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Abst rac t  
This paper presents a unified approach to designing 

reduced-order observer-estimators. Specifically, we seek 
to design a reduced-order estimator satisfying an obser- 
vation constraint which involves a pre-specified, possibly 
unstable, subspace of the system dynamics and which also 
yields reduced-order estimates of the remaining subspace. 
The results are obtained by merging the optimal projection 
approach to reduced-order estimation of Bernstein and Hy- 
land with the subspace-observer results of Bernstein and 
Haddad. A salient feature of this theory is the treatment of 
unstable dynamics within reduced-order state-estimation 
theory. In contrast to the standard full-order estimation 
problem involving a single algebraic Riccati equation, the 
solution to the reduced-order observer-estimator problem 
involves an algebraic system of four equations consisting 
of one modified Riccati equation and three modified Lya- 
punov equations coupled by two distinct oblique projec- 
tions. 

I. Introduction 
As is well known, Kalman filter theory addresses the 

state-estimation problem in guidance and navigation a p  
plications by minimizing a least-squares state-estimation 
error criterion. However, implementation of the standard 
Kalman filter is often impractical since it is generally of the 
same order as the system model. Consequently, designers 
must often implement reduced-order filters to satisfy real- 
time processing constraints as well as constraints on filter 
complexity. A further motivation is the fact that although 
a system model may have many degrees of freedom (such 
as coloring filter states and vibrational modes), it is often 
the case that estimates of only a small number of state 
variables (e.g., rigid body position and rotational modes) 
are actually required. The literature on reduced-order esti- 
mator design is vast and we note a representative collection 
of as an indication of longstandig interest in 
this problem. 

Another important issue in estimation theory is the 
problem of asymptotic observation. As is well-knowna3, 
the steady-state Kalman filter is also an asymptotic o h  
server. However, in reduced-order estimation theory the 
operations of estimation and observation are distinct, i.e., 
a reduced-order estimator is not necessarily also an ob- 
server. In many practical applications, however, it is nec- 
essary to design a reduced-order estimator that also o h  
serves a specified portion of the system states. Thus, we 
seek to design reduced-order subspace observers which can 
asymptotically observe a specified subset of system states. 
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The contribution of the present paper is a unified ap- 
proach to reduced-order observer-estimator design. Specif- 
ically, we consider a reduced-order estimation problem 
which also includes a subspace observation constraint. By 
merging the optimal projection approach to reduced-order 
state estimation developed by Bernstein and Hylandg with 
the subspace-observer result of Bernstein and Haddad17, 
a reduced-order observer-estimator design theory is devel- 
oped that includes optimal observation of a pre-specified 
subspace (e.g., rigid body modes and selected vibrational 
modes) as well as optimal reduced-order estimation of the 
remaining stable subspace (e.g., coloring filter states and 
remaining vibrational modes). 

An additional feature of our approach is that the ob- 
served subspace need not be stable, i.e., it may include un- 
stable (for example, neutrally stable) modes. In contrast 
with the full-order Kalman filter, reduced-order filters for 
unstable systems may diverge since they may fail to ade- 
quately track the unstable modes. The observer-estimator 
derived in this paper circumvents this problem by includ- 
ing all of the unstable modes within the observed subspace. 
We note that standard navigational models26 possess neu- 
trally stable modes, while tracking systems typically model 
targets as having rigid body dynamics. Additional ex- 
amples include large flexible space structures undergoing 
open-loop rotational and/or translational motion. 

It is important to stress that our results are not in- 
tended to  provide a basis for feedback control. As is well 
known, feedback controllers based upon reduced-order fil- 
ters may exhibit poor performance including instability. 
The preferred approach is thus to design reduced-order 
controllers d i r e ~ t l ~ ~ ~ ~ ~ ~ .  

The starting point for the present paper is the Ric- 
cati equation approach developed in Ref. 9. There it was 
shown that optimal reduced-order, steady-state estimators 
can be characterized by means of an algebraic system of 
equations consisting of one modified Riccati equation and 
two modified Lyapunov equations coupled by a projection 
matrix 7. Specifically, the order projection 7 is given by 

8 denotes group (Drain) generalized inverse and 
are rank-deficient nonnegative-definite matrices 

analogous to  the controllabiity and observability Grami- 
ans of the estimator. As discussed in Ref. 10, the order 
projection 7 arises as a direct consequence of optimality 
and is not the result of an a priori assumption on the 
internal structure of the reduced-order estimator. 

An important point discussed in Ref. 9 is that 
reduced-order estimatom denigned by mean8 of either 
model reduction followed by .full-order!' atate entimation 
or full-order state emtimation followed by estimator reduc- 
tion will generally not be optimal for a given order. This 
point is illustrated by the fact that three matrix equa, 



tions characterize the optimal reduced-order state estima- 
tor with intrinsic coupling between the "operations" of o p  
timal estimator design and optimal estimator reduction. 

The solution presented in Ref. 9, however, did not ad- 
dress the issue of observation of a pre-specified subspace. 
Consequently, the solution given in Ref. 9 was confined 
to problems in which the plant is asymptotically stable, 
while in practice it is often necessary to obtain estima- 
tors for plants with unstable modes. Intuitively, it is clear 
that finite, steady-state state-estimation error for unstable 
plants is only achievable when the estimator retains, or du- 
plicates in some sense, the unstable modes. The solution 
given in Ref. 9 is inapplicable to unstable systems for the 
simple reason that the range of the order projection T may 
not fully encompass all of the unstable modes. A partial 
solution to this problem, given in Ref. 17, involves a new 
and completely distinct reduced-order solution in which 
the observation subspace of the estimator is constrained 
a prior: to include all of the unstable modes as well as 
selected stable modes. Hence the estimator in Ref. 17 
effectively serves as an optimal observer for a designated 
plant subspace. 

The subspace observation constraint addressed in Ref. 
17 was embedded within the optimiiation process by fixing 
the internal structure of the reduced-order estimator. This 
structure gave rise to a new subspace projection p defined 
h" 

where P, E IRn'Xn' and P,. E IRnmXn* are subblocks of 
an n x n nonnegative-definite matrix P satisfying a mod- 
ified algebraic Lyapunov equation, nu is the dimension of 
the observation subspace of the estimator containing all of 
the unstable modes and selected stable modes, and n. is 
the dimension of the remaining subspace containing only 
stable modes. It turns out that the subspace projection 
p, which is completely distinct from the order projection 
T defined by (I), plays a crucial role in characterizing the 
optimal observer gains. Furthermore, it was shown in Ref. 
17 that the constrained subspace observer is character- 
ized by one modified Riccati equation and one modified 
Lyapunov equation coupled by the subspace projection p. 
This subspace observer however, was confined to an nu- 
dimensional subspace with no estimation of the remaining 
n,-dimensional subspace. 

The purpose of the present paper is to combine the 
results of Refs. 9 and 17 in order to obtain a general solu- 
tion to the Reduced-Order Observer-&timator Problem. 
Specifically, we seek a reduced-order observer-estimator of 
order n, satisfying nu 5 n. 5 n, where n is the dimension 
of the plant, which includes observation of all of a pre- 
specified nu-dimensional subspace of the system as well as 
optimal n., reduced-order estimation of the n. = n - nu 
states in the residual subspace where, n,. = n, - nu 5 
n.. Aa shown in Theorem 1, this general solution to  the 
Reduced-Order Observer-Estimator Problem is character- 
ized by four matrix equations including one modilied Ric- 
cati equation and three modified Lyapunov equations cou- 
pled by both the order projection T and the subspace pr* 
jection p. 

Finally, the results of this paper can readily be ex- 
tended in several directions. These include the treatment 
of parameter u n ~ e r t a i n t i e s ~ ~ ~ ' ~ ,  extensions to nonstrictly 
proper estimators and singular noise worst- 
case frequency-domain design aspects, i.e., an H, con- 
straint on the estimation e r r ~ r ' ~ - ~ ~ ,  and extensions to the 
discrete-time 

The contents of the paper are as follows. In Section 11, 
the statement of the Reduced-Order Observer-&timator 
Problem is given. In Section 111, Theorem 1 presents neces- 
sary conditions for optimality which characterize solutions 
to the Reduced-Order Observer-Estimator Problem. To 
draw connections with the existing literature we speeialiie 
Theorem 1 in Section IV to obtain the results of Refs. 9 

and 17. We also specialize the results of Theorem 1 to ob- 
tain the full-order Kalman filter theory and show that the 
four matrix equations collapse to the standard observer 
Riccati equation. To illustrate these results we describe 
a numerical algorithm in Section V for solving the design 
equations and apply the algorithm to illustrative numerical 
examples. 

Nomenclature 
real numbers, r x s real matrices, 

IRrX1, expected value 

r x r identity matrix, transpose, 
r x s zero matrix, O r x ,  

trace 

null space, range of matrix Z 
positive intergers; nu 5 n, 5 n, 

n = nu + n,,n, = nu + n.. 
n, nu,  n., n., nu, n,., L, q- dimensional 

vectors 

n x  n ,Lxn ,qxnmat r i ce s  

nu x nu, nu x n.,n, x n. matrices 

L x nu, L x n. matrices 

q x nu, q X n. matrices 

q x q positive-definite matrix 

matrix with eigenvalues in open left 
half plane 

n. x n., n, x L, q x n. matrices 

nu x nu, n, X n,,, n.. X nu, ne. X nee 
matrices 

nu x L, n,. x L matrices 

q x nu, q x n., matrices 

n-dimensional white noise process with 
nonnegative-definite intensity Vi 

Ldimensional white noise process with 
positive-definite intensity Vz 

n x L cross intensity of wl (t) , wz (t) 

[ I n ,  On,xn,I ,  [ I n ,  On,xn, ,I ,  

[On,xn* L.1 
[A - FTBeuC - P A e u 8 ]  

Be& A,. 

[L - ce.1 

i T ~ Z  
wl(t) - FTBeUcuz(t) [ B..wa(t) I 
vl - V~~B:,F - F~B.,v;P, + F~B,,V~B:,F 

B,,V,T, - B,.VaB,T,F 

v12~,T, - F ~ B ~ ~ v ~ B Z  
B,,VzB,T, 1 

11. T h e  Reduced-Order Observer-Estimator 
Problem 

The following problem is addressed. 
Reduced-Order Observer-Estimator Problem 

For the nth-order system 

with noisy measurements 

design an n,th-order reduced-order strictly proper 
observer-estimator 



that iatisfies the following design criteria: 
(i) the observer-estimator (5), (6) is a steady-state 

asymptotic observer for a specified nu-dimensional 
subspace of the plant (3) where nu 5 n, 5 n; and 

(ii) the observer-estimator is an optimal estimator which 
minimizes the least-squares state-estimation error cri- 
terion 

To make condition (i) more precise, partition (3), (4) 
according to 

z (t) = A,, (4 [ ( I  [A,. ?:I [ ~ ( t ) ]  + (21 ~ ( ~ 1 .  (I2) 

We note that the partitioned form of the matrix A a p  
pearing in (9) allows us to characterize the two subspaces 
corresponding to z,(t) and z,(t). The n, x nu zero matrix 
in the (2,l)-block of A is needed in order to achieve asymp 
totic observation of z,(t) independently of z.(t). If neces- 
sary, the matrix A can be recast in the form (9) by utiliiing 
a similarity transformation to a modal basis. Of course, 
the coupling matrix A,. may be either zero or nonzero. 

Furthermore, in (8)-(13) we implicitly assume that 
0 < nu < n.. The special cases nu = 0 and nu = n. 
will be discussed later in this section and in Section N. 
The observation condition (i) is captured by imposing the 
additional constraint 

for all z(0) and z,(0) when wl(t) 0 and ~ ( t )  0. The 
requirement (14) implies that zero asymptotic observation 
error for a specified nu-dimensional subspace is achieved 
under sero external disturbances and arbitrary initial con- 
ditions. 

To require that the observer-estimator is also an o p  
timal reduced-order estimator, the matrix L identifies the 
states or linear combinations of states whose estimates are 
desired. In accordance with the partitioning given in (a), 
L is partitioned as 

L 2 [L, L.]. (15) 

Thus, the goal of the Reduced-Order Observer-Estimator 
Problem is to design a reduced-order observer-estimator of 
order n, which observes a specified plant subspace and pro- 
vides optimal estimates of specified linear combinations of 
plant states. Since the observer-estimator (5), (6) serves as 
a reduced-order observer for an n,,-dimensional subspace 
of the plant (3), its order n, must satisfy nu 5 n, 5 n. 

As will be seen, the observation constraint (14) can 
be satisfied even if the subspace corresponding to z,(t) is 
unstable. Thus we allow A, to possess unstable as well 
as stable modes. Of course, our results remain valid even 
if A, is asymptotically stable. The subscript 'u," how- 
ever, reminds us that A, is permitted to be unstable. Fur- 
thermore, we require that A, be an asymptotically stable 
matrix. In applications, the matrix A, may include the 
dynamics of all coloring filter states as well as damped 
vibrational modes. 

Before continuing it is useful to point out that several 
simpler problems are included as special cases within the 
above formulation. For example, consider the full-order 
case n, = n or, equivalently, n,, = n,. In this case the 
observer-estimator can observe all of z(t) and the matrix 
A, is given byz3 A, = A - B.C. Note that the subblocks 
of A, are thus given by 

The optimal value of Be for the least-squares estimator in 
this case is, of course, the steady-state Kalman filter gain 
characterized by the algebraic observer Riccati equation. 

Next, consider the case n. < n without the observa- 
tion constraint (14), i.e., nu = 0. Thus, with z,(t) and 
z.,(t) absent, we can identify n, = n, n.. = n,, and 
A. = A. This problem is precisely the reduced-order esti- 
mation problem considered in Ref. 9. 

Finally, suppose that n, = nu < n so that the es- 
timator states z.,(t) = z,(t) are required to satisfy the 
observation constraint (14) but that no additional degrees 
of freedom are permitted in the estimator, i.e., z,,(t) is 
absent. In this case the estimator acts solely as an optimal 
reduced-order subspace observer whose gains are dictated 
by the optimality criterion (7). This problem was consid- 
ered in Ref. 17. 

To analyze the observation constraint (14), define the 
error states 

zu(t) 2 z,(t) - ze,(t) (17) 

so that the observation constraint (14) can be written as 

lim z,(t) = 0. 
t-m (18) 

Note that the error states zu(t) satisfy 

+ ~ 1 ,  (t) - B=Uwa(t). 
(19) 

Using (9), (12), and (19) the overall augmented system 
(3)-(6) become 

At this point we make the crucial observation that the 
explicit dependence of the error states z,(t) on the states 
z.,(t) can be eliminated in favor of z,(t) by constraining 
the (1,3) and (4,3) blocks of the block 4 x 4 matrix in (20) 
to be zero, i.e., 



Ace,, -BeeCu. 

With (21) and (22) A, becomes 

Now the error states z,(t) satisfy 

where A,, is given by (21). 

Next, note that the least-squares state-estimation er- 
ror criterion (7 )  can be written as 

Now, to eliminate the explicit dependence of the esti- 
mation error (25) on z , , ( t )  in favor of z , ( t ) ,  we constrain 

The constraints (21) ,  (22) ,  and (26) on the reduced-order 
observer-estimator gains A,,, A,,,, and C,, are thus im- 
posed in order for the reduced-order observer-estimator to 
asymptotically observe the z , ( t )  subspace of the plant (9 ) .  
Note that constraints (21) and (22) are consistent with the 
full-order Kalman filter result (16) in which A,, and A,,, 
are given by the constraints (21) and (22) .  

Next, using constraints (21) and (22) to eliminate 
the explicit dependence on z , , ( t ) ,  it follows that the aug- 
mented system (20) has the form 

where 

and 

- - 

zu(t)  
q t )  . [ Z .  ( t )  ] € w n - ,  

zee ( t )  

We now show that the stability of 2 is equivalent to the 
stability of A=. _ 

Lemma 1 .  A is asymptotically stable if and only if A, 
is asymptotically stable. In this case, lim:,, z , ( t )  = 0 
for w l ( t )  z 0 ,  w 2 ( t )  = 0 ,  and for all initial conditions 
z(O),  z,(O). Furthermore, the state-estimation error cri- 
terion (7) is given by 

where the steady-state covariance 

exists and satisfies the algebraic Lyapunov equation 

Proof. To show that d is asymptotically stable con- 
sider the transformation 
T E JR(n+n..)X(n+n.,) given by 

[O;;%n. In. On,xn.. 
On,xn. On-xn.. 

On..xn. On..xn. -In.. 

and define 

I 

Using (34) it follows from (27) that 

where 

and 
Go( t )  4 T G ( t ) .  

Since A, is asymptotically stable it follows that d is 
asymptotically stable if and only if A, is asymptotically 
stable. In this case, Z(t)  -+ 0 and hence z , ( t )  -+ 0 for 
arbitrary initial conditions when w l ( t )  and wz( t )  are sero. 
Finally, the second-moment equation (32) is a direct conse- 
quence of standard Lyapunov theory (see Ref. 23, p. 104), 
while (30) is immediate. 

Note that Lemma 2.1 is valid even if A, is unstable 
and that the assumption that A, is stable is used explicitly 
in the proof. 

Finally, to guarantee that J ( A , ,  Be,  C , )  is finite and 
to satisfy the observation constraint (14) ,  we define the set 
of asymptotically stable reduced-order observer-estimators 

S { ( A , ,  Be,  C , )  : A, is asymptotically stable and A,,, 

A ,,,, and C,, are given by (21) ,  (22) ,  and (26) ) .  

111. Necessary Conditions for t h e  Reduced-Order 
Observer-Estimator Problem 

In this section we obtain necessary conditions which 
characterize solutions to the Reduced-Order Observer- 
Estimator Problem. Derivation of these necessary con- 
ditions requires additional technical assumptions. Specifi- 
cally, we further restrict (A , ,  Be,  c,) to the set 

S + & { ( A , , B , , C , ) E S :  (&. ,Be,)  
is controllable and (A , ,  C , )  is observable). (38) 

As can be seen from the Appendix, the set S +  constitutes - - 
nondegeneracy conditions under which explicit gain ex- 
pressions can be obtained for the Reduced-Order Observer- 
Estimator Problem. In order to state the main result we 
require some additional notation and a lemma concerning 
a pair of nonnegative-definite matrices. 

Lemma 8. Suppzse Q, are n x n  nonnegative-definite 
matrices and rank QP = n... Then there exist n,. x n 
matrices G, r and an n,, x n.. invertible matrix M, unique 
except for a change of basis in JRn", such that the product 
68 can be factored according to  

Furthermore, the n x n matrices 

are idempotent and have rank n,, and n-n,., respectively. 
Proof. See Ref. 9. 
As shown @ Ref. 9, $d has a group (Drasin) gener- 

alized inverse ( Q b ) +  = GTM-'r. Using (40) it follow 
that the matrix T is given by (1 )  since 



Note that because of (40),  r2 = ~ ~ r G ~ r  = G T r  = 7 ,  i.e., 
r  is idempotent. 

The following main result gives necessary conditions 
which characterize solutions to the Reduced-Order 
Observer-Estimator Problem. For convenience in stating 
this result define 

for arbitrary Q E IRnXn. 
Theorem 1 .  Suppose (A, ,  B, ,C,)  E S+ solves the 

Reduced-Order Observer-Estimator Problem. Then there 
exist n x n nonnegative-definite matrices Q, P, P and an 
n. x n, nonnegative-definite matrix 4. such that A,, Be,  
and C. are given by 

and such that Q, P, Q,, and @ satisfy 

rank Q = rank a = rank 4) = n,., (51) 

where 

Furthermore, the minimal value of the least-squares state- 
estimation error criterion ( 7 )  is given by 

Next, we present a partial converse of the necessary 
conditions which guarantees that the observation 
constraint (14) is enforced. 

Theorem 2. Suppose there exist n x n nonnegative- 
definite matrices Q, P , c  and an n, x n, 
nonnegative-definite matrix Q. satisfying (47)-(56). Then, 
with 2) given by (56),  the matrix 

satisfies (32) with (A, ,  Be, C, )  given by (44)-(46). Further- 
more, (A ,  ?*) is stabilizable if and only if A, is asymp 
totically stable. In this case, (A,., Be,) is controllable, 
(A, ,  C , )  is observable, the observation constraint (14) 

holds for all arbitrary initial conditions z(O), z,(O) when 
w l ( t )  0 ,  w z ( t )  0 ,  and the least-squares 
state-estimation error criterion is given by (57). 

The proofs of Theorems 1 and 2 are given in the Ap- 
pendix . 

Theorem 1 presents necessary conditions for the 
Reduced-Order Observer-Estimator Problem. These nec- 
essary conditions consist of a system of one modified Ric- 
cati equation and three modified Lyapunov equations cou- 
pled by two distinct oblique (not necessarily orthogonal) 
projections r and p. Note that r  and p are idempotent 
since r2 = T and pa = p. AS discussed earlier, the fixed- 
order constraint on the estimator order gives rise to the 
order projection r ,  while the observation constraint (14) 
gives rise to the subspace projection p. It is easy to see 
that rank p = nu and it can be shownQ using Sylvester's 
inequality and (40) that rank r = n,.. 

Remark 1 .  Note that with Be given by (45),  the ex- 
pressions (44) and (46) for A,,, A,,,, and C,, are equiv* 
lent to the constraints (21),  (22),  and (26). 

Remark 2. By defining the n, x n matrices 

it can be shown that 

Using (60) one can thus define a third composite projection 

where rank i = n,. Using (59),  the gains (44)-(46) can be 
written as 

Remark 3. It follows from (42) and (56) that 

Since p p l  = 0,  we obtain 

as a consequence of optimality. Partitioning 

(66) implies 

Remark 4. Note that for (A, ,  Be ,  C.) given by (44)- 
(46),  the observer-estimator (5)  or, equivalently (12),  as- 
sumes the innovations form 

Remark 5. By introducing the quasi-full-state esti- 
mate ?(tJ ETze(t)  E iRn SO that 3 ( t )  = 2 ( t )  and 
z , ( t )  = r 2 ( t )  E IRne, (69) can be written as 

or, equivalently, 



Note that although the implemented observer-estimator 
(69) has the reduced-order state z . ( t )  E lRn', (71) can 
be viewed as a quasi-full-order observer-estimator whose 
geometric structure is dictated by the projections T and 
p. Specifically, error inputs QaV2-'IY(t) - C i ( t ) ]  are an- 
nihilated unless they are contained in [ U ( p  + rpl)]' = 
R [ ( p  + r p I ) q .  Hence, the observation subspace of the 
observer-estimator is precisely R [ ( p  + r p l ) q .  

Remark 6. In the full-order Kalman filter case it is 
well known that an orthogonality condition 

is satisfied. For the observer-estimator problem an anal* 
gous conditionz0 is 

This condition does not hold automatically, however, but 
must be imposed as an additional side constraint. It can 
be shown that requiring (73) leads to 

and, consequently, 

O =  FT,  O = p T r .  (75)  

Using (75) ,  it follows that r has the structure 

so that the composite projection ? has the form 

IV. Specializations of Theorem 1 
To draw connections with the previous literature, a 

series of specializations of Theorem 1 is now given. Specif- 
ically, to recover the full-order steady-state Kalman filter 
from Theorem 1 take n,. =_ n. or, equivalently, n, = n. 
Since r G T  = I,, let S = r E WX" and S-' = GT E 
~ ~ n x n  . In this case the optimal gains (44)-(46) become 

Furthermore, in this case since 

the modified Riccati equation (47) specialmes to the stan- 
dard observer Fticcati equation 

and (48)-(50) are superfluous. Note that (78)-(80) are pre- 
cisely the standard steady-state Kalman filter gains in an 
alternative basis specified by the basis transformation S .  
Since J(A. ,  Be, C , )  = J(SA,S- ' ,  SB., c.S-'), however, 
this change of basis leaves the estimation error unchanged. 

Next, to recover the optimal projection results of Ref. 
9 involving reduced-order estimators for stable plants with- 
out a subspace observation constraint, let nu = 0 ,  n. = 
n,n,, = n.,A. = A ,  a n d n ,  < n , s e t p  = O s o t h a t  

p l  = I,, and replace [zl] and [ : I T  by r and @, 

respectively. Then the optimal gains (44)-(46) become 

and equations (47)-(50) specialize to 

These are equations (2.10)-(2.12) of Ref. 9 .  
Finally, we can also recover the results of Ref. 17 

where the reduced-order observer is constrained to observe 
an nu-dimensional plant subspace without estimating the 
remaining n8- 
dimensional subspace. In this case let n, = nu, n,, = 0 ,  

and r = 0 so that r l  = I,. Furthermore, let 

[ : ] I  be replaced by @ and FT respectively so that the 

gain expressions (44)-(46) become 

and equations (47)-(50) specialize to 

These are equations (2.17) and (2.18) of Ref. 17. 
V. Numerical Algorithm a n d  Illustrative 

Numerical Examples 
In this section we present a numerical algorithm for 

solving the optimality conditions for the Reduced-Order 
Observer-Estimator Problem and consider two illustrative 
numerical examples. 

Algorithm 1. To solve (47)-(50), carry out the follow- 
ing steps: 
Step 1. Initialme k = 1, p(') = I,, d l )  = In; 
Step 2. With p = p(k) and r = T ( ~ ) ,  solve (47)  for Q ( ~ )  = 

8; 
Step 3. With Q = ~ ( ~ ) , p  = p ( k ) ,  and r = T ( ~ ) ,  solve 

(48) and (49)  for P ( ~ )  = P and &!r;' = 0.; 
Step 4.  With Q = Q ( ~ ) ,  P = ~ ( ~ ) , p  = p ( k ) ,  and r = 

d k ) ,  solve (50)  for p(k) = P ;  
Step 5 .  If convergence of Q(') and P ( k )  has been attained 

then evaluate A,, Be,  C. using (44)-(46) and stop; 
else continue; 

Step 6 .  Use P = P ( ~ ) ,  &. = g i k ) ,  and P = j(k) to define 
p(kt') = p and dk+') = r using (39)-(41),(55), 

(56); 
Step 7. Replace k by k -t 1 and go to Step 1. 

The above algorithm is a straightfoward iterative 
scheme which is fairly easy to implement. More sophisti- 
cated algorithms can be developed by utiliming homotopic 
continuation techniques2'. For the examples discussed be- 
low, however, Algorithm 1 proved to be adequate. 

Our first example, adopted from Ref. 28, pp. 99- 
101, involves a satellite in circular orbit. The linearized 
error equations representing the deviation from a perfect 
circular orbit are given by 



where r, B,6 are spherical coordinates, ro is the orbit r* 
dius, w denotes orbital frequency, and E > 0. 

Here the state vector represents the deviation from 
a circular equatorial orbit and is expressed in spherical 
coordinates. We note that c = 0 was assumed in Ref. 28, 
although a > 0 is assumed here to reflect dissipation in this 
coordinate due possibly to on-board forces. Furthermore, 
stochastic disturbance models are utilized here in place of 
deterministic inputs appearing in Ref. 28. To reflect a 
plausible mission we assume the following data: 

w = 2% rad/day, mo = 50kg, ro = 42.2 x 106m, (96) 

o2(wo)/m; = 384 Nt2 - day, (97) 

u2(wA1') = 8.9 x lo6 m2 -day, (98) 0 2 ( ~ a 2 ) )  = U ~ ( W ~ ~ ) )  = 7.84 x lo-' rad2 - day, (99) 

where u2(.) denotes noise intensity. 
To treat this problem within our formulation, we note 

that the upper left 4 x 4 block of (94) has neutrally st* 
ble eigenvalues O,O, j w ,  and - jw .  Hence we set n, = 

4 and n, = 2 and seek to design an optimal 4th-order ob- 
server for the unstable subspace. In this case n. = 0 and 
thus we need only solve the subspace observer equations 
(92), (93). As inputs to  the estimator design process we 
chose to weight the angular position coordinates by ro in 
the interest of dimensional compatibility, i.e., 

A study was conducted to assess the performance of the 
optimal subspace observer compared to a full-order steady- 
state Kalman filter as well as a reducedsrder K h a n  fil- 
ter obtained using a truncated model consisting of only 
the &st n, = 4 states. The study involved a series of de- 
signs for decreasing magnitudes of the parameter c, i.e., 
decreasing stability of the q4 and q4 states. The results of 
the study are summarized in Figure 1. 

To further illustrate the algorithm we consider an ex- 
ample reminiscent of a rigid body with flexible appendages. 
Hence define 

Note that the dynamic model involves one rigid body mode 
and two flexible modes at frequencies 1 and 2 rad/sec with 
.5% damping ratios. The matrix C captures the fact that 
the rigid body position measurement is corrupted by the 
flexible modes (i.e., observation spillover), the matrix L ex- 
presses the desire to estimate the rigid body position, and 
the matrix Vl was chosen to capture the type of noise cor- 
relation which arises when the dynamics are transformed 
into a modal basis. 

For the full-order steady-state Kalman filter the opti- 
mal estimation error was J = 1.533. We then truncated 
the higher frequency flexible mode and obtained a subop 
timal4th-order observer as a 'full-order" estimator for the 
truncated system. The performance of this suboptimal es- 
timator evaluated for the 6th-order plant was J = 3.537. 
By applying Algorithm 1 an optimal 4th-order subspace 
observer was obtained. The performance of this optimal 
estimator was J = 1.572. 

A second-order suboptimal filter was also obtained as 
a 'full-ordern estimator for a truncated plant consisting of 
the rigid body mode only. The performance of this subop- 
timal estimator was J = 78.74. In contrast, the optimal 
2nd-order subspace observer constrained to observe only 
the rigid body mode had performance J = 2.328. 

VI. Conclusion 
Optimality conditions have been obtained for the 

problem of designing reduced-order observer-estimators. 
The principal feature of the theory presented herein is the 
ability of the reduced-order observer-estimator to observe 
a possibly unstable subspace of the plant while ~roviding 
optimal estimates of specified h e a r  combinations of the 
remaining plant states. The necessary conditions for opti- 
mality comprise a system of four matrix equations coupled 
by two oblique projections which determine the optimal es- 
timator gains. The results given herein generaliie previous 
results obtained for the stable plant case. 

Appendix: Proofs of Theorem 1 a n d  Theorem 2 
To optimize (30) over the open set S+ subject to the 

constraint (32), form the Lagrangian 

where the Lagrange multipliers X 2 0 and fi E 
IR("+"~~)~("+"~.) are not both zero. We thus obtain 

Setting % = 0 yields 

Since d is assumed to  be stable, X = 0 implies P = 0. 
Hence, it can be a s s u ~ e d  without loss of generality that 
X = 1. Furthermore, P is nonnegative d_efi~ite. 

Now partition (n+n,.) x (n+n,,) Q, P into n x  n, n x  
n,,, and n., x n,. subblocks as 

Thus, with X = 1 the stationarity conditions are given by 



-= -RLQ12 + RC,,Qz = 0 .  
ace, (110)  

Expanding ( 3 2 )  and (105)  yields 

Lemma 3. Q2, P2, and Pu e FP1FT - FP~zP;'P& 
FT are positive definite. 

Proof. By a minor extension of the results from Ref. 
29, (113)  can be rewritten as 

where Q$ is the Moore-Penrose or Drazin generalized in- 
verse of Q2. Next note that since (A,., Be.) is controllable 
it follows from Lemma 2 . l p d  Theorem 3.6 of Ref. 30 that 
( A , .  + Be.CQlzQ:, B,.V: ) is controllable. Now, since Q2 
and B,.V2B: are nonnegative definite, Lemma 12.2 of Ref. 
30 implies that Qz is positive definite. To show that P2 
and P, are positive definite, consider the transformation T 
given by ( 3 3 )  such that Zo( t )  = T Z ( t )  where Zo(t)  is given 
by ( 3 4 ) .  Using this transformation (105)  becomes 

where io is given by ( 3 6 ) .  Noting that T-T = T and that 

the (2 ,2)  block of the above Lyapunov equation is 

0 = ATP, + P,A. + CTRC,, (120)  

where 

Using (120)  and the fact that (A.,C,) is observable, it 
follows that P. is ~osit ive definite. Hence, it follows from 
Ref. 29 that Pz and P, 2 FPIFT - FP12P;'P&FT are 
positive definite. 0 

Since Q2 and Pz are invertible, (106)  and (107)  can 
be written as 

0 = F(PiQi2Q2' + 5 2 ) .  (123)  

Now define the n x n matrices 

6 g Q ~ ~ Q ; ' Q T ~ ,  P ~ P , , P , - ~ P $ ,  (125)  

r - Q ~ ~ Q ; ~ P ; ~ P ; ,  (126)  

and the n,, x n, n,, x n,., and n.. x n matrices 

Note that Q, P, 6, P are nonnegative definite and that 
FPFT = P,. Next partition n x n P, Q into nu x nu, nu x 
n., and n, x n. subblocks as 

Since P, is invertible (see Lemma 3 )  define the nu x n 
matrices 

and n x n matrix , 2 FT@. 

Next note that with the above definitions (122)  is 
equivalent to ( 4 0 )  and that ( 3 9 )  holds. Hence r = GTr 
is idempotent, i.e., r2 = r. Similarly, since @FT = I,,, j i  

is also idempotent. 
It is helpful to note the identities 

.. 
QP = -QmP&. (134)  

Using (122)  and Sylvester's inequality, it follows that 

rank G = rank r = rank 9 1 2  = rank Plz = nes. (135)  

Now using (131)  and Sylvester's inequality yields 

+ rank G - n,, 5 rank 5 rank 4 1 2  = n,,, 

(136)  
which implies that rank Q = n,,. Similarly, rank f' = n,,, 
and rank QB = n,, follows from ( 1 3 4 ) .  

Next, using (134)  and the above identities, it follows 
from (123)  that 

0 = F P ~ .  (137)  

Using the partitioned form (128)  of P and 0 ,  (137)  implies 

The components of Q and can be written in terms of 

4, P, 9, P, G, and r as 

Furthermore, it is useful to note that 



0 = G P p ,  1 = G @ = F p ,  (143) 

0 = P ,  7=1117, P=PTL, r.P.=P.L71P1, 
(144) 

which follow from (137) and (138). 
The expressions for (45) and (46) follow from (108)- 

(110) by using the above identities. Next, computing G 
(115) + (116) along with (116) yields (44). Substituting 
(139)-(141) into (111)-(116) along with the expression for 
A, it follows that (113) = r (112) and (116) = G (115). 
Thus (113) and (116) are supeAuous and can be omitted. 
Thus, (111)-(116) reduce to 

o = AQ + Q A ~  + ~ I A Q  + ~ A ~ P T  + v1 - Q,v;~Q: 

+ PIQ~vC 'Q~PT ,  (145) 

0 = [PL -44 + Q A ~ P T  + P L Q . v ; ~ Q ~ P ~ I ~ ~ ,  (146) 
0 = ( A  - ~Q,v; 'c )~P + P ( A  - pQav;'C) (147) 
+ ( A  - ~,v;lc)~P + P(A - Q,v;'c) + L ~ R L ,  

0 = [ ( A  - Q,v; 'c)~~ + P ( A  - Q,VF'C) 

+ P p ( A  - Q,V;'C) + L ~ R L ] G ~ .  (148) 

Next, using (145) +GTr  (146) G- (146) G - [ (146) GIT 
yields (47). Similarly, using (147) +rTG (148) r- (148) 
r - [ (148) rIT and r T G  (148) r- (148) r - [ (148) rlT 
yields (48) and (50). Now using ~~r (146) G- (146) G -  [ 
(146) GIT yields 

Using (138), (149) becomes 

- 7.~1 Q a K '  Q X C .  
(150) 

Next, computing H(150)HT yields (49). Note conversely 
that if (49) is satisfied, then (A.36) holds since p1T.p.~ = 

7 u 1 .  

Finay,  to prove Theorem 2 we use (44)-(50) to obtain 
(32) and (j05)-(110). Let A., Be, C., G ,  r, F,@, r ,p ,  Q,  P, 
0, P,  g., Q be as in the statement of Theorem 1 and de- 
fine Ql,Q12, Q2,Plr P12, P2 b~ (108)-(110). Using (401, 
@FT = In,, (45) and (46) it is easy to verify (139)-(141). 
Next substitute the definitions of Q ,  P, 0, p, G ,  r, F,@, 7, p 
into (47)-(50) using (40),  (41), and (133) to obtain (32) 
and (105). Finally, note that 

4 = [ Q Onxn-] + [ t ] Q [ Z ~  rT], 
On,,xn On,, 

which shows that 4 2 0. Now using the assumed exis- 
tence of a nonnegative-de!injte solution to (32) and the 
stabilisability condition ( A , v ! ) ~  it follows from the dual 
of Lem_ma 12.2 of Ref. 30, that A is asymptotically stable. 
Since A. is upper block triangular, A, is also asymptoti- 
cally stable. Conversely, since A. is_as.umed to be asymp 
totically stable A. stable implies ( A , v * )  stabilizable. 
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