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Combined L,/H, model reduction 

WASSIM M. HADDAD? and DENNIS S. BERNSTEINS 

A model-reduction problem is considered which involves both L, (quadratic) and 
H, (worst-case frequency-domain) aspects. Specifically, the goal of the problem is to 
minimize an L, model-reduction criterion subject to a prespecified H, constraint on 
the model-reduction error. The principal result is a sufficient condition for 
characterizing reduced-order models with bounded L, and H, approximation 
error. The sufficient condition involves a system of modified Riccati equations 
coupled by an oblique projection, i.e. idempotent matrix. When the H, constraint is 
absent, the sufficient condition specializes to the L, model-reduction result given by 
Hyland and Bernstein ( 1985). 

Notation and definitions 

A", B, c 

real numbers, r x s real matrices, Rrx ', expected value 
r x r identity matrix, transpose, r x s zero matrix, O r X r  
complex conjugate transpose 
trace 
largest singular value of matrix Z 
largest eigenvalue of matrix Z with real spectrum 
[tr ZZ*]'I2 (Frobenius matrix norm) 
[lo" llh(t) 11; dtl 'I2 

C( 11270 j" ,I H( j 4  11: dm1 'I2 

sup amax CH( j4l 
W E R  

r x r symmetric, non-negative-definite, positive-definite 
matrices 
2 2 - 2 ,  €INr, Z 2 - Z l  €IPr, Z 1 , Z 2 € S r  
positive integers; n + nm 
n, 1, 1, n,, 1, 6-dimensional vectors 

n x n, n x m, 1 x n matrices 
m x p, q x 1 matrices 
nm x n,, n, x m, 1 x nm matrices 
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8 W M. Haddad and D. S.  Bernstein 

R ET E, model-reduction error-weighting matrix in P' 
w( ) p-dimensional standard white noise process 

V intensity of Dw( -), V =  D D ~ E  Pm 

y positive constant 

1. Introduction 
One of the most fundamental problems in dynamic systems theory is to 

approximate a high-order, complex system with a low-order, relatively simpler model. 
The resulting reduced-order model can then be used to facilitate the analysis of 
complex systems as well as the design and implementation of feedback controllers and 
electronic filters. The model-reduction problem thus reflects the fundamental en- 
gineering desire for simplicity of implementation and parsimony of hardware. 

In view of the practical motivations for the model-reduction problem, it is not 
surprising that significant effort has been devoted to this problem in recent years. 
Indeed, there now exists a well-developed theoretical foundation for model reduction 
under a variety of approximation criteria. Expanding on the original work of 
Adamjan et al. ( 197 I), progress was achieved by Kung and Lin ( 198 I), Lin and Kung 
(1982), Glover (1984), Latham and Anderson (1985), Hung and Glover (1986), 
Anderson (1986), Ball and Ran (1987) and Parker and Anderson (1987) for the 
Hankel-norm approximation criterion. Many of the cited works also present bounds 
for the closely related H, approximation error, although the optimal H, model- 
reduction problem remains open. Alternatively, early progress on the model- 
reduction problem with a quadratic (L,) criterion was achieved by Wilson (1970) and 
further explored by Hyland and Bernstein ( 1985). 

Although the Hankel norm, H,, and L, model-reduction criteria represent 
distinct approximation objectives, there exist significant connections. For example, it 
was shown by Wilson (1985), that for systems which are either single input or single 
output, the input and output space topologies can be redefined so that the induced 
norm of the Hankel operator coincides with the L, system norm. In addition, the 
optimization technique utilized by Wilson (1970) was re-applied to the 
Hilbert-Schmidt Hankel operator topology by Wilson (1988). In a recent work, 
Wilson (1989) has shown that for single-input or single-output systems the quadratic 
model-reduction criterion is actually an induced norm of the convolution operator 
itself. 

In the present paper we attempt a further unification of the L, and H, model- 
reduction objectives. Specifically, we consider an L, model-reduction problem with a 
constraint on the H, approximation error. The underlying idea involves the suitable 
application of a frequency-domain inequality due to Willems (1971), which has 
recently been applied to H, control-design problems by Petersen (1987), Khargo- 
nekar et al. (1987) and Bernstein and Haddad (1989). The principal result of the 
present paper is a sufficient condition which characterizes reduced-order models 
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8 Combined L, /H , model reduction 1525 

satisfying an optimized L, bound as well as a pre-specified H, bound. The sufficient 
condition is a direct generalization of the optimal projection approach developed by 
Hyland and Bernstein (1985) for the unconstrained L, problem. While the L,-optimal 
reduced-order model was characterized by Hyland and Bernstein (1985) by means of 
a coupled system of two modified Lyapunov equations, the H,-constrained solution 
in the present paper involves a coupled system consisting of four modified Riccati 
equations. As in Hyland and Bernstein (1985), the coupling is due to the presence of 
an oblique projection (idempotent matrix) that determines the constrained reduced- 
order model. When the H, constraint is sufficiently relaxed, we show that the 
conditions given herein specialize directly to those given by Hyland and Bernstein 
(1985). Although our result gives sufficient conditions for H, approximation, we also 
state hypotheses under which these conditions are also necessary. 

Although numerical algorithms were developed by Hyland and Bernstein (1985) 
for the 'pure' L, problem, computational methods for the H,-constrained problem 
are beyond the scope of the present paper. In view of the additional complexity 
engendered by the H, constraint, more sophisticated algorithms appear necessary. 
Hence computational methods will focus on the homotopic continuation algorithm 
developed by Richter (1 987) for reduced-order dynamic compensation. 

2. Statement of the problem 
In this section we introduce the model-reduction problem with constrained H ,  

norm of the model-reduction error. Specifically, we constrain the transfer function of 
the reduced-order model to lie within a specified H, radius of the original system. In 
this paper we assume that the full-order model is asymptotically stable, i.e. the matrix 
A is asymptotically stable. 

H ,-Constrained L, model-reduction problem 
Given the nth-order controllable and observable model 

where t E LO, a), determine an n,th-order model 

which satisfies the following criteria: 

(i) A, is asymptotically stable; 

(ii) the transfer function of the reduced-order model lies within a radius-y H, 
neighbourhood of the full-order model, i.e. 

where 

H(s) A EC(sln - A) - BD, H,(s) A ECm(sInm - A,) -' B,D (2.6) 

and y > 0 is a given constant; and 
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8 1526 W M. Haddad and D. S.  Bernstein 

(iii) the L, model-reduction criterion 

is minimized. 

Note that the full- and reduced-order systems (2.1)-(2.4) can be written as a single 
augmented system 

i(t) = &(t) + Dw(t), t E LO, 00) (2.8) 

so that the q x p transfer function from w(t) to Ej(t) = &(t) is 

and (2.7) can be written as 

J(Am, B,, C,) = lim E{[Ejj(t)IT[Ejj(t)]} = lim ~ [ ~ ~ ( t ) & ( t ) ]  (2.10) 
t + Q )  t-' Q) 

Before continuing it is useful to note that if A, is asymptotically stable then the L, 
model-reduction criterion (2.7) is given by 

J( A,, B,, C,) = tr (2.1 1) 

where the steady-state covariance 

0 lim E[~( t )2~( t ) ]  
1 + Q )  

satisfies the augmented Lyapunov equation 

Using (2.1 1) and (2.13) it can be shown that the L, criterion (2.7) is an approximation 
measure involving the full- and reduced-order impulse responses with respect to an L, 
norm. 

Proposition 2.1 
The L, model-reduction criterion (2.1 1) can be written as 

,(Arn, B,, C.) = [ E c e x p ( ~ t ) B D -  E C m e x p ( ~ m t ) ~ m D ~ d t  ( 2 . 1 4 ~ )  

or, equivalently 

Proof 
It need only be noted that (2.1 1) is equivalent to 

tr JoQ) exp (At)Bexp (XTt) dtR = tr b exp ( A t ) B F  exp (P t )ET dt 
Jo* 
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8 Combined L, /H, model reduction 1527 

which is equivalent to (2.14 a). Finally, (2.14 b) follows from Plancherel's Theorem. 

0 

The key step in enforcing (2.5) is to replace the algebraic Lyapunov equation (2.13) 
by an algebraic Riccati equation. Justification for this technique is provided by the 
following result. 

Lemma 2.1 
Let (A,, B,, C,) be given and assume there exists 9 E R"' satisfying 

and 

Then 

if and only if 

Furthermore, in this case 

and 

where 

2~O\l" (2.15) 

o = A ~ + . & P + ~ - ~ ~ R ~ +  P (2.16) 

(2 ,  D) is stabilizable (2.17) 

A, is asymptotically stable (2.18) 

11 H(s) - Hm(s) 11 co Y (2.19) 

Q G 2  (2.20) 

J(Am9 B,, C,) b $(A,, B,, C,, 9 )  (2.2 1) 

f(A,, B,, C,, 2) 4 tr A?R (2.22) 

Proof 
Using the assumed existence of a non-negative-definite solution to (2.16) and the 

stabilizability condition (2.17), it follows from the dual of Lemma 12.2 of Wonham 
(1979) that A is asymptotically stable. Since A is block diagonal, A, is also 
asymptotically stable. Conversely, since A is assumed to be asymptotically stable, 
(2.18) implies (2.17). The proof of (2.19) follows from a standard manipulation of 
(2.16); for details see Lemma 1 of Willems ( 197 1). To prove (2.20), subtract (2.13) from 
(2.16) to obtain 

which, since A is asymptotically stable, is equivalent to 

Finally, (2.21) follows immediately from (2.20). 0 

Lemma 2.1 shows that the H, constraint is automatically enforced when a non- 
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1528 W M .  Haddad and D. S .  Bernstein 

negative-definite solution to (2.16) is known to exist. Furthermore, the solution 9 
provides an upper bound for the actual state covariance 0 along with a bound on the 
L2 model-reduction criterion. Next, we present a partial converse of Lemma 2.1 which 
guarantees the existence of a non-negative definite solution to (2.16) when (2.19) is 
satisfied. 

Lemma 2.2 
Let (A,, B,, C,)  be given, suppose A is asymptotically stable, and assume the H, 

approximation constraint (2.19) is satisfied. Then there exists a unique non-negative- 
definite solution 2 satisfying (2.16) and such that A + y -'98 is asymptotically stable. 
Furthermore, this solution is minimal. 

Proof 
The result is an immediate consequence of Theorems 3 and 2, of Brockett (1970; 

pp. 150, 167) and the dual of Lemma 12.2 of Wonham (1979). 0 

Finally, we show that the quadratic term y - 2 9 R 9  in (2.16) also constrains the 
Hankel norm of the approximation error E p  when 9 is positive-definite. To show this, 
let P E DV%e the observability Gramian for the augmented system (A, 6, I?) which 
satisfies 

o = P F + F A + R  (2.25) 

Furthermore, note that 0 satisfying (2.13) is the dual controllability Gramian. 

Proposition 2.2 
Let (A,, B,, C , )  be given and assume there exists 9 E IP5atisfying (2.16) and 

(2.1 7 )  or, equivalently, (2.18). Then 
112 p -  Amax( Q) $ Y (2.26) 

Proof 
Since 9 is invertible, (2.16) implies 

o = Y 2 F 9 - 1  + Y 2 2 - 1 A + y 2 2 - 1 v 9 - 1  + a  (2.27) 

Next, subtract (2.25) from (2.27) to obtain 

0 = A f ( y 2 2 - I  - F) + ( y 2 K 1 -  P)A+ y 2 2 - l  ki?-l (2.28) 

which, since 2 is asymptotically stable, is equivalent to 

Thus, (2.29) implies F $ y 2 9 -  ', or, equivalently, 9'12 P9'12 < y 2  I , .  Hence, A , ! / : ~ ( F ~ )  
< y. Finally, (2.26) follows immediately from (2.20). 0 

3. Auxiliary minimization problem and necessary conditions for optimality 
As discussed in the previous section, the replacement of (2.13) by (2.16) enforces 

the H ,  approximation constraint between the full- and reduced-order systems and 



D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

16
:5

6 
5 

Ju
ne

 2
00

8 

Combined L, /H , model reduction 1529 

results in an upper bound for the L, model-reduction criterion. That is, if (2.16) is 
solvable then the reduced-order model (A,, B,, C,) satisfies the H, approximation 
constraint (2.5) while the actual L, model-reduction criterion is guaranteed to be no 
worse than the bound given by $(A,, B,, C,, 2). Hence, $(A,, B,, C,, 9 )  can be 
interpreted as an auxiliary cost that leads to the following mathematical programming 
problem. 

Auxiliary minimization problem 
Determine (A,, B,, C,, 9 )  that minimizes $(A,, B,, C,, 9 )  subject to (2.15) and 

(2.16). 

It follows from Lemma 2.1 that the satisfaction of (2.15)-(2.17) leads to (i) A, 
stable; (ii) a bound on the H, distance between the full-order and reduced-order 
systems; and (iii) an upper bound for the L, model-reduction criterion. Hence, it 
remains to determine (A,, B,, C,) that minimizes $(A,, B,, C,, 9 )  and thus 
provides an optimized bound for the actual L, criterion J(A,, B,, C,). Rigorous 
derivation of the necessary conditions for the auxiliary minimization problem requires 
additional technical assumptions. Specifically, we restrict (A,, B,, C,, 9 )  to the open 
set 

Y A { (A , ,  B,, C,, 2) : 9 E IP: A + y - ,  98 is asymptotically stable, 

and (A,, B,, C,) is controllable and observable) (3.1) 

Remark 1 
The set Y constitutes sufficient conditions under which the Lagrange multiplier 

technique is applicable to the auxiliary minimization problem. Specifically, the 
requirement that 9 be positive-definite replaces (2.15) by an open set constraint, the 
stability of A + -298 serves as a normality condition and (A,, B,, C,) minimal is a 
non-degeneracy condition. 

The following lemma is needed for the statement of the main result. 

Lemma 3.1 
Let Q, P E lNn and suppose rank QP = n,. Then there exist n, x n G, r and n, x n, 

invertible M, unique except for a change of basis in Rnm, such that 

QB = GT ~r (3.2) 

I-GT = In_ (3.3) 

Furthermore, the n x n matrices 

are.idempotent and have rank n, and n - n,, respectively. If, in addition 

then 
rank Q = rank = n, 

Q=ZQ,  P = P r  
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8 1530 W M. Haddad and D. S. Bernstein 

Finally, if P E Nn then the inverse 

exists. 

Proof 
Conditions (3.2)-(3.8) are a direct consequence of Theorem 6.2.5 of Rao and 

Mitra (1971). To prove that the inverse in (3.9) exists, note that since the eigenvalues 
of QP coincide with the eigenvalues of the non-negative-definite matrix P1I2~P1l2,  it 
follows that QP has non-negative eigenvalues. Thus, the eigenvalues of In + y - 2 ~ ~  

are all greater than one so that the above inverse exists. 0 

Finally, for convenience define 

Theorem 3.1 
If (A, B,, C,, 9 )  E E solves the auxiliary minimization problem then there exist 

Q, P, $ P E Nn such that 

and such that Q, P, Q, P satisfy 

0 = AQ + Q A ~  + ye2QZQ + T~CT: (3.14) 

O =  ATP+ P A - y - 4 ~ T ~ ~ C ~ ~ ~ + r I ( ~ n +  y - 2 ~ ~ ~ ) T ~ ( ~ n + y - 2 ~ ~ S ) r ,  (3.15) 

0 = (A - y - 4 ~ C ~ ~ ~ ) ~  + Q(A - Y - ~ Q Z Q P S ) ~  + - 6 ~ ~ T ~ ~ Z ~ ~ ~ ~  

+ C - r,CrI (3.16) 

o = ( A +  y - 2 ~ Z ) T P + P ( ~ +  Y - ~ Q Z )  + ( I ~ + ~ - ~ Q P S ) ~ C ( I . + Y - ~ Q P S )  

- rI(l,, + y - 2 ~ ~ ~ ) T x ( I n  + Y - ~ Q P S ) ~ ,  (3.17) 

rank Q = rank P = rank QP = n,,, (3.18) 

Furthermore, the auxiliary cost is given by 

f(A,, B,, C,, 9) = tr y Q  + y - 4 ~ ~ ~ ~ ~ T ~ ~ )  (3.19) 

Conversely, if there exist Q, P, Q, P E Nn satisfying (3.14)-(3.18), then (A,, B,, C,, 9 )  
given by (3.10)-(3.13) satisfy (2.15) and (2.16) with the auxiliary cost (2.22) given by 
(3.19). 
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Proof 
See Appendix A. 

Remark 2 
Theorem 3.1 presents necessary conditions for the auxiliary minimization problem 

that explicitly synthesize extremal reduced-order models (A,, B,, C,). As a check of 
these conditions, consider the extreme case n, = n. Then G = T- ' and thus, without 
loss of generality, G = r = z = I ,  and z, = 0. Furthermore, (3.14) implies that Q = 0 
and (3.15) implies that P = 0. Hence the H,-constrained full-order model is given (as 
expected) by (A, B, C) regardless of y. Furthermore, note that 9 given by (3.13) 
becomes 

so that the quadratic term y - &9 in (2.16) vanishes. Thus, (2.16) reduces to (2.13) so 
that 9 coincides with the controllability Gramian 0. If, alternatively, the reduced- 
order constraint is retained but the transfer function approximation constraint (2.5) is 
sufficiently relaxed, i.e. y + oo, then S =  I ,  so that the reduced-order model 
(3.10)-(3.12) is given by (A,, B,, C,) = (TAGT, I'B, CGT). In this case, (3.14) and 
(3.15) are superfluous and (3.16) and (3.17) reduce to the optimal projection equations 
obtained by Hyland and Bernstein (1985) for the unconstrained L, problem. 

4. Sufficient conditions for combined L J H ,  approximation 
In this section we combine Lemma 2.1 with the converse of Theorem 3.1 to obtain 

our main result guaranteeing constrained H, approximation along with an optimized 
L, model-reduction bound. 

Theorem 4.1 
Suppose there exist Q, P, Q, P E O\in satisfying (3.14)-(3.18) and let (A , ,  B,, C,, 9) 

be given by (3.10)-(3.13). Then (2, B) is stabilizable if and only if A ,  is asymptotically 
stable. In this case, the reduced-order transfer function H,(s) satisfies the H, approxi- 
mation constraint 

and the L, approximation bound 

/H(s) - H,(s)1I2 < [tr X(Q + Y - ~ Q P S Q S ~ P Q ) ] ~ ~ ~  (4.2) 

Proof 
The converse portion of Theorem 3.1 implies that 9 given by (3.13) satisfies (2.15) 

and (2.16) with auxiliary cost given by (3.19). It now follows from Lemma 2.1 that the 
stabilizability condition (2.17) is equivalent to the asymptotic stability of A,, the H, 
approximation condition (2.19) holds, and the L, model-reduction criterion satisfies 
the bound (2.21) which is equivalent to (4.2). 0 

In applying Theorem 4.1, the principal issue concerns conditions on the problem 
data under which the coupled Riccati equations (3.14)-(3.17) possess non-negative- 
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definite solutions. Clearly, for y sufficiently large, (3.14) -(3.17) approximate the 'pure' 
L2 solution obtained by Hyland and Bernstein (1985). In practice, we would 
numerically solve (3.14) -(3.17) for successively smaller values of y until solutions are 
no longer obtainable. The important case of interest, however, involves small y so that 
accurate H, approximation is enforced. Thus, if (4.1) can be satisfied for a given y > 0 
by a class of reduced-order models, it is of interest to know whether one such 
reduced-order model can be obtained by solving (3.14)-(3.17). Lemma 2.2 guarantees 
that (2.16) possesses a solution for any model satisfying (4.1). Thus our sufficient 
conditions will also be necessary so long as the auxiliary minimization problem 
possesses at least one extremal over 9'. When this is the case we have the following 
immediate result. 

Proposition 4.1 
Let y * denote the infimum of (1 H(s )  - H,(s )  11 , over all asymptotically stable 

reduced-order models and suppose that the auxiliary minimization problem has a 
solution for all y > y*. Then for all y > y* there exist Q, P, Q, P E INn satisfying 
(3.14) -(3.17). 

Remark 3 
As in Hyland and Bernstein (1985), it can be expected that (3.14)-(3.17) possess 

multiple solutions. Theorem 4.1 guarantees, however, that the bounds (4.1) and (4.2) 
are enforced for all such extremals obtained by solving (3.14)-(3.17). 

ACKNOWLEDGMENT 
This work was supported in part by the Air Force Office of Scientific Research 

under contract F49620-86-C-0002. 

Appendix A 
Proof of Theorem 3.1 

To optimize (2.22) over the open set 9' subject to the constraint (2.16), form the 
lagrangian 

, Y(A,, B,, c,, 9,9,1.) tr { A ~ R  + [A9 + 2P + y - 2 ~ R 2  + PI* (A 1) 

where the Lagrange multipliers I. 2 0 and 9 E R" %re not both zero. We thus obtain 

Since A + y - 9R is assumed to be stable, + = 0 implies 8 = 0. Hence, it can be 
assumed without loss of generality that A = 1. Furthermore, 9 is non-negative- 
definite. 

Now partition n' x fi, 2,  8 ,  into n x n, n x n,, and n, x n, sub-blocks as 
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and for notational convenience define 

Thus, with ;1, = 1 the stationarity conditions are given by 

- y F 2  RcQ,z,, - y - 2  RCZ;, Q2 = 0 (A 7) 

Expanding (2.16) and (A 4) yields 

O =  AQ, + Q1 + y -2 (Q lCT-  Q ~ ~ C ~ ) R ( Q ~ C ~ -  Q12Ci )T  + BVBT ( A  8) 

O =  AQ12 + Q 1 2 4  + Y - ~ Q ~  CTRCQ12 - Y - ~ Q , ~ C R C Q ~ ~  - Y - ~ Q ~ C ~ R L Q ~  

+ Y - ~ Q ~ ~ G R C ~ Q ~  ( A  9) 

0 = A m Q 2  + Q2A:+ Y - ~ ( Q : ~ C ~ - Q ~ C ~ ) R ( Q T ~ C ~ -  Q,c:)~+ B,vB: ( A  10) 

O =  A T p 1  + P I A +  y - 2 ~ T ~ C Z T - y - 2 C T R C , Z T 2  + Y - ~ Z , C ~ R C  

-y-2Z12C:RC + C T R c  ( A  1 1 )  

O =  A ~ P ~ ~  + p12A,+ Y - ~ C ~ R C Z ~ ~  - Y - ~ Z ~ C ~ R C , + Y - ~ Z ~ ~ C T , R C ,  

- CT RC, ( A  12) 

O =  A;p2+ P ~ A , - ~ - ~ C ~ R C Z ; ,  -y-2Z21CTRC,+ CLRC, ( A  13) 

Now define the n x n matrices 

and the n, x n, n, x n, and n, x n matrices 

GAQ;'Q:,, M 4 Q 2 p 2 ,  r e  -P;'PT2 

The existence of Q;' and P;' follows from the fact that (A,, B,, C,) is minimal. See 
Bernstein and Haddad (1989) and Hyland and Bernstein (1985) for details. Note that 
r = GTT. Clearly, Q, P, Q and P are symmetric and non-negative-definite. 



D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

16
:5

6 
5 

Ju
ne

 2
00

8 1534 W M .  Haddad and D. S.  Bernstein 

Next note that with the above definitions, (A 5) implies (3.3) and that (3.2) holds. 
Hence, 7 = GTT is idempotent, i.e. r2  = 7. Sylvester's inequality yields (3.18). Note also 
that (3.7) and (3.8) hold. 

The components of 9 and 9 can be written in terms of Q, P, Q, P, G and r as 

Next note that by using (A 14)-(A 16), (A 7) becomes 

where 

S g  In,+ y - 2 r ~ ~ ~ T  
To prove that S is invertible use (3.7) and (3.4) and note that 

Since T&TT and GpGT are non-negative-definite, their product has non-negative 
eigenvalues. Thus each eigenvalue of In, + Y - ~ T Q P G ~  is real and is greater than 
unity. Hence S is invertible. Now note that by using (3.3) and (3.4) it can be shown that 

The expressions (3.1 I), (3.12) and (3.1 3) follow from (A 6), (A 7), (3.9) and the 
definition of 2 by using the above identities. Next, computing either T (A 9) - (A 10) 
or G(A 12) + (A 13) yields (3.10). Substituting this expression for A, into 
(A 8)-(A 13) it follows that (A 10) = T(A 9) and (A 13) = G(A 12). Thus, (A 10) and 
(A 13) are superfluous and can be omitted. Next, using (A 8) + GTT(A 9)G - (A 9)G 
- [(A 9) GIT and GTT(A 9)G - (A 9)G - [(A 9) GIT yields (3.14) and (3.16). 
Using (A 11) + rTG(A 12)r  - (A 12)r - [(A 12)r lT  and TTG(A 12)r  - (A  12)r  
- [(A 12)rIT yields (3.15) and (3.17). 

Finally, to prove the converse we use (3.10)-(3.18) to obtain (2.16) and 
(A 4)-(A 7). Let A,, B,, C,, G, r ,  r, Q, P, Q, P, 2 be as in the statement of Theorem 
3.1 and define Q,, Q,,, Q,, P,,  PI,, P2 by (A 14)-(A 16). Using (3.3), (3.1 1) and (3.12) 
it is easy to verify (A 6) and (A 7). Finally, substitute the definitions of Q, P, Q, P, G, r 
and 7 into (3.14)-(3.17) along with (3.3), (3.4), (3.7) and (3.8) to obtain (2.16) and 
(A 4). Finally, note that 

.=[ On, x n o - ~ ] + [ ~ ] ~ v n  I-T, 

which shows that 9 > 0. 
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