean and finitely
cross-correlated with #(t), i.e., there exists 7 > 0 such that

E [T (¢ - k)] 0 for all |kt > T, Q)
ERp(tnt — k) 0 for all |k| > 7. (8)

Ad. For 7 in A3, +(t) satisfies
rank [Ryy(t,t — 7, N) + Ryut — 7,5, N) =0, (9

where N is the number of data samples and the empirical
correlation matrix Ryy(t1,12, N) is defined with either t; =
tity=t—Tort;=t—rta=tand 72 |t; —t] by

I

I

N

Bpsltn o, M) 2 = 37 $(t)67(ta)

t=14+7

(10)

Assumptions A3 and A4 express the idea that the corre-
lations between data are stronger than those between noises
themselves as well as those between signals and noises.
Conditions (7) and (8) are equivalent to

Efp(t)T(t—K)] =0, E[¢{e)¢Tit-k)] =0, D
Elp(tint - k) =0, E[{tmiEt—k)]=0, 12

for all |k| > 7 > 0, respectively, due to (3) and the
arbitrariness of @(t), ¢(t) and n(t).

III. LEAST-CORRELATION ESTIMATES (LCE)
Consider an arbitrary estimate § with the residual

e(t,8) = y(t) — w7 ()8 (13)

which models the mismatch between the observation on
the real system and the behavior of the estimated model.
If the sequence of residuals resulted from the least-squares
estimate js not white, then at least one of the following
statements is true.

1) Either the modelling or the estimate is not complete.

2} Either n(¢) or {(t} is colored.

3) There is a non-zero correlation between #(t) and
either n(t) or {(t).

Applying (4)-(3) to (13) gives above condition 1) and 2).
Condition 3) follows from the analysis of the least-squares
estimate applied to the EIV problems (4)-(5) [3]. It is
noted that the correlation between 4(t) and {(¢) is not zero
whenever ((t) is not zero, which is induced from (42) in
Section V.

Given & = § and 7(t) = 0 in the EIV models, the correla-
tion between e(t, #) and (¢, §), defined by Ele(t, De(t’, B,
is zero due to A3 for all |t —#/| = 7, but the mean square
error E[e?{t,#)] can never be zero. Based on this insight,
we introduce a least-correlation criterion

N 2
I3 (8,7, N) = (Ni by e(t,ﬂ)e(t—'r,é)) . (4
T t=1+4T1

where Ngiry & N — g(7), 7 is an integer defining the time
interval of autocomelation and N denotes the number of
samples. The cost function (14) can be rewritien as

2
J*(8,7,N) = (1—\1;- (Yo~ Tb)" (¥; - \Iaré)) (15)
with the vectors Yo, Y, and the matrices W, ¥, defined by
y(N) ) y(NT)
N-1 N,
S R TS A s
y(l+7) y(1)
;lt'JT(AI) ’ll:!';‘_‘T(NT}
TN -1 PwT{N;
P RN I R bl
(14 7) w7 (1)

Minimizing (15) yields the estimate in Theorem 2. For
notational simplicity in Theorem 2 and its proof we define

b Al T

W & [ ‘I,‘T’ ] g2 [ q,; ] (18)
Y, Y,

Y‘r,u'O & [ Y; ] El 1/O/"J' 2 [ }IS :| (19J

Theorem 2. (Least-Correlation Estimate) Consider the
cost function J2(@, 7, N) given by (14) or (15). Suppose that
A4 is satisfied. Then !IJE‘,"/TlIJT /o is nonsingular. Furthermore
J3{@,7, N) has a unique minimum at

~ -1
6(T1 N) = (‘Ilgj'rlljffﬂ) ‘pg/r},?'/o:

and the comresponding minimum is given by

(20)

1 - 2
J? = (Q—N—YU'*‘;T {1-9,p2 ‘\PE/T}ero) eh

with
=2 wg,TwT o= lp'fm%/f. (22)

Proof. Taking the gradient of (15) with respect to # yields
a necessary condition
OF, W0 = 7, Yoo 23)
minimizing (15), where @ denotes an optimal estimate. We
can rewrite (15) by using (18)-(19) as

1 } 2
J? = {W (Yosr — l1’0/1-9)T (Yrpo— \I’-r/na} - (248
A
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Adding and subtracting

-1
YO?T‘IJT/U (‘I’g}rql‘rfﬂ) ‘I’(j;/‘ry‘r/l)
on the right-hand of (24) and completing the squares yields
7 = (e 7=} 2 {0 -="1}

2
R oI A P 7 S AV et
where T ¢ R"™ are defined by

T2V Y0 =V5, Yoo (26)

Since the second term of (25) is independent of &, (20) is
unique and sufficient to minimize J2(8, 7, N) provided that
A4 is satisfied. The minimum (21) of the cost function then
follows directly by substituting {20) into (25). ]

Equation (23) plays an important role which is similar to
the normal equation of the method of least squares. Setting
7 = 0 and deleting the redundancy in (23} reduces to the
normal equation of least-squares estimate.

Next, let the least-correlation estimate (20} be stated as

b(r, N) = (U7, + 0T %,) ™ (3TY, + UTY,). @7
For 7 = 0, (27) specializes to the least-squares estimate

60, N) = (¥Tw) " ¥TY, (28)
where ¥ £ Uo(0, N) = ¥, (0, N} and ¥ £ Yo(0,N) =
Y;{0, N). Deleting the first term in each parenthesis of the
right-hand side of (27} yields the instrumental variable (IV)
estimate

brv (7, N) = (9T0) ™" 0TY, (29)

with the instrumental variable W¥.. This kind of instru-
mental variable estimates is useful for EIV problems [14,
15, 17] and that the ‘bias eliminated least-squares (BELSY’
approaches [21,22] to EIV models can be interpreted as a
sort of instrumental variable estimates (3,6, 16].
One the other hand, deleting the second terms instead of
the first terms in each parenthesis of (27) yields
brvi(rN) = (350,) Ty, (30)
The other combinations of the terms in each parenthesis of
(27) gives following induced estimators.

i

(31)
32)

Brna(r, N)
Giwa(m,N) =

(vTe,) " ely,,
(@T9,) " uTy,.

These induced estimates (30)-(32) are slightly different from
the instrumental variable method [8, 91,

IV. CONSISTENCY OF THE LCE
The parameter estimation error
G(r,N) £ d(r,N) -8 (33)
is stated as
8(r, N) = {Ryy(t,t — 7, N} + Ryy(t — 7,8, N)} '
x {Fyelt,t — 7, N} + Fye(t — 7,1, N3}, (34)

where Fye(t1, 12, V) € R" is defined by

N
Tue(t1,fa, N) £ ﬁ Z Yt )elts)

t=1+T

(35)

with either §; = t,f; =i —7orty = ¢t — 7,13 = { and
T 2 [t; — t3]. Correlation (35) is evaluated as

Pyelti,to, N) = fyql(t1, 12, N) — Ryclts, 12, N)B,  (36)

where Rﬁc(thtz,f\r) and F¢n(t1,t2,j\r) are defined sim-
ilarty to (10} and (35), respectively. Observations on (34)
gives following property.

Theorem 3. (Consisiency) Suppose that Al-A4 are sat-
isfied. Then 8(7, N') converges to § with probability 1 as N
increases toward infinity, that is,

lim §(r, N} = 6. (37
N—oc

Proof. According to the ergodic theory [9, Theorem 2.3
in p.43], the empirical correlation Ry (t1, 2, N) converges
to the corresponding mathematical correlation Ryy{t; —12)
with probability 1 as N goes to infinity, that is,

N
lim

N -7
—x IV te=l4T

Bt )7 (b2) = E [(t)o7 (82)] (38)

or equivalently

Algnx Ryy(ty, ta, N) = Byy(t — t3). 39
Similarly as N increases to infinity, {36) comes to
Tu':e(tl — 32) = T¢ﬂ(t1 — tg) et ng(tl - t2)€ (40)
and then {34) is written as
Jim (7. N) = Ry (r){ron(r) — Ryc()} @41

since the mathematical correlations depend on the absolute
difference of time, 7 = [t; — 3], owing to A2. Finally A3
guarantees that both ry,(7) and Ryc(7} are zero, which
proves (37). O

Corollary 4. In the EIV madel (1)-(5), the least-squares
estimates #(0, NV} in (28) yields the error-prone resulis given
by

Jim 60, N) = B, (0) {ren (0) — Ryc(0)6} . (42)
Proof, As 6(r, N) comes to #(0, N) at = = 0, letting
7= 0 for (41) yields (42). 0

The cross-correlation matrix Ry (0} in (42} does not de-
generate to zero any more even if () is white. Therefore
the least-square estimate can never be consistent for EIV
madels.

Corollary 5. Suppose that A1-A3 are sarisfied and either
Ryu(t,t — 7, N) or Ryy(t — 7.t, N} corresponding to
each of (29)-(32) has a full rank. Then each of (29)-(32)
converges to the true parameter with probability 1 as N
increases toward infinity.

Proof. As N goes to infinity, each of the induced es-
timates converges to the same value with (41), which is
deduced from the proof of Theorem 3. O
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V. GEOMETRICAL ASPECT OF THE LCE
Consider (23). Following two equations

WE Vopo — W3 Vrpobr) = 0 (43)
VT Yorr — 8T 8(r) = O, (44)
are equivalent to each other. Let V. 7o and 1’}0/1‘ be
Voo (0)) = Wepnlr), 45)
Yosr (8) = Bopeblr) (46)
and let the correspending residuvals be
Eno () = Yepp—Trpobl), @)
Eo/r (é(—r)) = Yosr — Uopd(7). 48)

From above expressions we can get the following property
called the principle of orthogonality.

Lemma 6. Suppose that A4 is satisfied. J?(8, 7) achieves
minimum if and only if

V) 80 =V 0losr = 0. (49)

Proof, Each of (43) and (44) is necessary and sufficient
for #(r) to minimize J2(f, 7) provided that A4 is satisfied.
Using (47)-(48) to (43)-(44) yiclds (49). |

Corollary 7. The equation (49} is equivalent to
Yorerso = ¥oEasr = 0. (50}

Proof. Left-multiplying 47{7) to (49) and employing
(45)-(46) yields (50). O

Suppose that there exist linear vector spaces Y,y and
Yo spanned by Y, and Yo, respectwely, and their
correspondmg subspaces YT/U and Yo/, spanned by YT,U
and YU/,. Let Pryq and Fyr, defined by

-1
Pop 2 Vo {¥T0%r} 950 OD)

—1
‘PT/U{‘I’E/T‘I’T/O} Yo 62

operate on Y., and Yg,,. respectively. Then Py and
Py map the measured responses, Y /o and Yy, to their
estimates, Y, o and Yy, respectively. That is,

PO/T £

Yrs0 (9(7)) = ProYrjo, (53)
Yosr (é(T)) = PoyYor (54)

which are obtained by using (20} into (43} and (46). For
discussion in Lemma 8 we introduce

0 1
JZ[IOJ’ (35)

where I € RIVN-7)%(N-7} i¢ the identity matrix.

Lemma 8. P/, and Fpy, have following properties:

1. Both P, /D and Fy are 0bl1que projection operators.

2. PT/Q—P and Pg/T—P

3 P—,-/{) =J D/‘rJ and Pg/.,— = JPT/Q.]

4. (I - Po/T)J = J(I - pf/g) and (I - P,—/O)J =
J(I - PO/‘T)'

5. Both {1 — Py, )J and (I — Py o) are seif-adjoint.

6. Suppose that J(I — P, o) and J(J — Fy;;) operate on
Y. /o0 and Y., respectively. Then range|P; q| is orthog-
onal to range[J(I — P o)), and range|Fy;,| is orthogonal
to range[J{(I — Py;7)]-

The properties and the relationships stated in Lemma 8
can be depicted in Fig. Z.
i

Y e————e

A Orthogonal
YM D ——

Fig. 2. Relationship among spaces and cotrespending operators

Proof, Each item is composed of two similar er symmet-
ric states. We will sketch only one of each.
1. Each operator is idempotent, but not self-adjoint [2] [4,
p-711, ie., P‘f/[) = /0, but P,,-/U #P
2. Tt is self-evident from (51) and (52).
3. Applying the equivalent expression
T2l w2l
Y=~ WeETT
10 the right-hand side of the first equality shows
JPyd = o270 = Py (57)
4 JI = Prpo)=J—JP joJT = (I - P p)J.
5, Since we confine to real data, it is enough to show the
self-symmetry instead of the self-adjoint as

[(I = Poye)d)T = J = JPjodJ = (I = Pays)d,  (58)

where we use the fact T = JJ.
6. Consider an arbitrary Y5 € Y., Applying each
operator Py g and (I — FPyyr)J 10 Yo so generates Yoz and

(I - PU/T)JYT/O = YO/‘T - }}U/T = 80/1’: (39)

respectively. According to Corollary 7, &y, and v, /o are
orthogonal. Thus the spaces spanned by &g, and Yy, are
also orthogonal. )

Pojr = {56)

V1. NUMERICAL EXAMPLES

It is known that the Fourier series with finite elements
is an optimal fitting in the sense of least squares [1]. We
modify the problem into the EIV setting with

¢(t) = [sin2nt sinémt "
0 = [4/z 4f3n]"

z(t) = sign(sin2wt)

mit) = z(t)—¢T ()9

mit) = ?]zq_l.sn()

G) = Gela Dt i=12
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where &,(t) and &, (t) are white and the variance of each
of them is chosen such that the signal-to-noise ratios

SNR; = 10logy, (E [¢ ‘T(t)eb( N/E [¢T()(®)]) (60)
SNR, = 10logy, (£ [2*(1)]/E [#*(1)]) {61)

are about 20dB, 10dB, 5dB, or 1dB, but the maximum SNR,,
is limited to about 10dB due to #; (). According to A3, ((¢)
should be at most finitely correlated, but in this example we
consider an infinitely correlated case as well as a finitely
correlated noise as follows:

I

1l

Case 1. FIR : G¢(g™!) = 0.3+0.7¢g71  (62)
. 1y 0.3
Case 2.1IR : G¢lg™') = Tt 07g T (63)
TABLE I
EFFECT QF SNR - FIR NOISE, 10000 SAMPLES
Estimate | SNR; SNRe 61 [%] bz (%1
20dB  10dB -14-1.0) = 0 A-1LH EO
(o) 10 10 9(-9.0) £ 1 9-03) £ 0
5 5 232400k 1 -23(-24.2) £ 4
] 1 45(-44.1) £ 2 -45(-44.3) £ 6
20 10 00 0+0
() 10 10 V! o+l
(r=2) 5 5 1£1 145
1 1 22 2+ 11
TABLE 11
ErFECT OF N - FIR NOISE, SNR; o~ SNR,, =~ 5dB
Estimate | # of Data 61 [%] Bz [%]
100 25(-242) £ 14 -15(-24.4) £ 37
1000 QU240+ 6 -26(-243) £+ 10
8¢0) 10000 23240y 1 -23(-24.2) % 4
100000 | -24(-24.0) £ 0 -24(-242) % 1
100 119 16 £ 42
d(r) 1000 4x8 6= 17
(r=2) 10000 1+1 15
100000 01 B
TABLE 11
INDUCED ESTIMATORS - FIR N0OISE, SNR; ~ SNR,; = 5dB, 10000
SAMPLES
Estimate (7 = 2) | 61 [%) 62 [%]
a(r) 1£1 1%£5
81y (7) 11 2+4
dra1(r) 1+1 0%6
511\'2(7') 141 16
Brnalr) 1+1 44

Table -1V summarizes the results from 100 Monte Carlo
runs for each case. Each table shows the estimation errors
defined by

{9 +o(8 )},-:::1,2, (64)
el

where ; and 5’(95) denote the empirical mean and the em-
pirical standard deviation of ¢;, respectively. The values in
parentheses of each table are evaluated by (41) or (42). For
the IIR noise in Table IV, the correlations with sufficiently

large time intervals are counted in. Generally speaking there
are good agreements between the theoretical calculations
and the Monte Carlo simulations,

TABLE IV
EFFECT OF 7 ON IR NOISE - SNR; =~ SNR,, =~z 5dB, 10000 s AMPLES

Estimate | 7 €1 (%] & [%)
6(0) | M 1 24242 £ 4
3(r) 2 | 18135 £ 2 14¢-143) £ 5

73y £ 2 S10(-94) £ 5

220 £2 23223+ 22
16| o002y +2 S0y £ 6
2| 000 :+3 200 £5
64 | 0(00)£2 0(0.0) & 6

Table I and Table I confirm numerically that the method
of least correlation works well for the EIV problem. Table
I! says that the LCE has a capability to find out true
parameters from severely contaminated data provided that
the number of data samples is sufficiently Iarge. Table III
summarizing the performance of four induced estimators
shows that all of them generate reasonable results. It is
expected that the instrumental variable estimator fry (7)
works on the EIV model as known in literature [14, 15, 17],
but it is interesting for the others A1, (7),¢ = 1,2,3 to
make comparable estimates with 6;y-(7). We show in Table
IV that the method of least correlation can be applied to the
problems with regressors comupted by infinitely correlated
noise which apparently violates A3, Table IV says that the
least-correlation methad can give pretty good estimates if
A4 is satisfied with a sufficiently large 7. The simulation
results in Table IV are also supported by the theoretical
calculations.

VII. RECURSIVE LEAST-CORRELATION ALGORITHMS

With the augmented regressors ;/;_,,¥;—.z; € R**?
and the augmented output 3;_r/; € R? defined by,

Cifiee 2 [ W) dE-7) ]
Yiwp 2 [Hi-7) B ]
Ve & [yli-7) @]

respectively, an equivalent expression of (20) is written as

t -1y
b(r.1) = ( > wi/g_Twir,f) > Wijiorlioryic (65)

i=l+4+7 i=1+47

Employing the steps [8, pp.262-263], which derives the RLS
(recursive least-squares) algorithm from its off-line version
- the least-squares estimate (28), for the least-correlation
estimate (20) yields the RLC (recursive least-correlation)
algorithm

(1) = b(r,t = 1)
K ) (yeopp — W8t - 1)) (66)
, -1
K@) = Patpr (1 + 97 pPortieir ) 6D)

P, = Pea — KW, P (68)
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for t > 7 provided that P, and 6(r,7) are given. The
recursive algorithm (66)-(68) is equivalent to (20), which
means that the estimates from both of them are same at the
final time. Fig. 3 shows the estimate for the Example I in
Section VI by the RLC algorithm (66)-(68) and the RLS
algorithm [8,9].

Fig. 3. Online estimates by RLS and RLC algerithins : Example 1 (63 =
4/m, 02 = 4/3%) - FIR input noise, v = 2, SNR; = SNR,, = 5dB

On the other hand, for the continuous-time version of (14)
2

JB,7,1) = (—l—jj e(s,8e(s — , é)ds) , (69}

t—7T

applying the minimization procedure [13, pp. 370-371] gives
the algorithm - continuous-time RLC algorithm

P(t) = —P() [gw” (¢ ~ 7) + 4t — 7)o (t)] P(EO)
B(t) = —P(t) [w(t)e(t — 7|t) + w(t — Te(t]t))  (71)
for t > 7, where e(t — 7|t) and e(t|t) are defined by
et — r|t) BT (t — 7)) — ylt — 1)
e(tit) T (@)6(t) - y(2).

Note that £ in (69)-(71) denotes the time on continuous-time
domain,

I

VIIl. CONCLUDING REMARKS

Based on observations about the residuals which are
resulted from the least-squares estimate applied to EIV
models, we introduce a criterion defined by the square of
empirical correlation between residuals. The necessary and
sufficient condition minimizing the criterion yields the least-
correlation estimate. Analysis concludes that the estimate
converges to the true value as the number of samples in-
¢reases toward infinity, Monte Carlo simulations support the
analysis. Moreover, the numerical results hint the capability
of the estimate to deal with the infinitely correlated noise.
The least-comrelation-based estimator has some interesting
geometrical properties which are partly similar to the least-
squares estimate and partly different from. Finally we men-
tion briefly the recursive least-correlation algorithms on
continuous-time domain as well as on discrete-time domain.

It is possible to interpret the least-correlation estimate
as a deterministic representation of the ‘error whitening
Wiener filter’ [10]. The previous works [10, 11] states the
stochastic expressions of the unbiasedness and the orthog-
onality. In this paper, we discuss many other aspects of

the least-correlation estimate, for axample, the sufficiency
for minimum and the induced estimators in Section III, the
consistency in Section IV, the geometrical interpretations in
Section V, and the recursive realization on continuous-time
domain in Section VII.

This work can be extended to the estimates for EIV
nonlinear models [7]. Input design problem, which is closely
related to A4, for the best estimates is a further work for
application. Another further study will be how to realize
the RLS algorithm numerically robust and computationally
efficient.

REFERENCES

[1] 1. S. Bay, Fundamentals of Limear Space Systems, McGraw-Hill,
1999,

[2] R. T. Behrens and L. L. Scharf, “Signal Processing Applications of
Oblique Projection Operators,” IEEE Frans. Signal Processing, Vol
42, No. 6, pp. 1413-1424, June 1994,

[3] C. B. Feng and W. X. Zheng, ‘Robust ldentification of Stochastic
Linear Systeirs with Comelated Noise" JIEE Proceedings. Part D,
Vol. 138, No. 5, pp. 484-492 Sep. 1991.

[4] P. A. Fuhnann, Linear Systems and Operaters in Rilbert Space,
McGraw-Hill, 1981.

{51 L-I Jia, T. Hanada, C.-Z. Jimn, Z.-I. Yang, and K. Wada, “On the

Relationship between BELS and 1V Methods,” Proceedings of the

4151 IEEE Conference on Decision and Control, pp. 3440-3445, Dec.

2002,

L.-}. }ia, T. Hanada, C-Z. Jim, Z.-J. Yang, and K. Wada, “A Unified

Form for BELS Method in Colored Noise Case,” Proceedings of the

41st JEEE Conference on Decision and Control, pp. 2637-2644, Dec.

2002.

[7]1 B. E. Jun and D. S, Bemstein, *Least-Correlations Estimates for
Ermors-in-Variables Menlinear Models,” IECON 2004,

[8} R. Johansson, System Modeling and ldentificasion, Prentice-Hall, New

Jersey, 1993,

L. Ljung, System Idemiification - Theory for the User Znd Ed.,

Prentice-Hall, New Jersey, 1999,

[10] 1. C. Principe, Y. N. Rao and D. Erdogmus, “Error Whitening Wicner
Filters: Theory and Algorithms,” In §. Kaykin and B. Widrow (Eds.)
Advances in LMS Filters, Chap. 10, New York, NY: Wiley, 2003,

[11] Y. N. Rao, I). Erdogmus, G. Y. Rao and J. C. Principe, “Stochastic
Error Whitening Algorithm for Linear Filier Estimation with Noisy
Data,” Neural Netwerks, Vol. 16, pp. 873950, 2003

[12] W. Scherrer and M. Deistler, “A Structure Theory for Linear Dynamic
Errors-in-Variables Models,” SIAM J. Control Optimization, Vol. 36,
No. 6, pp. 2148-2175, Nov. 1998,

[13] ]. E. Slotine and W. Li, Applied Nonlinear Contrel, Prentice-Hall,
New Jersey, 1991,

{141 T. Soderstrom, U. Soverini, and K. Mahata, “Perspectives on Emrors-
in-variables Estimation for Dynamic Systems” Signal Processing,
Vol. 82, pp. 1139-1154, 2002.

[15] T. Soderstrom and K. Mahata, *On Instrumental Variable and Total
Least Squares Approaches for 1dentification of Noisy Systems.” Ins.
J. Comtrol, Vol. 75, No. 6, pp. 381-389, 2002,

[16] T. Soderstrom, W. X. Zheng, and P. Stoica, “Coinments on "On a
Least-Squares-Based Algorithm for ldentification of Stochastic Linear
Systens”,” IEEE Trans. Signal Processing, Vol. 47, No. 5, pp. 1395-
1396, May 1999,

[17} P. Stoica, M. Cedervall, and A. Eriksson, “Combined Instumental
Variable and Subspace Fitting Approach to Parameter Estimation of
Noisy Input-Curput Systemns,” fEEE Trans. Signal Processing, Vol.
43, No. 10, pp. 2386-2397, Oct. 1995.

[18] 8. van Huffel and P Lemmerling (Ed.), Total Least Squares Tech-
niquea and Errors-in-Yariables Modeling: Analysis, Algorithms and
Applications, Kluwer Academic Publisher, 2002.

1197 8. van Huffel and J. Vandewalle, The Total Least Squares Problem:
Computational Aspects and Analysis, SIAM, 1991,

[20] P. Zarchan and H. Museff, Fundamentals of Kalman Filtering: A
Practical Approach, AIAA, 2000.

[213 W. X. Zheng, “A Bias Correction Method for 1dentification of Lin-
ear Dynamic Errors-in-Variables Methods,” JEEE Trans. Automaiic
Comrel, Vol. 47, No, 7, pp. 1142-1147, July 2002

[22] W. X. Zheng, “On a Least-8quares-Based Algorithm for Identification
of Stochastic Linear Systems,” JEEE Trans. Signal Processing, Vol.
46, pp. 1631-1638, 1998.

[6:

fiea

[9

i

2922

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 16, 2009 at 16:59 from IEEE Xplore. Restrictions apply.



