
This article was downloaded by:[Rogers, E.]
On: 5 June 2008
Access Details: [subscription number 793777376]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Extensions of mixed-µ bounds to monotonic and odd
monotonic nonlinearities using absolute stability theory
Wassim M. Haddad a; Jonathan P. How b; Steven R. Hall b; Dennis S. Bernstein c
a School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
30332, U.S.A
b Space Engineering Research Center, Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
c Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI
48109-2140, U.S.A.

Online Publication Date: 01 November 1994

To cite this Article: Haddad, Wassim M., How, Jonathan P., Hall, Steven R. and
Bernstein, Dennis S. (1994) 'Extensions of mixed-µ bounds to monotonic and odd

monotonic nonlinearities using absolute stability theory ', International Journal of Control, 60:5, 905 — 951

To link to this article: DOI: 10.1080/00207179408921501
URL: http://dx.doi.org/10.1080/00207179408921501

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207179408921501
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

17
:1

0 
5 

Ju
ne

 2
00

8 INT. J. CONTROL, 1994, VOL. 60, No.5, 905-951

Extensions of mixed-,u bounds to monotonic and odd monotonic
nonlinearities using absolute stability theoryt

WASSIM M. HADDAD*, JONATHAN P. HOW§,
STEVEN R. HALL§ and DENNIS S. BERNSTEIN II

In this paper we make explicit connections between classical absolute stability
theory and modern mixed-a analysis and synthesis. Specifically, using the
parameter-dependent Lyapunov function framework of Haddad and Bernstein
and the frequency dependent off-axis circle interpretation of How and Hall, we
extend previous work on absolute stability theory for monotonic and odd
monotonic nonlinearities to provide tight approximations for constant real
parameter uncertainty. An immediate application of this framework is the
generalization and reformulation of mixed-u analysis and synthesis in terms of
Lyapunov functions and Riccati equations. This observation is exploited to
provide robust, reduced-order controller synthesis while avoiding the standard
D, N - K iteration and curve-fitting procedures.

Nomenclature
G(s)
G(s)

A,B,C
D,N
f(·)
1(·)

r; or I
M lo M 2

p

r( . , '), R(', .)
VG ( · ) , Vsi( ' )

V(· )
W(s)

u,x,y
Zij

U;, Uij

n; Nj , s,
d
IE

system transfer function
transformed system transfer function
state-space realization of G(s)
scaling matrices within the ,u-synthesis
nonlinear function
transformed nonlinear function
m x m identity matrix
upper and lower slope bounds for f( . )
Lyapunov function matrix
supply rates
system and nonlinearity storage functions
Lyapunov function
stability multiplier
system inputs, states and outputs
filtered outputs of G(s)
l(y;),1;(Zij)
matrices of multiplier coefficients
uncertainty blocks
expected value
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8 906 W. M. Haddad et al.

Nr , U)I', §r r x r non-negative definite, diagonal and symmetric mat­
rices

'J{ uncertainty block structure
( ')i ith row of ( . )
( . )ii (i, i)th element of ( . )

0', f3, y, 1] multiplier coefficients

1. Introduction
Many of the great landmarks of control theory are associated with the theory

of absolute stability. The Aizerman conjecture and the Lur'e problem, as well as
the circle and Popov criteria, are extensively developed in the classical mono­
graphs of Aizerman and Gantmacher (1964), Lefschetz (1965) and Popov
(1973). A more modern treatment is given by Safonov (1980), while an excellent
textbook treatment is presented in Vidyasagar (1992). The influence of absolute
stability on the development of modern robust control is clearly evident from
such works as Zames (1966). However, despite continued development of the
theory as summarized in the important book by Narendra and Taylor (1973),
absolute stability has had limited direct influence on the development of robust
control theory. Since absolute stability theory concerns the stability of a system
for classes of nonlinearities which, as noted by Siljak (1990) and Haddad and
Bernstein (1993), can readily be interpreted as an uncertainty model, it is
surprising that modern robust control did not take greater advantage of this
wealth of knowledge. There appear to be (at least) three reasons for this state of
affairs, namely, 'ileoo theory, state-space Lyapunov function theory, and linear
uncertainty.

The development of 'ileoo or bounded real theory as a key component of
robust control theory focuses on small-gain arguments for robustness guarantees.
Although such conditions can be recast for sector-bounded uncertainty, such
connections were rarely made (see Francis 1987). Furthermore, the extensive
development of state-space Lyapunov function theory as in Leitmann (1979),
Khargonekar et at. (1990) and Packard and Doyle (1990), was seemingly remote
from absolute stability theory, which involves frequency domain conditions with
an emphasis on graphical techniques. Finally, much of modern robust control
theory is concerned with linear uncertainty, as distinct from the class of
sector-bounded nonlinearities addressed by absolute stability theory.

Several recent developments now allow one to discern the relationship
between the classical theory of absolute stability and the modern theory of
robust control. First, the state-space formulation of 'ileoo or bounded real theory,
as developed by Anderson and Vongpanitlerd (1973), Petersen (1987) and Doyle
et at. (1989), provides a better understanding of the time domain foundations of
absolute stability theory. This was followed by the realization that absolute
stability results such as the Popov criterion, when specialized to the linear
uncertainty problem, are based on parameter-dependent Lyapunov functions,
see Haddad and Bernstein (1993) and Haddad and Bernstein (1991 a). Finally,
there was the development of upper bounds for mixed-u theory in Fan et at.
(1991), that have recently been interpreted by How and Hall (1992) in terms of
frequency dependent off-axis circles, and are thus connected directly to absolute
stability theory.
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8 Absolute stability theory and mixed-u 907

The purpose of the present paper is to make significant progress in
understanding the relationship between classical absolute stability theory and
modern It-analysis and synthesis. Our goal is to use the approach of Haddad and
Bernstein (1991 a) and How and Hall (1992) to demonstrate that the frequency
domain multipliers for the various classes of nonlinearities correspond to specific
selections of the D, N -scales that arise in the mixed-It problem. A key aspect of
our development is the construction of parameter-dependent Lyapunov functions
that support the mixed-It results.

The principal limitation of the norm-based 'Jeoo theory resides in the fact that
uncertainty phase information is discarded, so that constant real parametric
plant uncertainty is captured as non-parametric frequency-dependent un­
certainty. In the time domain, non-parametric uncertainty is manifested as
uncertain real parameters that may be time-varying, and these can destabilize a
system, even when the parameter variations are confined to a region in which
constant variations are non-destabilizing. Consequently, time-varying models of
constant real parametric uncertainties are unnecessarily conservative. Thus, to
address the constant real parameter uncertainty problem, it is crucial to restrict
the allowable time-variation of the uncertainty. One approach is to construct
refined Lyapunov functions that explicitly contain the uncertain parameters, an
idea proposed by Haddad and Bernstein (1991 a) and developed in this paper
using the same storage function approach employed by Willems (1972). The
form of the family of parameter-dependent Lyapunov functions Vex, tl.A) =
x T P( tl.A)x is critical since the presence of tl.A restricts the allowable time­
variation of the uncertain parameters, and thus exploits phase information. This
approach is used by Haddad and Bernstein (1993) to generalize the nonlinearity­
dependent Lur'e-Postnikov Lyapunov function of the classical Popov criterion to
a parameter-dependent Lyapunov function for constant real parameter uncer­
tainty. Potentially less conservative tests for constant real parameter uncertainty
can be obtained from similar generalizations of the Lyapunov functions for the
slope restricted monotonic and odd monotonic nonlinearities. In this case, the
nonlinear uncertainty set is a much better approximation to the linear uncer­
tainty set, and thus provides a framework for significantly reducing conservat­
ism, as numerically demonstrated by Safonov and Wyetizner (1987).

In this paper, we extend previous work on absolute stability theory for
differentiable, slope bounded monotonic and odd monotonic memoryless non­
linearities. This class serves as a much better approximation to the case of
constant real parametric uncertainty. We show in § 5 that the choice of certain
D, N -scales in mixed-u theory corresponds to the absolute stability criteria for
the monotonic and odd monotonic nonlinearities in Narendra and Neuman
(1966), Narendra and Cho (1967), Thathachar et al. (1967), Cho and Narendra
(1968) and Zames and Falb (1968). A direct benefit of these constructions is the
new machinery for mixed-u analysis and synthesis in terms of parameter-depend­
ent Lyapunov functions and Riccati equations for full- and reduced-order
compensator synthesis. Related optimality conditions arising from the chosen
class of D, N -scales also playa role in the controller synthesis procedure. The
overall framework thus provides an alternative approach to It-synthesis, while
avoiding the standard D, N - K iteration and curve-fitting procedure. Finally,
we numerically demonstrate our approach on a lightly damped flexible structure
with frequency uncertainty.
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8 908 W, M. Haddad et al.

2. Mathematical preliminaries

In this section we establish definitions and notation. Let IR and C denote the
real and complex numbers, let (.)T and (.)* denote transpose and complex
conjugate transpose. Furthermore, we write II· liz for the euclidean norm, II·IIF
for the Frobenius matrix norm, omaX<') for the maximum singular value, p(')
for the spectral radius, 'tr' for the trace operator, and M "" 0 (M > 0) to denote
the fact that the hermitian matrix M is non-negative (positive) definite, In this
paper a real-rational matrix function is a matrix whose elements are rational
functions with real coefficients. Furthermore, a transfer function is a real­
rational matrix function each of whose elements is proper, i.e. finite at s = 00. A
strictly proper transfer function is a transfer function that is zero at infinity.
Finally, an asymptotically stable transfer function is a transfer function with all of
its poles in the open left half-plane. The space of asymptotically stable transfer
functions is denoted by rft'Je"" i.e. the real-rational subset of 'Je",. Let

G(s) -[*J (1)

denote a state-space realization of .a transfer function G(s), that is G(s) =
C(sl - A)-l B + D. The notation ,~n, is used to denote a minimal realization. _
The 'Jez and 'Je", norms of an asymptotically stable transfer function G(s) are
defined as

IIG(s)ll~ ~ _1 f'" IIGUw)ll~dw
2IT -'"

IIG(s)ll", ~ sup 0max[ GUw)]
WE~

(2)

(3)

From Anderson and Vongpanitlerd (1973 p. 216), a square transfer function
G(s) is positive real if (1) all poles of G(s) are in the closed left half-plane; and
(2) G(s) + G*(s) is non-negative definite for Re [s] > O. Furthermore, we use
the definition from Lozano-Leal and Joshi (1990) and Wen (1988) that a square
transfer function G(s) is strictly positive real if (1) G(s) is asymptotically stable;
and (2) GUw) + G*Uw) is positive definite for all real w. Finally, a square
transfer function G(s) is strongly positive real if it is strictly positive real and
D + DT > 0, where D ~ G(oo). Recall from Anderson (1967) that a minimal
realization of a positive real transfer function is stable in the sense of Lyapunov,
and from Lozano-Leal and Joshi (1990) that a strictly positive real transfer
function is asymptotically stable.

For notational convenience in the paper, G will denote an I x m transfer
function with input u E IRm

, output y E 1R1 and internal state x E IR n
. We will

omit all matrix dimensions throughout, and assume that all quantities have
compatible dimensions.

3. Supply rates, storage functions and system stability

Several definitions are necessary to develop the appropriate tools for the
analysis framework. Consider a dynamical system '§ of the form

x(t) = Ax(t) + Bu(t) (4)
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8 Absolute stability theory and mixed-u 909

yet) = g(x(t)) + Du(t) (5)

where u(t) E ~m, yet) E ~1 and x(t) E ~n. In the special case where the output
function is linear, (g(x) = ex), <[j = G(s) is an LTI system with realization of
the form of (1).

For the dynamical system <[j of (4) and (5), a function r: ~1 X ~m ~~, is
called a supply rate if it is locally integrable, so that f:;lr(y(~), u(~»1 d~ < 00 for
all t], t2 > 0, and if fr(y(~»), u(S)) d~ '" 0 for every path that takes the
dynamical system from some initial state to the same final state. A more general
form for the supply rate presented in Pinzoni and Willems (1992) will be used in
this paper. Under the new definition, the supply rate can be a function of the
signals (u, y) and, if they exist, their time derivatives.

Definition 1. (Willems 1972): A system <[j of the form in (4) and (5), with states
x E ~n is said to be dissipative with respect to the supply rate r(', .) if there
exists a non-negative definite function Vs: ~n ~~, called a storage function,
that satisfies the dissipation inequality

Vs(X(t2») ,,;; Vs(x(t 1» + {r(y(;), u(;)d~ (6)

"for all t], tz and for all x('), y(.) and u(·) satisfying (4) and (5). 0

If Vs(x) is a differentiable function, then Willems (1972) provides an
equivalent statement of dissipativeness of the system <[j with respect to the
supply rate r , i.e.

Vs(x(t) ,,;; r(y(t), u(t)), t '" 0 (7)

where V denotes the total derivative of Vex) along the state trajectory x(t). For
a strongly dissipative system, (7) is replaced by the condition Vs(x(t)) <
r(y(t), lI(t» with a similar modification to (6). For the particular example of a
mechanical system with force inputs and velocity outputs we can associate the
storage function with the stored or available energy in the system, and the
supply rate with the net flow of energy into the system. However, the concepts
of the supply rates and storage functions also apply to more general systems for
which this energy interpretation is no longer valid.

A variety of supply rates have been considered by Willems (1972), Hill and
Moylan (1980) and Hill (1988). An appropriate supply rate for testing the
passivity of a system y = G(s)u is r(y, II) = UT y. This choice can be motivated
by the example of a system with a force input and velocity output, so that the
product uT y is a measure of power. For bounded gain tests, the appropriate
supply rate is r(y, u) = IIT u - y2 Y Ty. A motivation for this choice follows from
the identity

T T T
J/(y, u)dt = fauTUdt - iJ/TYdt (8)

which consists of two parts, the first associated with the energy at the system
input, and the second with the weighted energy at the system output. If the
integral on the left-hand side of (8) is positive, indicating that the weighted
output energy is less than the input energy at any time T, then the system is
gain bounded, since IIGII", < y-l.

As will now be shown, storage functions and supply rates provide a means
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8 910 W. M. Haddad et al.

+

Figure 1. Two interconnected systems.

for developing Lyapunov functions for determining the stability of coupled
feedback systems. In particular, if there exists a storage function for each system
that is dissipative with respect to an appropriate supply rate, then these
functions can be combined to form a Lyapunov function for the interconnected
system. A more precise statement of this result for two systems interconnected
as in Fig. 1 is provided by the following lemma.

Lemma I: Consider two dynamical systems '§t and '§2 with state-space represent­
ation as in (4) and (5), and input-output pairs (UI, y,) and (U2, Y2) respectively.
Assume that the two systems are connected as illustrated in Fig. 1, so that
u, = - Y2 and U2 = Yr. Furthermore, associated with these systems are states Xl>
X2, supply rates r,(y" ud, r2(Y2, u2) and storage functions VsI(x,), VdX2)
respectively. Suppose that both VsI(xd and VdX2) are positive definite, and that
the supply rates satisfy r\(Yt> UI) + r2(Y2, U2) = 0, for all UI = -Y2 and U2 = Yr.
Then the solution (Xl> X2) =0 of the feedback interconnection of '§I and '§2 is
Lyapunov stable with Lyapunov function V = Vs, + Vs2'

Proof: Since V = VsI + Vs2 is the sum of two positive definite functions, it
is positive definite. Furthermore, V(x\, X2) = Vst(xd + Vs2(X2) "S rt(Yl> ud +
r2(Y2, U2) = O. From the positive definiteness of V and the negative semi­
definiteness of V, it follows that V is a Lyapunov function that guarantees the
Lyapunov stability of the solution (XI' X2) = O. 0

In the special case that the states X2(t) can be written in terms of the states
Xt(t) for all t > 0, then it is possible to relax the assumptions on Vs2 in Lemma
I. In this case, if the storage function Vst is positive definite and the storage
function Vs2 is non-negative definite, then V is positive definite.

Next, we extend the results of Lemma 1 to the case of interest in this paper,
where a single LTI system G(s) is independently interconnected to m systems,
as illustrated in Fig. 2. In this case, we consider a system G with m scalar inputs

Figure 2. Multiple uncertainties for mixed robustness tests.
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8 Absolute stability theory and mixed-ii 911

and outputs such that each u, is only influenced by Yi' The systems in this
example are special cases of those in Lemma 1 since one is LTI and the other is
block diagonal.

Corollary 1: Consider an LTl system G(s) with inputs u., outputs Yh i = 1,
... , m, and states x. Introduce the dynamical systems <§i

Xi(t) = AiXi(t) + BiYi(t)

-Ui(t) = gi(Xi(t) + DiYi(t)

(9)

(10)

with supply rates ri(-Ui(t), Yi(t» and positive definite storage functions V'i(Xi(t).
Define an overall supply rate R(Yt(t), , Ym(t), Ul(t), ... , um(t» =
L~tYiri(-ui(t), Yi(t», with Yi > 0, i = 1, , m. If there exists a positive
definite storage function Vdx) for the system G(s) which is dissipative with
respect to the negative of the overall supply rate, then the interconnected system is
Lyapunov stable.

Proof: Consider the positive definite function V(x, Xl' ... , Xm) = VG(X) +
L7~1 Yi V'i(Xi)' From the definition of storage functions, it follows that V'i(Xi(t»
,,;; ri(-u;(t), Yi(t», i = 1, ... , m, and Vdx),,;; -R(Yl(t), ... , Ym(t), u\(t), ... ,
um(t). Then

m

V(X(t), x\(t), ... , xm(t» = Vdx(t» + LYiV,i(Xi(t»
i=1

m

,,;; -R(·, .) + LYiri(', .) = °
i=1

where the arguments of the supply rates are dropped for clarity. o
As before, if the states Xlo ... , Xm of the dynamical systems can be written

in terms of x, then V is positive definite if VG is positive definite and V'i' i = 1,
... , m are non-negative definite. Furthermore, if the positive definite storage
function VG is strongly dissipative with respect to the corresponding supply rate
- R( " .), then the Lyapunov function V is positive definite and V is negative
definite. It then follows that the interconnected system is asymptotically stable.

The results of Corollary 1 convert the problem of determining the stability of
interconnected systems to that of determining appropriate supply rates and
storage functions, and then testing for dissipativeness of the independent systems
with respect to the supply rates. For the problem addressed here, where insights
into determining the supply rates are available from the characteristics of the
nonlinearities, this approach greatly facilitates the construction of the Lyapunov
functions. Corollary 1 also allows us to incorporate both complex and real
uncertainties by mixing the supply rates for the different dynamical systems.

In the next section, we develop a framework in which different classes of
nonlinear functions are incorporated into the stability criteria. The absolute
stability criteria that are developed are then related to the robust stability and
performance problem with real parametric uncertainty.

4. Stability robustness for monotonic and odd monotonic nonlinear functions

While graphical tests have been developed for SISO feedback systems with a
single loop nonlinearity in the absolute stability literature, the goal in this paper
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8 912 W. M. Haddad et al.

is to employ a unified framework from which one can develop both state-space
and frequency domain robust stability criteria for multi variable systems. The
approach will use the concepts of supply rates, storage functions, and the
dissipation inequality defined in § 3. This framework was developed by How and
Hall (1992) from the original work of Willems (1972), and applied to rnultivari­
able nonlinearities with general sector constraints, extending the results of
Popov. Haddad and Bernstein (1991 a, 1993) have investigated the multivariable
Popov criterion for robust stability and 'ilf.2 performance for both linear un­
certainties and time-invariant nonlinearities. The following analysis extends these
results to encompass both monotonic and odd monotonic restrictions on the
nonlinear functions, as illustrated in Fig. 3.

The basis of the stability analysis tests is illustrated in Fig. 4, where G(s) is
an LTI system with realization

G(S)-[*J
and f(·) is a nonlinear function. As discussed in the Introduction, this
nonlinearity is used to model the uncertainty associated with the system G(s).
The transfer function W(s) is an appropriate frequency domain stability multi­
plier which is selected based on the known properties of the memoryless
nonlinearity f( .), such as gain or slope bounds, and its purpose is to modify the
region of instability for the system, as discussed by Zames (1966). The system
from y to u through W-1(s) and f(·) can be written as a dynamical system of
the form in (4) and (5). Furthermore, for the independently coupled case
discussed previously, W(s) will be a diagonal matrix, and f(·) is a component
decoupled nonlinearity.

fez)
,,,,,,,

/
/

/
/

OM

z

Figure 3. Examples of monotonic (M) and odd monotonic (OM) nonlinear functions.

Figure 4. Framework for stability tests with linear systems coupled to nonlinearities.
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8 Absolute stability theory and mixed-u 913

The process for determining the absolute stability of a system (stability for an
entire class of nonlinear functions) can be broken down into several steps. For
the particular case of interest, with m nonlinear functions independently
interconnected to the LTI system G(s), it follows from Corollary 1 that the
storage functions and supply rates can be developed separately. For each
input-output pair (Ui, Yi) of the system G(s), a storage function Vs; based on
the states of the multiplier W;(s) must be shown to be dissipative with respect to
the supply rate ri(ui, y;). Then, as in Corollary 1, the condition that the storage
function for the linear system G(s) be dissipative, with respect to a supply rate
that is the negative sum of the supply rates for the nonlinear systems, leads to a
condition for stability of the interconnected system. This criterion for stability
can be interpreted as requiring the existence of a positive definite solution of an
algebraic Riccati equation. Furthermore, combining the storage functions for the
linear and nonlinear systems provides a parameter-dependent Lyapunov function
for the interconnected system.

System parametric uncertainty arises from many factors and can exhibit both
linear and nonlinear behaviour. For example, phenomena such as backlash,
spring hardening, oscillation with stops, integrator wind-up, actuator saturation,
and the aerodynamic effect on aircraft dynamics all lead to nonlinear system
uncertainty. Some of these examples can be accurately modelled as sector
bounded nonlinear functions. However, in this paper, we develop robustness
tests with more specific, and thus potentially less conservative, classes of
monotonic and odd monotonic nonlinear functions. With these additional classes
of functions, the robustness tests developed in this paper cover the continuum of
real parametric uncertainties from arbitrary time-invariant sector-bounded non­
linear functions to constant linear functions.

Popov (1961) introduced a multiplier for sector-bounded time-invariant
nonlinear functions. Several authors have discussed the appropriate multipliers
for monotonic and odd monotonic restrictions on the nonlinear functions.
Specifically, Narendra and Taylor (1973), Brockett and Willems (1965),
Narendra and Cho (1967), Zames and Falb (1968), Thathachar et al. (1967),
Thathachar and Srinath (1967) have developed suitable stability multipliers w(s)
for monotonic and odd monotonic nonlinear functions. These multipliers are
given by the functions in the sets OWRL and OWRC, which exhibit an interlacing
pole-zero pattern on the negative real axis. From Guillemin (1957), the two sets
are distinguished by which is closest to the origin, a pole (OWRd or a zero
(OWRd. The standard form of the multiplier for each i = 1, ... , m is

mil ( a..) m" ( a..)
W;(s) = aiO + {3;os + 2: aij 1 - 1/ + 2: aij 1 + 1/

j=! (3ij(S + 17i) j=mil+ I (3ij(S + T/;j)

(11)

where the coefficients aij' {3ij, and T/;j are non-negative and satisfy 17ij{3;j­
«e> O. To consider just monotonic nonlinearities, take mi2 = mil in (11)
(equivalent to eliminating the last summation). For odd monotonic nonlineari­
ties, it is also possible to include multipliers with terms that explicitly contain
complex poles and zeros. While the extra freedom associated with this extension
will be discussed later, one can develop very general forms of the multiplier
W;(s) with the three main components in (11).
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8 914 W. M. Haddad et al.

As discussed by How and Hall (1992) and Haddad and Bernstein (1991 a,
1993), the multiplier phase plays a crucial role in determining the conservative­
ness of the analysis test. The first two terms of (11) correspond to the standard
Popov multiplier whose phase angle increases monotonically from 0° and 90°.
The first sum in (11) is a partial fraction expansion of the driving point
impedance of a resistor-inductor (RL) network. While the phase for this class
also lies between 0° to 90°, it is not a monotonically increasing function of
frequency. The last summation in (11) is of the form of a driving point
impedance of a resistor-capacitor (RC} network, with a pole closest to the
origin, and phase between 0° and -90°.

As illustrated in Fig. 4, proving stability of the coupled system requires
handling signals of the form W(s)y. While obtaining filtered outputs of this
form is simple for the Popov multiplier, it is quite complicated for the
multipliers in (11). In particular, with these extended multipliers it is necessary
to augment the multiplier dynamics to the original system so that the filtered
outputs, to be defined later, can be obtained directly from the augmented state
vector. The resulting augmented matrix A. then contains the poles of both the
system G(s) and the multipliers W;(s), i = 1, ... , m.

While much of absolute stability theory has been developed for infinite
sector or slope restrictions on the nonlinearity, the shifting approach discussed
by Rekasius and Gibson (1962) and Desoer and Vidyasagar (1975) has been
used to handle finite bounds. Define M I , M 2 E [hlmxm as diagonal matrices
whose non-zero elements represent the upper and lower sector bounds for each
input-output loop. The transformations illustrated in Fig. 5 convert the general
slope restrictions (M» M 2) to a one-sided condition (0, M 2 - M I ) , and then
finally to an infinite one (0,00). For now we consider only the bounds (0, M 2) ,

and a later remark will consider the more general case. The following section
outlines the process for shifting these sectors and augmenting the multiplier
dynamics. Sections 4.2 and 4.3 present stability tests for the monotonic and odd
monotonic nonlinearities.

r-------------,
I

Ml I
I I G
I I
I - I Iy I Y

I G I- I I +
L. ____ _ ___ ..I

: (M2 - Md-' I

u
( )-l II M2 - Ml I

r - - - - ,
I

U I 1(-) I y I +
I I I I
I I
I Ml I j
I I

FigureS. System transformations and the definitions of C. ts: il and y. If the lower slope
bound M, = O. then !(.) = f(·). C(s) = G(s) and i1 = II.
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(13)

(14)

4.1. Multiplier augmentation
We begin with a discussion of the transformations illustrated in Fig. 5. In the

following, take M 1 = 0 and M 2 = M = diag(M l h ... , Mmm ) , and consider dif­
ferentiable monotonic and odd monotonic nonlinear functions that satisfy the
constraint (d{;( a)/da) < M; for all values of a. Note that this constraint implies
that /;( a) satisfies the sector constraint 0,;;; a/;(a) < Miia

2. From the figure,
observe that f(y) = 1(Y), 1(0) = 0, and

Y = Y - M-11m (12)

Desoer and Vidyasagar (1975) presented an excellent discussion of the existence
and uniqueness of the solution of this equation. While these issues dominate the
discussion for arbitrary nonlinearities, it is known from Thathachar and Srinath
(1967) that these properties are automatically satisfied for sector-bounded
monotonic nonlinearities. Furthermore, for each nonlinearity /;(y;), with Yi '1= 0
define

l(Yi) /;(y;)/y;
---

Yi 1 - Mi;l/;(Yi)/Yi

Then, if /;(.) is sector-bounded by M ii , then the equivalent condition for the
shifted nonlinearity is yJi(Yi) '" O. Also, by the chain rule

d1i(Yi) d/;(Yi)/dYi
----

dYi 1 - Mi;l d/;(Yi)/dYi

so that if /;(.) is differentiable and satisfies the slope restrictions 0,;;; (d/;(a)/
da) < Mii, then l(·) is also differentiable and satisfies 0,;;; (d1;(a)/da), and thus
is monotonic. The same transformation can be used for slope-restricted odd
monotonic nonlinearities.

The corresponding changes to the LTI system are also illustrated in Fig. 5. In
particular, for M 1 = 0, the shifted system is given by

(;(s) = G(s) + M-1 (15)

with inputs - u, and outputs y. Each transformed nonlinearity 1i( . ) is restricted
to lie in the first and third quadrants, so that

al(a) '" 0, a E IR (16)

Furthermore, since the transformed nonlinearities are monotonic, they satisfy

(17)

Having discussed the transformations, we can now proceed with the multi­
elier augmentation. As illustrated in Fig. 4 (with G(s), f(·) replaced by (;(s),
f( . », the stability tests are performed on the systems formed by combining the
multiplier with the system (;(s) and its inverse with the nonlinearity 1(·). The
supply rate for these systems will then be a function of the new output
(equivalent to y in Fig. 4), which is obtained by applying the appropriate
multiplier to each element of the output of (;(s). Observing the form of the
multiplier in (11), it can be seen that in the expression Wi(S)Yi, we obtain terms
of the form
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8 916 W. M. Haddad et al.

(18)

t, = [C; A;{;J
where A; ~ diag(-1)ij)' j = 1, ... , rnn, and

(20)

~ /:,
C;=

~ /:,
M;=

a'imn

(21)

where (Co); and (M-1)i denote the ith rows of the respective matrices.
With In input-output pairs to the system G(s), we augment the multiplier

dynamics to the shifted system G(s) to obtain a state-space representation of
G,,(s) given by

ill = A"x" - Bau

y = C"x" - M-Iu

where x" E 1Il1"', n" ~ n + L;':,lm;z, A", B" and C" are defined as

(22)

(23)

x,,~rq r
A 0 0 :J B,,~rn
C1 Al 0

A" = ]Z 0 Az (24)

Zm em 0 0 Am Mill

Ca = [Co 0 0 0]

Next, define R;j as an output matrix for this augmented system, designed to
access the jth element of z, so

Zij = Rijxa (25)

Then, the only non-zero element of Rij is the (n + L;:\m/z + j)th term, which
is I.
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Note that although extra dynamics associated with the multipliers have been
added to the system Ga(s) it can easily be show~ that

Ga(s) = Ca(sl - Aa)-I B; + M- 1 = Co(sl - A)-I Bo + M- 1 = G(s) (26)

Hence, by pole-zero cancellation in each input-output loop, the frequency
domain representations of G(s) and Ga(s) are equivalent in terms of their
input-output properties. The following simple example is used to clarify the
preceding notational development.

Example 1: Consider a LTI system with realization

[

0
-1

G(s) -

Cl

1
-2

(27)

with M = 1, and the multiplier given by

W(s) = (YI(1 - ~) + (Y2(1 - ~) (28)
s + 1]1 S + 1]2

Let ZI, Z2 be the states corresponding to the multiplier dynamics. Then the
augmented system is given by

x =[~:] [ 0
1 0

o ] B.{J-1 -2 0 0
(29)A -

a Zl' a - (YICI (YI C2 -I]I o '
Z2 (Y2 CI (Y2 C2 0 -1]2

c, = [Cl C2 0 0], Rll = [0 0 1 0], R 12 = [0 0 0 1] (30)

Since

[(Sl - A)-l 0

(s +~1]2)-1](sl - Aa)-I = cl(s) (s + 1]1)-1 (31)
c2(s) 0

where
(Yo

ci(s) = --I-[cl c2](sl - A)-I, i = 1,2 (32)
s + I]j

it follows that Ca(sl - Aa)-I B; = Co(sl - A)-I Bo. Furthermore

[

(Sl - A)-I 0 0] [BJ
Rll(sl - Aa)-I B, = [0 0 1 0] c;(s) (s + 1]1)-1 0 (Y

c2(s) 0 (s + 1]2)-1 (Y~
(33)

= [c;(s) (s + 1]1)-1 o{:]
(YI G(s)

s + nl

and similarly for R 12 •

(34)

(35)

o
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(37)

From Corollary 1, it is known that in the development of the storage
functions and supply rates we can consider each input-output pair of G(s)
independently. Hence, without loss of generality, we consider the development
of supply rates and storage functions for the separate single-input single-output
nonlinearities coupled with the appropriate multiplier. Since the goal is to
demonstrate that the combination of the nonlinear function and the multiplier,
as in Fig. 4, is passive, it follows from § 3 that the appropriate supply rate is the
product of the system inputs and outputs. However, as discussed by How and
Hall (1992), and How (1993), a modification of this supply rate is required for
the multipliers in (11) if M *" O. In this case, with s denoting the standard
Laplace variable and y; = W;(s)y;, we consider signals of the form

Yi = W;(s)y; + 13ioMi;Jsu; (36)

It will be seen that this additional term is equivalent to the quadratic term in
Narendra and Taylor (1973) which is added to the Lur'e-Postnikov Lyapunov
function to account for a direct transmission in the plant dynamics. As will also
be seen in the following development, the term SUi is used to cancel an
equivalent term from the Popov multiplier in the expression Yi = Wj(s)y;. The
assumed differentiability of the shifted nonlinearities guarantees that the
expression in (36) exists.

4.2. Monotonic nonlinear functions
In this section we develop the supply rate and appropriate storage functions

for monotonic nonlinearities (m;2 = mil), and present robust stability conditions
for the full system via algebraic Riccati equations. Using the definitions of Wi(s)
in (11), Y in (12), and the filtered outputs in (18), the signal in (36) becomes

mil

= 2,0'ij(Yi - Zij) + (0";0 + 13iOs)Yi - O"iOMjilUi
j=l
mil

= 2,O"ij(Yi - Zij) + 13;osYi + O";oY;
j=l

We then construct the supply rate ri(Y;, u;) In terms of the time domain
representation of Y; and U;, which yields

r;(y;, Ui) = [~O"ij(Yi - Z;j) + 13iO)!; + O"iOYi]Ui (38)
}=l

An appropriate storage function for this supply rate is given in the following
lemma.

Lemma 2: Consider a differentiable monotonic nonlinear function /;(.) that
satisfies the slope restrictions 0 ~ d/;( a)/da < M ii . As in (13), define the differen­
tiable monotonic nonlinearity ];(.) that satisfies (16) and (17). Consider the
dynamical system <§; which is a combination of ];(.) and Wil(s) from (11)
(mi2 = mil)' with corresponding state-space representation given by (4) and (5).
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(39)

Then the function Vsi defined by

_ (If' ~ 1 -I 2) mil l"i ~Vsi(Yi, Zih ... , Zimil) = f3iO fi(a)da + 2M ii u, + 'Zf3ij fi(a)da
o J~I 0

is a storage [unction for the supply rate in (38).

Proof: Since u, = li(Yi), and the dynamics of '§i can be written in terms of Yi
and z., Vsi( ' ) is a function of the states of the dynamical system. Also, since
1(0) = 0, it follows that Vsi(O) = 0, and from (16), since f3ij, j = 0, 1, ... , mih
are non-negative, then Vsi is non-negative definite. Finally, to show that (39) is
a storage function, it must be demonstrated that it is dissipative with respect to
the supply rate of (38).

For notational convenience, let lIij = f;(Zij) and u, = f;(y;). Now, dropping
the arguments for convenience

Vsi = I,f3ij Uij Zij + I3iO[Yi + MjjI dll
i]lI

i
j=l dt

From the definition of y in (12), terms of the form du;/dt cancel.
that (16) and (17) yield

0", Cl'ij(Yi - Zij)(Ui - lIij)

o~ (T/ijf3ij - Cl'ij)Zijllij

for j = 1, ... , mil' Adding (41), (42) and (43) to (40) yields

(40)

Next, note

(41)

(42)

(43)

nIiI mil

Vsi ~ 'Z Uij(f3ijZij + (T/ijf3ij - Cl'ij)Zij) + 'Z Cl'ij(Yi - Zij)(lIi - Uij)
j=! j=1

+ (I3iO)!i + Cl'iOY)Ui

After collecting terms, we obtain

mil

Vsi ~ 'Z[f3ijZij + (T/ijf3ij - Cl'ij)Zij - Cl'ij(Yi - Zij)] lIij
j~I

Now, it follows from (18) that

so that the first summation of (45) is zero, and using (38) yields

(44)

(45)

(46)

(47)
mil

Vsi ~ 'Z Cl'ij(Yi - Zij) lIi + (I3iO)!i + Cl'iOYi)Ui = r.
j=!

which demonstrates that the storage function is dissipative with respect to the
supply rate. D

One should note that the state-space representation for '§i is in terms of the
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states Y; and z, which can easily be written in terms of xa because of the
augmentation process discussed in the previous section. While it is convenient to
consider the supply rates and storage functions for each nonlinear function,
these must be combined to form the supply rate for the linear system (;(s) and
the full multiplier W(s). Vector notation will simplify this development, but we
must first define the following matrices. These definitions are complicated by the
fact that each W;(s) can have a different number of expansion terms in (11).
This difficulty can be handled by defining extended values of CY;j' (3ij and T/ij' Let
m, = maxi (mil)' Then, for each i = 1, ... , m and j = 1, ... , ml, let CYij = 0,
(3ij = 0, nu = ° and R;j= ° if j> mil' Furthermore, define Hj = diag(CYlj'
""CYmj)' Nj=diag({3jl,.··,{3jm),. $=diag(T/jb ... ,T/jm), j=O, 1, ... , mi'
Finally, let Rj = [RTj, Rij, .. . , R~j] . Then, as in Corollary 1, using (38) to
form the overall supply rate for the LTI system G(s) yields

m

R(y, u) = 2:ri(Yi, Ui)
i=1

mil

2: CYI/YI - Zlj) + (3lOYt + CYlOY\
j=l

mm'
2: CXmj(Ym - Zmj) + (3moYm + CYmoYm
j=\

(48)

(49)

(50)= UT[~ H/y - Zj) + NoY + HOY]
J=l

where Zj = [z lj ... Zmj]T. This representation of R(·, .) can be simplified
further by using the definition of Rj to note that for each i, Zj ~ Rjxa •

Furthermore, using (12) for Y, and noting that y = Caxa = C.(Aaxa - B.u),
the overall supply rate can then be written as

tu», u) = uT[HoC. + NoCaA. + ~ H/Ca - Rj)]X.
J=l

- UT(NoC.Ba + ~ HjM-I)U (51)
J=O

Having developed the overall supply rate, we now present the stability condition
for the interconnected system.

Theorem 1: Consider an LTI system G(s) independently coupled to m differenti­
able monotonic nonlinearities that satisfy the slope restrictions 0",;; d[;(a)/
da < Mi;. If for each input-output pair (Ui, y;), there exist multipliers Wi(s) as in
(11) and a matrix R = RT > °E ~n,xn, such that with the preceding definitions of
Hj, ~' and Rj

(1) Ro~ [(NoC.B. + Ij':,}oHjM- I) + (NoC.B. + Ij:'oHjM-I)T] > 0, and

(2) there exists a symmetric matrix P > 0, satisfying
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0= Arp + PA a + R + [HoCa + NoCaA a + #1 Hj(Ca - Rj) - BrprRal

[HoCa + u.c,»; + ~Hj(Ca - Rj) - Brp]
}=I

(52)

then the negative feedback interconnection of the system G(s) and the nonlineari­
ties h( ), i = 1, ... , m, is asymptotically stable. Furthermore, a Lyapunov
function for the combined system is given by

T m [ (Yi _ 1 -1 2) mil 'ij _ ]
V(xa) = xaPX a + 22; f3jO 1/;(a)da + 2M jj u, + 2;f3;jl f;(a)da

,=1 0 }=1 0

(53)

Proof: For the LTI system G(s), introduce the storage function
TVdxa) = xaPxa (54)

We proceed using the development of Corollary 1. Note that (39) gives a
storage function for each input-output pair (u;, y;) which is dissipative with
respect to a given supply rate. For asymptotic stability of the interconnected
system, it must be demonstrated that the positive definite function VG is
strongly dissipative with respect to the negative sum of these supply rates.
Clearly, if P is a positive definite matrix, then VG is a positive definite function.
Next, from (7) and (51), we require that

VG(xa(t» < -R(y, u) (55)

Define J"(xa, u) ~ VG(xa) + R(y, u). Then, since xa = Aaxa - Bau, the condi­
tion for dissipativeness is that

J"(xa, u) = 2xrP(Aaxa - Bau)

+ UT[HoCa + NoCaA a + ~HiCCa - Rj)]x a - UT(NoCaB a + ~HjM-l)u
}= 1 }=o

(56)

Following the procedure in How and Hall (1992), it is now possible to deve­
lop the worst case sequence of inputs uw(x(t» by forming the equation
(aJ"(xa, u)/au) = 0 and solving for u. If condition (1) of the theorem is satisfied,
then a solution is known to exist, and the worst case input sequence corresponds
to a maximum stationary point since (a 2 J"(xa, u)/a2u) = - Ro < O. To prove that
the system is dissipative, it is sufficient to guarantee that the worst case input
results in a negative maximum of J"(x a, u). Thus, select R = RT > 0 and require
that max, f'(x a , u) = -xrRxa< O. Substituting for u.; into J"(xa, u) yields the
condition that P of (54) satisfies

Ar P + PA a + [HoCa + NoCaA a + #1 Hj(Ca - Rj) - BrprRaJ

[HoCa + NoCaA a + #1 Hj(Ca - Rj) - Br p] < -R (57)
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which yields (52). Hence, it follows from Corollary 1 that the Lyapunov function
for the combined system is

m

v = Vo + LVs;
i=1

(58)

Substituting the definitions of these storage functions from (39) and (54) yields
(53). 0

Remark 1: V(x.) in (53) is an extended Lur'e-Postnikov Lyapunov function
since it depends explicitly on the nonlinearity /;('). Similarly, in the linear
uncertainty case, where j;(y;) = 0Y;, V(x.) becomes a parameter-dependent
Lyapunov function since the uncertain parameters 0 explicitly appear in the
Lyapunov function. In this case, as discussed in the Introduction, the uncertain
parameters are not allowed to be arbitrarily time-varying, and the result is a
refined framework for constant real parametric uncertainty (Haddad and Bern­
stein 1991 a). 0

4.3. Odd monotonic nonlinear functions

We now consider nonlinearities with odd monotonic restrictions as illustrated
in Fig. 3. The procedure is identical to the one discussed in the previous section,
the main difference now being that the transformed nonlinear function 1(·)
satisfies (16), (17) and an additional constraint, from Narendra and Neuman
(1966), Thathachar et al. (1967), Thathachar and Srinath (1967), Narendra and
Taylor (1973)

0.,; aI!(al) + a21(a2) + aI!(a2) - ad(al), aI, a2 E IR (59)

The definition of the supply rate and multiplier augmentation process are as
discussed in § 4.1 and 4.2. In this case, we consider m;2 > m i, in W;(s) of (11).

Using the simplification of r;(y;, u;) in (38), the definition of Zij in (18), and
noting the form of the multiplier terms in Wi(s) for j = mil + 1, ... , mn. the
supply rate can be rewritten as

r;(y;, u;) = [~ll';j(Y; - Z;j) + . ~ ll';/Y; + Z;j) + 13;oY; + ll'iOY;]Ui (60)
]=1 ]=rnil+1

A storage function for this supply rate is given in the following lemma.

Lemma 3: Consider a differentiable odd monotonic nonlinear function [;( .) that
satisfies the slope restrictions 0.,; (d[;(a)/da) < M;i' As in (13), define the
differentiable odd monotonic nonlinearity 1;(·) that satisfies (16) and (59).
Consider the dynamical system '§; which is a combination of j;(.) and the
multiplier Wiles) from (11) (m;2> m;I)' with corresponding state-space re­
presentation given by (4) and (5). Then the function Vs; defined by

_ (LYi ~ I -) 2) mil L'ii ~Vs;(y;, Z;!o"" Zimil) = 13iO fi(a)da + 2M ;; u, + L13ij fi(a)da (61)
o }=I 0

is a storage function for the supply rate in (60).

Proof: As in the proof of Lemma 2, Vsi is a non-negative definite function of
the states of the system formed by combining Wiles) with the nonlinearity j;(.)
as in Fig. 4. Furthermore, using the results of Lemma 2, note that
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lisi "" [~CYij(Yi - Zij) + {3iO)'i + CYiOYi]Ui + ~ {3ijUijZij (62)
/=1 j=mi1+1

Note that (59) yields

o "" CYi/(Zij + Yi)Ui + (Zij - Yi)Uij) (63)

for j = mil + 1, ... , m a- Next, adding (41), (43) and (63) to (62) yields

mi2

+ L [{3ij Uijiij + ({3ij'lij - Cl'ij)ZijUij + Cl'i/(Zij + Y;)Ui + (Zij - Y;)Uij)]
j=mil+ 1

(64)

Next, (46) can be used to replace Zij' and after cancelling terms, (64) becomes

(65)

Hence, from the definition of ri(" .) in (60), it follows that lisi "" riC . , .), or
equivalently, that the storage function is dissipative with respect to the supply
~. 0

To prove overall system stability, we again form augmented matrices using
In\ and m2 = maxi(md. Then, from (51) and (60), the overall supply rate can
be written as

R(y, u) = uT[HoCa + NoCaAa + ~ H/Ca - Rj) + . 2 Hj(C. + Rj)]X.
]=1 ]=mJ+l

- UT(NoCaBa + 2HjM-1)U (66)
J~O

We can now state the following theorem governing the overall stability of the
system.

Theorem 2: Consider an LTJ system G(s) independently coupled 10 m differenti­
able odd monotonic nonlinearities that satisfy the slope restrictions 0"" d/;( 0)/
do < Mii. If for each input-output pair (Ui, Yi), there exist multipliers W;(s) as in
(11) and a matrix R = RT > 0 E IRn,xn. such that, with the preceding definitions of
Hj , N; and Rj

(I) Ro~ [(NoCaB. + 2.'!~'oHjM-l) + (NoCaB a + 2.~'oHjM-\)T] > 0, and

(2) there exists a symmetric matrix P > 0, satisfying

O=A~P+PA.+R

+ [HoC. + NoCaA. + ~ H/C. - Rj) + . 2 Hj(C. + Rj)
]=1 ]=mJ+l

B~prRol[HoCa+ NoCaA. + j~Hj(C. - Rj)

+ . 2 Hj(Ca + Rj) - B~P] (67)
]=m]+l
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then the negative feedback interconnection of system G(s) and the nonlinearities
/;( ), i = 1, ... , m, is asymptotically stable. In this case, a Lyapunov function for
the combined system is given by

(68)

Proof: The proof is similar to the one for Theorem 1 and is omitted. 0

(69)

(70)
Co

Remark 2: To consider nonlinearities with both upper and lower slope con­
straints, we employ both transformations in Fig. 5. In particular, we define !( .)
and (;(s) in (13) and (15) in terms of J(.) and 6(s), where

J(y) = f(y) - Mly, Y E W'

6(s) = (I + G(s)MI)-IG(S) _ [A
The previous analysis can then be repeated, starting with a system 6(s) and
differentiable (odd) monotonic nonlinearities J(.) with upper slope bounds
M 2 - MI' The appropriate Riccati equations can then be obtained from
Theorems 1 and 2 by redefining An in (24), replacing u with Ii = u - M\y, and
then substituting M 2 - M I for M. 0

In the next section, we make explicit connections between the time and
frequency domain stability conditions. As a result, we provide sufficient condi­
tions for the existence of positive definite solutions to (52) and (67). These
conditions also enable us to make explicit connections between absolute stability
theory and mixed-u theory.

5. Frequency domain stability conditions

The utility of absolute stability criteria, such as the one in Popov (1961), is
the simplicity of its graphical interpretation in the frequency domain. The
previous section developed state-space conditions for the stability of an LTI
system G(s) coupled with two main classes of nonlinear functions. While recent
trends in control theory are toward time domain or state-space Riccati-based
tests, one advantage of frequency domain criteria is the insight that they provide
to the role of the frequency domain multipliers. The following provides a
powerful tool for converting from state-space to frequency domain stability
conditions within the supply rate framework.

Lemma4 (Trentelman and Willems 1991): Consider an LTI system y = -Gu
with supply rate r(y, u). Define a system z = -Hu, z E ~m+J with state-space
representation

H(S)~n[~J
c, I o,

and supply rate r(z,u)=zTLz, where L=LTE~(m+/)x(m+/) and r(z,u)~
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r(y, u). If A h has no poles on the jw-axis, then the following statements are
equivalent:

(1) the system H(s) is dissipative with respect to the quadratic supply rate
r(z, u);

(2) H*Uw)LHUw);;" 0, wEIR.

Proof: For the proof see Trentelman and Willems (1991). 0

The system H(s) represents a modification of the system G(s) to provide
functions of both the inputs - u and outputs y = - Gu in the vector z , Consider
the simple example of the supply rate r( z , u) = - U T y, where

z = [!uJ, H(s) = [GI~)J and L = [I~ 10] (71)

The frequency domain test for dissipativity is then

H*Uw)LHUw) = G*Uw) + GUw) ;;" 0, wEIR (72)

which, along with the condition that G(s) is asymptotically stable, is the
standard matrix positive real test for the system G(s). Note that similar
statements can also be developed with the strongly dissipative conditions.

Thus, Lemma 4 provides a tool for transforming the time domain stability
criteria given in the previous sections into equivalent frequency domain stability
criteria. Furthermore, while these tests are interesting in terms of the extra
interpretation that they provide for the multipliers, they also provide conditions
for the existence of the positive definite matrices P in Theorems 1 and 2.

Next, introduce a system H(s) with outputs that combine to form the
negative of the overall supply rate. Let W(s) = diag(W;(s», and define the
output vector z

z = H(s)( -u) + [WciS
) - N o(M2 ; M1)-1 s ] [ i u]

= [Wci S
) -No(M2 I- M1)-ls ] [~aJ (-u) (73)

With the matrix L as in (71), it follows that the supply rate is
- R(y, u) = ZT Lz: From Lemma 4, the test for dissipativeness is then whether
H*Uw)LHUw) ;;" 0 Vw. Substituting the definition of H(s) into this condition
and noting that No, M 1 and M2 are diagonal, we obtain

H*LH = [e: I][No(M~~(j~l)-ljW nDn
x [W~W) -No(M2 ~ M1)-ljW] [~a]

= [e: I][No(M~~U~I)-ljW n
x [w~W) -No(M2~ M1)-ljW] [~a]

= e:w* + we a (74)
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8 926 W. M. Haddad et al.

Consequently, an equivalent test for stability is that T1(s) ~ W(s)G.(s) be
positive real. Furthermore, since it follows from (26) that G(s) and G.(s) are
equivalent in terms of their input-output properties, we need only consider the
positive realness of T(s) ~ W(s)G(s). Hence, it follows from the work of
Haddad and Bernstein (1991 b) that if A. is asymptotically stable and T(s) is
strongly positive real, then there exists an n« x n« symmetric matrix P > 0
which satisfies (52) or (67), depending on the form of the multiplier W(s), as
discussed in Theorems 1 and 2. Conversely, for a given selection of W(s), if
there exists a P> 0 for all R > 0, then A. is asymptotically stable, and T(s) is
strongly positive real.

In the following, we consider the case involving finite upper and lower
bounds on the slope of the nonlinearity. In particular, assume that the upper
bound satisfies M 2 > 0 and the lower bound satisfies M 1 < M 2• In this case,
since the double shift illustrated in Fig. 5 must be utilized, we replace (15) with

G(s) = (I + GM1)-I(I + GM2)(M2 - M1)-1 (75)

where it is assumed that M 1 is selected so that I + GM 1 is invertible at all
frequencies. To clarify the physical interpretation of the stability criterion and
develop connections with the upper bounds for rnixed-u, the symmetric bound
M 1 = -M2 will be used in the following development. Narendra and Taylor
(1973) develop frequency domain tests for the case that M 1 *- -M2.

Theorem 3: Consider the L TI system G(s) with m independent nonlinearities
1;( . ) with appropriate sector bounds given by M 1 and M 2. Assume
M 1 = - M 2 < 0, and that 1- GUw)M2 is invertible for all wEIR. For each
i = I, ... , m, select the multiplier W;(s) as in (11) based on the characteristics of
1;(·). Furthermore, define W(s) = WRe(s) + jW1m(s) = diag(W;(s». If

G*WReM2G - j(W1mG - G*W1m) - WReM;1 "" 0 (76)

for all W E~, then the negative feedback interconnection of G(s) and the m
nonlinearities as illustrated in Fig. 2 are Lyapunov stable.

Proof: With M 1 = -M2 , it can easily be demonstrated that the first two factors
of G(s) commute. Then from (74) and (75), the condition for stability is that

o"" TUw) + T*Uw), w E ~ (77)
where

T(s) = W(s)(I + G(s)M2)(I - G(s)M2)-1(2M2)-1 (78)

Since 1- G(s)M2 is assumed to be invertible and M 2 is positive, we can
develop an equivalent test by pre- and post-multiplying (77) by (I - G
Uw)M2)*M 2 and M 2(I - GUw)M2) respectively. Performing this operation, and
substituting for T(s) from (78), the condition of (77) is equivalent to the
requirement that, for all w E ~

0"" (I - GM2)* M 2W(I + GM2) + (I + GM2)*W* M 2(I - GM2)

= Mz(WRe + jW1m) + Mz(WRe + jW1m)GM2 - M 2G*M2(WRe + jW1m)

+ M 2(WRe - jW1m) - M 2(WRe - jW1m)GM2 + M 2G*M2(WRe - jW1m)

- M 2G*M2(WRe + jW1m)GM2 - M 2G*M2(WRe - jW1m)GM2 (79)

Collecting terms and dividing through by 2M~ yields the condition in (76). 0
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(81)

Remark 3: The stability criterion in (76) of Theorem 3 is very general, since it
may involve a mixture of the time-invariant sector-bounded nonlinearities as in a
Popov test, the differentiable monotonic and odd monotonic nonlinearities
discussed in § 4.2 and 4.3, and the time-varying nonlinearities considered in a
small gain test. 0

Remark 4: As discussed by How and Hall (1992), (76) has a graphical
interpretation in the scalar case. Specifically, since W Re > 0, (76) can be
rewritten as

(80)

or, equivalently, letting G = x + jy, (80) can be written as

x 2 + (y + W1m
) 2 '" _1_ + ( W1m

)2
W ReM2 M~ WReM2

This corresponds to a circle with a frequency dependent centre at - W1m(ul)/
WRe( ul) M2 and constant real axis intercepts at ±M;- t. This approach is
reminiscent of the classical off-axis circle criterion of Cho and Narendra (1968),
where a single bounding circle is employed as opposed to a family of frequency
dependent circles. Further discussions of the role of the multiplier phase and its
relationship to the conservatism of the test are presented in Haddad and
Bernstein (1991 a), How and Hall (1992) and How (1993). 0

Remark 5: For odd monotonic nonlinearities, Narendra and Taylor (1973),
Thathachar et al. (1967) and Thathachar and Srinath (1967) discuss multiplier
terms that contain complex poles and zeros of the form

"Ii] s2 + aijS + bij
Wi(s) = (Equation 11) + L (Xij-2--'----'-

j~"'i2+1 S + AijS + YJij

(82)

Although this case can be handled exactly as the other terms in the multiplier,
the proofs of stability are much more involved and exceed the scope of this
paper. However, the benefit of these additional terms in the sense of the rapid
phase variations that they allow is readily apparent in the frequency domain test
of Theorem 3 and, as will be seen in the next section, they provide even more
general parametrizations of the D, N -scales in the mixed-a theory. 0

5.1. Connections 10 mixed-u analysis
In order to compare the upper bounds for real-u and the frequency domain

stability tests developed in the previous section, we present a brief summary of
the notation in Fan et al. (1991). For the system matrix G(s) E C"'X'" , let m.,
me and mc(m, = m, + me + me'" m) define the types and number of uncertain­
ties expected in the system. The positive integers k;(2.;"~'tki = m) then define
the block structure and repetition of the uncertainties denoted by 'Jl(m"
me' me) = (k t , ... , k", , ... , k", +'" , ... , k",). The set of allowable perturba­
tions for the system G is then defined to be '
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8 928 W. M. Haddad et al.

'le~r = {d = block diag (<5; I k , ... , <5:-n h ,
1 r m,

sit, , ... , <5~n lk , ... , df, ... , d~c):
In,+l (' m,+mc

<5~ e IR, <5f e C, d; e Ck,Xk" I = m, + me + i}

Definition 2. (Doyle 1982): For G e cmxm, Il'.Jr(G) is defined as

Il'.Jr( G) = (min {om.x(d): det (I - dG) = on- 1

6E1C~r

where IbJr( G) = 0 if no d e 'le~r exists such that det (I - dG) = O.

(83)

(84)

o
The complexity inherent in the definition and computation of !I'x(G) has led

to the use of approximations by both upper and lower bounds. For purely
complex uncertainties, the bounds

p(G) ,,;;; 1l'.J( G) ,,;;; 0m.x(G) (85)

involving the spectral radius and the maximum singular value are commonly
employed. These bounds are usually refined with frequency dependent scaling
matrices D.

As discussed by Doyle (1982) and Young et at. (1991), the scaled bounds are
exact if m; = 0 and Zm; + me";;; 3. However, for a larger number of complex
uncertainties, results from these papers demonstrate that the bounds are only
correct to within approximately 15%, and with real parametric uncertainties, the
bounds in (85) can be arbitrarily poor. Recent developments have led to new
upper and lower bounds for mixed-a (m, '* 0), as discussed by Fan et al. (1991)
and Young et al. (1991). For the upper bound of interest, define the hermitian
scaling matrices

'!lJ~r = {block diag (Db' .. , Dm +m , d-] k " ••• , dmch ):, c rn,+mc+ m/

0< D; = ot « Ck,Xk i , 0 < d, e IR} (86)

No, = {block diag(N b ... , N m , Ok , ... , Ok ): N; = Nf e Ck,Xk i } (87)
JI. r m,+1 In,

which are partitioned to be compatible with the uncertainty structure 'le~(. The
set of matrices '!lJ~r includes elements for all three types of uncertainties, whereas
N~( has non-zero terms only in those parts corresponding to the real uncertain­
ties. Members of both '!lJ~r and Nx are frequency dependent weighting functions
and are constrained to be hermitian. The elements of '!lJx are further constrained
to be positive. Note that within the block definition of (87), the elements of the
scaling matrix N are essentially arbitrary.

An upperbound for mixed-a was developed by Fan et at. (1991) by including
constraints on the eigenvectors of the system dG where de 'lex and m, '* O. To
compare with the analysis results in the previous section, it is sufficient to note
the following definition.

Definition 3 (Younget al. 1991): For G(s) e cmxm and compatible uncertainty
block structure ':Ie, define

(1'* = inf [min {(I': (G*DG + j(NG - G*N) - (I'D) ,,;;; O}] (88)
DeSJ'J(.NeX';J( O'eR

o
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It is shown by Fan et al. (1991) and Young et al. (1991) that Cl'* is an upper
bound for the rnixed-u problem in the sense that 1k1( G) '" (max (0, Cl'*»I/2.

Corollary 2: Consider the diagonal case where k, = 1, i = 1, ... , me in X. Then
it follows from Theorem 3 with W ReM2 replaced by D, W1m replaced by -N,
and M"2 2 bounded by Cl', that the conditions in (76) and (88) are identical. In the
case of m, linear time-invariant and me + me nonlinear time-varying functions,
then the bound in (88) is recovered. Finally, for sector-bounded nonlinear
time-varying functions, take WRe > 0 and W 1m = 0 in (76) to recover complex-u.

Proof: For the particular selection of 'X, since W ReM2 > 0 and W 1m are real,
they are members of the 0Jx and oN~( respectively. The equivalence then follows
by direct substitution. In the linear case, the only restriction on W(s) is that it
be a positive real function, and thus W Re and W 1m can be any functions in the
eb0Jxmd~. 0

The equivalence of these two stability criteria is even stronger if we
recognize that the upper bound for mixed-u is related to M"2 I

• Then, as in (88),
minimizing over Cl' for a particular selection of D and N functions is equivalent
to determining the largest sector (slope) bound M 2 that will destabilize the
system for a given multiplier selection. As discussed by Narendra and Taylor
(1973), this process is, of course, the foundation for the absolute stability
theory. Extensions of Theorem 3 to the block diagonal case have been
addressed for the Popov criterion in Haddad and Bernstein (1991 a).

6. Robust stability and performance analysis

In this section, we specialize the results of § 4 to linear uncertainty, and
introduce the robust stability and performance problems. As shown in § 4.1, in
order to account for the extra dynamics introduced by the frequency domain
multiplier, the resulting state-space model is of increased dimension. Hence, let
au C [Rn,xn, denote a set of perturbations ~Aa of a given nominal augmented
dynamics matrix A a E [Rn,xn,. Within the context of robustness analysis, it is
assumed that A a is asymptotically stable and 0 E au. We begin by considering the
question of whether or not A a + ~Aa is asymptotically stable for all ~Aa E au.
First, however, we note that since A a in (24) is lower block triangular, it follows
that if A a + ~Aa is asymptotically stable, then A + ~A is asymptotically stable
for all perturbations ~A.

Robust stability problem: Determine whether the linear system

ia(t) = (A a + ~Aa)xa(t), t E [0, 00)

is asymptotically stable for all ~Aa E au.
(89)

o

To consider the problem of robust performance, introduce an external
disturbance model involving white-noise signals as in standard LQG (~2) theory.
The robust performance problem concerns the worst-case ~2 norm, that is, the
worst-case (over au) of the expected value of a quadratic form involving outputs
z(t) = Exa(t), where E E [Rqx n" when the system is subjected to a standard
white noise disturbance wet) E [Rd with weighting DE [Rn,xd.
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Robust performance problem: For the disturbed linear system

.ta(t) = (A a + ~Aa)xa(t) + Dw(t), t E [0, (0)

z(t) = Exa(t)

(90)

(91)

where w(·) is a zero-mean d-dimensional white-noise signal with intensity I d ,

determine a performance bound f3 satisfying

J(OU) ~ sup lim sup IE{liz (t) II~} "" f3 (92)
6.A aEQj, l_~

o
As shown in § 7, (90) and (91) may denote a control system in closed-loop
configuration subjected to external white noise disturbances and for which z(t)
denotes the state and control regulation error.

Of course, since D and E may be rank deficient, there may be cases in
which a finite performance bound f3 satisfying (92) exists, whereas (89) is not
asymptotically stable over OU. In practice, however, robust performance is mainly
of interest when (89) is robustly stable. In this case, the performance J(OU)
involves the steady-state second moment of the state. For convenience, define
the n. x n, non-negative definite matrices R ~ E TE, V ~ DDT. The following
result is immediate.

Lemma 5: Suppose A a + ~A, is asymptotically stable for all ~Aa E OU. Then

J(OU) = sup tr Q/IA R
L\AaEau a

where the na x n, matrix Q/lA, ~ lim t _ oo lE[xa(t)x ~(t)l is given by

Q/lA, = Joooe(A,+/lA,)t Ve(A,+/lA,)Tt dt

which is the unique, non-negative definite solution to

o = (A a + ~A,)QI\A + Q/IA (A a + ~A,)T + V
a a

(93)

(94)

(95)

In order to draw connections with traditional Lyapunov function theory, we
express the 'iJCz performance measure in terms of a dual variable P/lA, for which
the roles of A a + ~Aa and (A a + ~Aa)T are interchanged.

Proposition 1: Suppose Au + ~Aa is asymptotically stable for all ~Au E OU.
Then

where P/lA, E 1R.",xn, is the unique, non-negative-definite solution to

0= (A a + ~Aa? P/IA + P/IA (A a + ~Aa) + Ra ,

Proof: For the proof see Haddad and Bernstein (1991 a).

(96)

(97)

o
Remark 6: In Lemma 5, Q/lA, can also be viewed as the controllability gramian
for the pair (A. + ~Au, D). Similarly, P/lA, in Proposition 1 can be viewed as
the observability gramian for the pair (E, Au + ~Aa)' 0

Remark 7: The stochastic performance measure J(OU) given by (92) can also be
written as
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(98)

(99)

which involves the 'iJez norm of the impulse response of (90) and (91). This
stochastic performance measure can also be given a deterministic interpretation
by letting wet) denote impulses at time t = O. 0

In the present paper our approach is to obtain robust stability as a
consequence of sufficient conditions for robust performance. Such conditions are
developed in the following sections.

6.1. Robust stability and performance via parameter-dependent Lyapunov
functions

The key step in obtaining robust stability and performance is to bound the
uncertain terms ~A~ P"A, + P"A,~A. in the Lyapunov equation (97) by means
of a parameter-dependent bounding function Q(P, ~A.) which guarantees
robust stability by means of a family of Lyapunov functions. As shown by
Haddad and Bernstein (1991 a), this framework corresponds to the construction
of a parameter-dependent Lyapunov function that guarantees robust stability.
As discussed by Haddad and Bernstein (1991 a), a key feature of this approach
is the fact that it constrains the class of allowable time-varying uncertainties,
thus reducing conservatism in the presence of constant real parameter un­
certainty. The following result is fundamental and forms the basis for all later
developments. For notational convenience, let §' and 1'\1' denote the set of r x r
symmetric and non-negative definite matrices respectively.

Theorem 4: Let Qo: I'\In, ...... §n, and Po: au ...... §n, be such that

~A~P + P~A. "" Qo(P) - [(A. + ~A.)TPo(~A.) + Po(~A.)(A. + ~A.»,

~A. E au, P E I'\In, (100)

and suppose there exists P E 1'\1", satisfying

0= ATp + PA + Qo(P) + R (101)

and such that P + Po(~A.) is non-negative definite for all ~A. E au. Then

(A. + ~A., E) is detectable, ~A. E au (102)

if and only if

A. + ~A. is asymptotically stable, ~A. E au
In this case

P"A, "" P + Po(~A.), ~Aa E qt

where P"A is given by (97). Therefore
e

J(au) "" tr PV + sup tr Po(~A.)V
llA aE6lJ

If, in addition, there exists Po E §" such that

(103)

(104)

(105)
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Po(~Aa) :;;: Po, ~Aa E au.
then J(au.) :;;: {3, where {3 ~ tr [(P + Po)V].

Proof: For the proof see Haddad and Bernstein (1991 a).

Note that with Q(P, ~Aa) denoting the right-hand
equation can be rewritten as

~A~P + P~Aa :;;: Q(P, ~Aa)' ~Aa E au.,

(106)

o
side of (100), this

PENn, (107)

where Q(P, ~Aa) is a function of the uncertain parameters ~Aa. For conve­
nience we shall say that Q( ., .) is a parameter-dependent bounding function or,
to be consistent with Haddad and Bernstein (1991 a), a parameter-dependent
Q-bound. To apply Theorem 4, we first specify a function Qo(') and an
uncertainty set au. such that (107) holds. If the existence of a non-negative
definite solution P to (101) can be determined analytically or numerically and
the detectability condition (102) is satisfied, then robust stability is guaranteed
and the performance bound (105) can be computed.

Finally, we establish connections between Theorem 4 and the Lyapunov
function theory. Specifically, we show that a parameter-dependent Q-bound
establishing robust stability is equivalent to the existence of a parameter-depend­
ent Lyapunov function, which also establishes robust stability. To show this,
assume there exists a positive-definite solution to (101), let Po: au. --> N n

" and
define the parameter-dependent Lyapunov function

V(xa) ~ xr(p + Po(~Aa»xa (108)

Note that since P is positive definite and Po(~Aa) is non-negative definite,
V(x ll ) is positive definite. Thus, the corresponding Lyapunov derivative is given
by

. T T
Vex,) = xu[(A u + ~AII) (P + Po(~Au» + (P + Po(~Au»(Au + ~A.)]x.

T[ T T T ( ) ( )= XU A,P + PAil + ~A,P + P~A. + AuPo ~A. + Po ~Aa A.

+ ~ArPo(~Au) + Po(~A.)~Au]x. (109)

or, equivalently, using (101)

Vex,) = -xr[Qo(p) - {(A. + ~A.)TPO(~A.)

+ Po(~A.)(A. + ~A.)} + R]x. (110)

Thus, using (100) it follows that V(x.):;;: 0 so that A. + ~A. is stable in the
sense of Lyapunov. To show asymptotic stability using La Salle's Theorem in
LaSalle (1960), we need to demonstrate that V(x.) =0 implies x. =0. Note that
V(x.) = 0 implies Rx; = 0, or, equivalently, Ex. = O. Thus, with xu(t) =
(Au + ~Au)x.(t), Ex. =°and the detectability assumption in (102), it follows
from the PBH test that x. = O. Hence asymptotic stability is established.

6.2. Construction of parameter-dependent Lyapunov functions and connections
with stability tests for monotonic and odd monotonic nonlinearities

Having established the theoretical basis for our approach, we now assign
explicit structure to the set au. and the parameter-dependent bounding function
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Q(. , -}, Specifically, the uncertainty set UIJ. is defined by

UIJ. ~ {~Aa E IRn,xn,: ~Aa = -e.n) + M- 1F)-ICa , F E ~} (111)

where ~ satisfies

(112)

(117)

(115)

(116)

and where Ba E IRn,xm and Ca E IR mxn, are fixed matrices denoting the structure
of the uncertainty, M E IRm x m is a given diagonal positive-definite matrix, and
FE II\lmxm is a diagonal uncertain matrix.

Next, we digress slightly to provide an alternative characterization of the
uncertainty set UIJ.. In order to state our next result, define the subset @of ~ by

@ ~ {F: F = F(I + M-IF)-I, F E~} (113)

where by Lemma 3.2 of Haddad and Bernstein (1991 b), det (l + M-IF) 1= O.

Proposition 2: Let M E IRm x m be positive definite. Then

@ = {F E II\lmxm: det(l - FM- I) 1= 0 and FM-IF.;; F} (114)

Proof: 'C'. Let FE @. Then there exists F E ~ such that F = F(l + M- IF)-I.
Hence, FM- I = F(I + M-1F)-IM- 1 so that

spec(FM- I) = spec[F(l + M-IF)-IM- I]

= spec[M-1F(l + M-1F)-I]

= {_A_: AE spec (M-IF)}
1 + A

where 'spec' denotes spectrum. Hence, spec (F M-I) does not include 1, and
det(I - FM- 1) *' O. Next, note that F = (l- FM-l)-l F. Hence, it follows
that

F - FM-IF = ~F(l- M-Ifr) + ~(l - FM-I)F (118)

= ~(l - FM-I)[(l - FM-I)-I F

+ F(l - M-I F)](l - M-I F) (119)

= (l - FM-I)F(l - FM- I) ;;: 0 (120)

which proves 'C'.
'::Y. Let F be such that det(l-FM-I)*,O and FM-1F.;;F. Since

det (l- FM-I) *' 0, define F ~ (I - FM-l)-I F. It then follows that

F = ~(l - F M-I)-I F + ~F(l - FM-l)-l (121)

= ~(l - FM-I)-I[F(l - FM- I ) + (l - FM-I)F](l - FM-I)-l (122)

= ~(l - FM-1)-1[F - FM- I F](l - FM-I)-I ;;: 0 (123)

Hence, F E~. Furthermore, since F = (l- FM-I)-l F is equivalent to
F = F(l + M- lF)-I, FE @, which proves ':J'. 0

Finally, we present a key Lemma that shows the equivalence of 0.;; F.;; M
and the structure presented in Proposition 2.
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Lemma 6: Let FE IR III X III be a non-negative definite d~ag0'lal matrix and
M E IR III X III a positive-definite diagonal matrix. Then FM-1F.;; F if and only if
O.;;F.;;M.

Proof: The proof is a direct consequence of Lemma 4.4 of Haddad and
Bernstein (l991 a). 0

Now, it follows from Proposition 2 and Lemma 6 that an equivalent
representation for our uncertainty set au in (1l1) is

au ~ {~Aa E IR n,xn, : ~A, = - B,FC" FE F} (124)

For the structure of au satisfying (1l1), the parameter-dependent bound
Q(' , .) satisfying (100) can now be given a concrete form. Since the elements
~A" in au are parametrized by the elements F in '!F, for convenience in the
following results we shall write Po(F) in place of Po(~A,).

Proposition 3: Let No, Ho, ~, n; Sj E IR III X III be non-negative definite diagonal
matrices such that, as in Theorem 2, Ro > 0, and

(125)

Then the functions

Qo(P) = [HoC" + NoCaA" + J~_nllHj(C" - Rj) + ~ HiC" + Rj) - B~p]TR;I
j=ml+l

[ HoC" + NoC"A" + ~H/C" - Rj) + . ~ Hj(C, + Rj) - B~P]
]=1 j=ml+l

(126)

(127)

or, equivalently,

f1h

Po(F) = C~FNoC, + 't.Rj(! - FM-I)-LF~Rj
j~l

(128)

satisfies (100) with au given by (1l1).

Proof: The proof is a direct consequence of Theorem 2, with ICy) = Fji =
F(! + M- 1F)-IC,X,. For further details, on a similar proof, see Haddad and
Bernstein (1991 a). 0

Next, using Theorem 4 and Proposition 3, we have the following immediate
result.

N H S rn>IIIXIII b . d ,F" di ITheorem 5: Let No, Ho, j' j, j E "" e non-negative ejinue tagona
matrices such that Ro > 0 and (125) is satisfied. Furthermore, suppose that there
exists a non-negative definite matrix P satisfying
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Then

if and only if

In this case

(A a + AA a, E) is detectable, AA a E OU

A a + AAa is asymptotically stable, AA. E OU

(129)

(130)

(131)

J(OU):;;; trPV + suptr[(crFNoCa + ~RT(I - FM-l)-IF~Rj)V]
FE?; ]=1

T~= tr PV + suptr[(C,FNoCaW] (132)
Fe?;

Proof: The result is a direct specialization of Theorem 4 using Proposition
3. We only note that Po(AA.) now has the form Po(F) = CJFNoCa +
2,;~"RT(I - FM-l)-~F~Ri' Since F Nj ;;. 0, j =0, ... , !!,2, Jor all FE @ it
follows that P + Po(F) is non-negative definite for all F E '!F as required by
Theorem 4. Finally, (132) follows by noting RjV = 0, j = 1, ... , m-, 0

Theorem 5 is directly applicable to dynamic systems with m-mixed uncertain­
ties. Specifically, it follows from Theorem 2 that if the nonlinearity m-vector
f(y) is composed of nl time invariant first and third quadrant functions, n2 - nl
monotone increasing functions, and m - n2 odd monotone increasing functions,
then the nominal system is robustly stable for all such mixed uncertainty.
Furthermore, in the linear uncertainty case, f(y) = Fy it was recently shown by
Haddad and Bernstein (1991 a) that under certain compatibility assumptions
between No and @ (for the Popov case), the set OU allows a richer class of
multivariable uncertainties in that F may represent a fully populated uncertainty
matrix. Similar extensions for the monotonic and odd monotonic case are
possible; however, for simplicity of exposition, we defer these results to a future
paper. This of course, allows for non-scalar multiple uncertainty blocks within
the analysis and synthesis framework.

7. Robust controller synthesis via static and dynamic output feedback

In this section we introduce the robust stability and performance problem
with static output feedback control. As mentioned in the previous section, owing
to the extra dynamics introduced by the multiplier, our resulting state-space
model is of increased dimension. Hence, this problem involves a set OU C ~n.xn.

of uncertain perturbations AAa of the nominal augmented system matrix A u-

Robust stability and performance problem: Given the n.th-order stabilizable
augmented plant with constant real-valued plant parameter variations
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(133)

(134)

xu(t) = (Au + 6A u)x u(t) + Bu(t) + Dw(t), t E [0, 00)

yet) = Cxu(t)

where u(t) E ~mo and wet) E ~d and yet) E ~/, determine an output feedback
control law

u(t) = Ky(t) (135)

that satisfies the following design criteria:

(1) the closed-loop system (133)-(135) is asymptotically stable for all
6Au E au, that is, Au + BKC + 6Au is asymptotically stable for all
6Au E au; and

(2) the performance functional

J(K) ~ sup limsup ~IE{ r'[xr(s)Rxxx.(s) + UT(S)RuuU(S)]dS} (136)
6A aEOlL 1_00 t Jo

is minimized. o
Since we are only interested in controlling the actual system dynamics, i.e.

the non-augmented dynamics, in accordance with the partitioning in (24), our
control, measurement, disturbance and state weighting matrices B, C, D and
Rx.n have the following structure

B = [~J C = [C 0], D = [gJ Rxx = [Rox ~J (137)

For each variation 6Au E au, the closed-loop system (133)-(135) can be
written as

where

xu(t) = (A + 6A.)xu(t) + Dw(t), t E [0, 00)

~ 6
A = A. + BKC

(138)

(139)

and where the white noise disturbance has intensity V = DDT. Finally, note that
if Au + 6A. is asymptotically stable for all 6A. E au for a given K, then (136)
can be written as

J(K) = sup tr PM V (140)
.6.A;EOlL a

where P"A u satisfies (100) with A. replaced by A and R replaced by
~ 6 T T
R = s.. + C K RuuKC (141)

To apply Theorem 5 to controller synthesis we consider the performance
bound (105) in place of the actual worst-case iJiz performance as in Theorem 5
with Au, R replaced by A and R to address the closed-loop control problem.
This leads to the following optimization problem.

Optimization problem: Determine K E ~moxi that minimizes

(142)

subject to
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(143)

o
The relationship between the optimization problem and the robust stability

and performance problem is straightforward, as shown by the following observa­
tion.

Proposition 4: If P E f'\Jn, and K E ~moxi satisfy (143) and the detectability
condition (102) holds, then A + ~Aa is asymptotically stable for all ~Aa E au.,
and

J( K) ~ Jj(K) (144)

Proof: Since (143) has a solution P E f'\Jn, and the detectability condition (102)
holds, the hypotheses of Theorem 4 are satisfied so that robust stability with
robust performance bound is guaranteed. The condition in (144) is merely a
restatement of (105). 0

Note that, since the last term in (142) is not a function of either the
controller gain K or the constraint (144), it plays no role in the optimization
process. Next, we present sufficient conditions for robust stability and perform­
ance for the static output feedback case. For arbitrary P, Q E ~n,xn, define the
notation

ml m2
-6C = n-c, + NoCaA a + 2: Hj(Ca - Rj) + 2: Hj(Ca + Rj)

j=1 j=m\+1

Rza ~ Ruu + BTCJNoRolNoCaB

Pa~ BTp+ BTCJNoRoV:- BJP)
6 -l-Ap = A a - BaR o C

v~ QCT(CQCT)-lC, vl. ~ In - V

when the indicated inverses exist.

(145)

(146)

(147)

(148)

(149)

(151)

Theorem 6: Assume Ro > 0 and assume (125) holds. Furthermore, suppose
there exist n a x n a non-negative definite matrices P, Q such that CQCT > 0 and

o= A~P + PAp + Rxx + CTRo!C + PBaRo1BJP - PJRza!Pa
T T -I

+ vl.PaR Za Pavl. (150)

0= [A p + (BaR o
l NoC a - I)BR za

l P;v + e.e;' BJP]Q

+ Q[A p + (BaRoiNoCa - I)BRz}Pav+ BaRO!BJP]T + V
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and let K be given by

W. M. Haddad et al.

K = - Rial PaQCT(CQCT)-1 (152)

Then (A + ~Aa' R) is detectable for all ~Aa E au if and only if A + ~Aa is
asymptotically stable for all ~Aa E au. In this case the closed-loop system
performance in (140) satisfies the parameter-dependent 'J£z bound

T~

l(K) "" trPV + suptr[(CaFNoCa)V] (153)
Fe?}

Proof: The proof follows the one in Haddad and Bernstein (1991 a). 0

Remark 8: The definiteness condition CQCT > 0 holds if C has full row rank
and Q is positive-definite. Conversely, if CQCT > 0, then C must have full row
rank but Q need not necessarily be positive-definite. This condition implies the
existence of the static gain projection v. 0

7.1. Dynamic output feedback controller synthesis

In this section, we introduce the robust stability and performance dynamic
output-feedback control problem. Since the multiplier dynamics increase the
plant order from n to na, to allow for greater design flexibility, the compensator
dimension ne is fixed to be less than the augmented plant order na' Hence,
define n= na + n., Note that in this context, an nth-order controller can be
regarded as a reduced-order design. As in Hyland and Bernstein (1985), this
constraint leads to an oblique projection that introduces additional coupling in
the design equations along with additional design equations. This coupling shows
that regulator/estimator separation breaks down in the reduced-order controller
case.

Dynamic robust stability and performance problem: Given the nath-order
stabilizable and detectable plant with constant structured real-valued plant
parameter variations

determine an neth-order dynamic

ia(t) = (A a + ~Aa)xa(t) + Bu(t) + D[w(t),

yet) = CXa(t) + Dzw(t)

where u(t) E [Rmo, wet) E [Rd and yet) E [R',
compensator

t ;;. 0 (154)

(155)

(156)

(157)

ie(t) = Aexe(t) + Bey(t)

u(t) = Cexe(t)

that satisfies the following design criteria:

(I) the closed-loop system in (154)-(157) is asymptotically stable for all
~Aa E au; and

(2) the performance functional in (140) with l(K) replaced by l(A e, Be' Ce)
is minimized.
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For each uncertain variation tJ.Aa E UU, the closed-loop system In (154)-(157)
can be written as

where

t(t) = (A + tJ.A)x(t) + Dw(t), t '" 0 (158)

(159)

and where the closed-loop disturbance Dw(t) has intensity if = DDT, where

VI = DIDT and V2 = D2DI. The closed-loop system uncertainty tJ.A has the
form

(160)

where

(161)

Finally, if A + tJ.A is asymptotically stable for all tJ.Aa E UU for a given
compensator (A e, Be' Ce)' then it follows from Proposition 1 that the perform­
ance measure in (135) is given by

J(A e, Be' Ce) = sup tr j56,1 if (162)
6A

ilE(}U.

where P6 ,1 satisfies the ii x n Lyapunov equation

- - T- - - - -0= (A + tJ.A) P6 ,1 + P6 ,1(A + tJ.A) + R

where

(163)

E- [E E C] R- = E-TE- = [Rxx= 1 2 c.r- 0 (164)

o
Next, we proceed as in the previous section where we replace the Lyapunov
equation (163) for the dynamic problem, with a Riccati equation that guarantees
that the closed-loop system is robustly stable. Thus, for the dynamic output
feedback problem, Theorem 5 holds with A a, R, V replaced by A, R, if. For
clarity we state the dynamic optimization problem.

Dynamic optimization problem: Determine (Ae> Be> Ce) that minimizes
6 -- -T A

--J(A e, Be' Ce) = tr PV + suptr[(CaFNoCa)V] (165)
FdJ

where j5 E l'\Jii satisfies
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0= ':Fp + PA + R

W. M. Haddad et al.

IFp]TR-I, 0

(166)

- '"where R j = [Rj Omxn,l and

Ro~ [(NoC,B, + %oHjM- I) + (NoC,B, + j~HjM-In (167)

and such that (A e, Be' Ce) is controllable and observable, and (125) holds. D

By deriving necessary conditions for the dynamic optimization problem as in
§ 6.1 we obtain sufficient conditions for characterizing fixed-order dynamic
output feedback controllers that guarantee robust stability and performance. The
following lemma is required for the statement of the main theorem.

Lemma 7: Let Q, P be n, x n, non-negative definite matrices and suppose that
rank QP= n., Then there exist ne x n« G, rand ne x n; invertible M, unique
except for a change of basis in IRno, such that

QP= G T M r, rGT = I no (168)

Furthermore, the n« x n, matrices

r ~ GTr, 1'.L ~ In. - r

are idempotent and have rank ne and na - ne respectively.

Proof: For the proof see Bernstein and Haddad (1990).

(169)

D

We now state the main results of this section concerning reduced-order
controllers. For convenience, recall the definitions of Ro, Pa, A p , R2a , C, and
define

f ~ CTVilC

'" - I - TA p = Aa - Q2: - B,Ro(C - B,P)
6 -I -1 C -1 -I( - T)Ai) = A a - BR 2, P, + B,Ro No aBR2a Pa - BaR o C - B,P

for arbitrary Q, P E 1R",xn,.

(170)

(171)

(172)

(173)

(174)

(175)

Theorem 7: Let ne ";; na, and assume Ro> 0 and (125) holds. Furthermore,
suppose there exist n a X n a non-negative definite matrices P, Q, P, Q satisfying

T -T -)- -I T
0= ApP + PAp + Rxx + C Ro C + PBaRo BaP

T -I T TR-I- PaR 2, Pa + 1'.L P, Za P,1'.L

o = (A p + BaRol Br[p + PDQ + Q(A p + BaRol Br[p + pW
- T-+ VI - Q2:Q + 1'.LQ2:Q1'.L

T A A A -r l TA T -I T T -I
0= A pP + PAp + PBaR a B,P + PaR zaPa - 1'.LP,RZa P,1'.L
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0= AoQ + QA~ + QfQ - '.LQfQ,I

rankQ = rankP = rankQP = ne

and let A e, Be' Ce be given by

A e = r[Ao - Qf]CT

Be = TQCTVi"l

C; = - Ri"}PaCT

941

(176)

(177)

(178)

(179)

(180)

(181)

(182)

Then (A + ~A, E) is detectable for all ~Aa E au if and only if A + ~A is
asymptotically stable for all ~Aa E au. In this case the performance of the
closed-loop system (158) satisfies the parameter-dependent 'i1f.2 bound

J(A co Be, Ce) ,,;; tr[(P + P)V1 + PQfQ]
T~

+ suptr[(CaFNoCa)Vd
Felj

Proof: The proof follows as in the proof of Theorem 5.1 of Haddad and
Bernstein (1991 a) with additional terms arising due to the reduced-order
dynamic compensation structure and odd monotonic constraints. For details of a
similar proof, see Bernstein and Haddad (1989). 0

Remark 9: Several special cases can immediately be discerned from Theorem 7.
For example, in the full-order case, set ne = na so that r > C = F = In. and
'.L = O. In this case the last term in each of (173)-(176) is zero and (176) is
superfluous. Alternatively, letting B; =0, Ca =0 and retaining the reduced­
order constraint ne < na, yields the result of Hyland and Bernstein (1985).
Finally, setting m2 = 0 yields the results of Haddad and Bernstein (1991 a) for
the case in which F is diagonal. 0

Theorem 7 provides constructive sufficient conditions that yield reduced­
order dynamic feedback gains A co Be' Ce for robust stability and performance.
Note that when solving (173)-(176) numerically, the matrices M, ~, Hj, and Sj'
j =0, ... , m-, and the structure of B; and Ca appearing in the design equations
can be adjusted to examine trade-offs between performance and robustness. As
discussed by Haddad and Bernstein (1991 a), How et al. (1992 b), to reduce
conservatism further, one can view the multiplier matrices ~, Hj and Sj as free
parameters and optimize the worst case 'i1f.2 performance bound with respect to
them. The basic approach is to employ a numerical algorithm to design the
optimal compensator and the multipliers simultaneously, thus avoiding the need
to iterate between controller design and optimal multiplier evaluation as
suggested by Haddad and Bernstein (1991 a) and numerically demonstrated by
How et al. (1992 b). This approach is demonstrated in the following section with
the Popov multiplier.

8. Illustrative numerical example
In this section, we consider a special case of the synthesis procedure in § 7.

In particular, we present an algorithm for the design of full-order dynamic
compensators for systems with m independent scalar uncertainties and restricted
multipliers of the standard Popov form
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Figure 6. Four-disc oscillator.

W;(s) = (1';0 + {3iOS (183)

The algorithm is then applied to the Benchmark control problem illustrated in
Fig. 6. For this particular form of the multiplier, we have that mt = m2 = 0
in (II) and the augmentation process outlined in § 4.1 is not necessary. Recall
the definitions of the matrices Ho = diag(a·tlh ... , (1''110) and No = diag
({3llh' .. , (3",0)· The general sector uncertainty set discussed in Remark 2
is used in these designs, so the set au is redefined to be

au ~ {~A E lR" x II
: ~A = -BoFCo, for F E:'F} (184)

where :'F is given by

(185)

8 0 E lR" x m and Co E IR m x II are fixed matrices denoting the structure of the
uncertainty, and FE ICD'" is an uncertain matrix. The augmentation in (159),
which accounts for the compensator states in the closed-loop system, is then
applied to these Bo and Co matrices. For clarity we restate the dynamic
minimization problem.

Dynamic minimization problem: Determine the compensator (A e, Be' Ce) that
minimizes the overbounding cost

6 - -T - -$(A e, Be, Ce) = tr[P + CO(M2 - Mt)NoCoJV

where PE 1">:j211 satisfies

(186)

- - T- - - - -0= (A - BoMtCo) P + P(A - BoMtCo)
- - - - - -T- T I+ [HoCo + NoCo(A - BoMtCo) - BoP] Rr;

[HoCo + NoCoCti - BoMtCo) - BJP] + R (187)
and

Ro ~ [Ho(M2 - Mt)-t + NoCoBo] + [Ho(M 2 - Mt)-I + NoCoBo]T (188)

such that (A e, Be' Ce) is controllable and observable, Ho, No are diagonal,
positive definite and non-negative definite matrices respectively, and Ro> O. 0

By deriving necessary conditions for the dynamic minimization problem we
can obtain sufficient conditions for characterizing dynamic output feedback
controllers guaranteeing robust stability and performance. To proceed, we use
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the standard approach of augmenting the cost overbound J(A e, Be' Ce) with the
constraint in (187) using the Lagrange multiplier Q E I'>pn, to form

.;e(Ae, Be' Ce , P, Q) = tr[(P + CJ(M2 - M1)NoCo)V
- - - - T- - - - -+ Q{(A - BoM1Co) P + P(A - BoM1Co)

- - - - - -T- T 1+ [HoCo + NoCo(A - BoM 1CO) - BoP] Rr;
- - - - - -T- -[HoCo + NoCo(A - BoM1CO) - BoP] + R}] (189)

(190)

following gradient

P12J, Q = [Q~ Ql2J
P22 Q12 Q22

PQ, and then present the

Since the results are necessary to implement the numerical solution of the
optimal controllers, we present the following gradients of the augmented cost in
(189) with respect to the free parameters A e, Be' Ce, P and Q. Clearly, a.;ejaQ
recovers the constraint in (187). For convenience, we partition the symmetric
matrices P and Q as

P = [p~
P12

and similarly for their product
expressions

(194)

(193)

1 a.;e T --
0= 2-- = P I2Q12 + P22Q22 = [PQJn

aA e

1a.;e - - T0= 2-- = P22BeV2 + [PQbC
ee,

la.;e T -I T--
0= 'i- = B (I - BoR o NoCo) [PQ]12

- aCe

+ BTCJNoRal[HoCo + NoCo(A - BoM1CO)]QI2

+ (R uu + BTCJNoRr;INoCoB)CeQ22

a.;e - - - - -I - - - ~ - -T--o = ~ = [A - BoM1Co - BoRo (HoCo + NoCo(A - BoM1Co) - BoP)]Qap
- - - - - 1 - - - - - -T- T -+ Q[A - BoMJCo - BoRr; (HoCo + NoCo(A - BoM1Co) - BoP)] + V

(191)

(192)

(195)

(196)

(197)

(198)

(199)

(200)

As in the previous section, these gradients can be used to derive explicit
expressions for the optimal controller in terms of the solutions of three coupled
Riccati equations. For convenience in stating the next result, recall the defini­
tions of Ro in (188) and E ~ CTViIC, and define

-t::,
C = HoCo + NoCo(A - BoM1CO)

t::, BTCTN-1R2a = Ruu + 0 oRo NoCoB

r, ~ BTP + BTCJNoRa1(C - BJP)
t::, l-Ap = A - BoM1Co - BoRa C
t::, - -I TAI' = A p - Q2: + BoRo BoP

A6 ~ A p + BoR a
lP - (I - BoRa

lNoCo)BRialP,

for arbitrary Q, P E IRnxn.
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T"" A -I T" T-l
0= ApP + PAp + PBoRo BoP + P aR 2a r,

Corollary 3: Let n; = n , ml = m2 = 0, Ro > 0, and No and Ho be diagonal,
non-negative and positive definite matrices, respectively. Furthermore, suppose
there exist n x n non-negative definite matrices P, Q, and Psatisfying

o= A~P + PAp + Rxx + CTR;;lC + PBoR;;IBJp - p~R:;aIPa (201)

0= (A p + BoR;;1 BJ[P + P))Q + Q(A p + BoR;;l BJ[P + pW + VI - Q~Q

(202)

(203)

and let A e, Be and Ce be given by

A e = A Q - Q~

Be = QCTV:;I

C R - Ip
c = - 2a a

(204)

(205)

(206)

Then (.4 + ~.4, E) is detectable for all ~A E au. if and only if A + ~A is
asymptotically stable for all ~A E au.. In this case the performance of the
closed-loop system (158) satisfies the 'ilf.2 bound

J(A e, Be' Ce) ~ tr[(P + P + CJ(M2 - MI)NoCo)V1 + PQ~Q] (207)

Proof: The proof is a direct consequence of Theorem 7 with ne = n,
ml = m2 =0, and Remark 2 to capture the general sector bounds. 0

As discussed earlier, the diagonal matrices M I , M 2, H o and No, and the
structure in Bo and Co can be used to examine trade-offs between performance
and robustness. Also, to reduce conservatism further, one can view the
multiplier matrices H o and No as free parameters and optimize the worst case
;;C2 performance bound, see Haddad and Bernstein (1991 a), to obtain

1 a;e 1 - --T -I - - - - - -T- -
'laND = 'i(M2 - MI)CoVCo + R o [HoCo + NoCo(A - BoMlCO) - BoP]Q

- - - - I - - - - - -T - T-T[(A - BoM1Co) - BoR;; (HoC + NoCo(A - BoMlCO) - BoP)] Co

(208)

I a;e -I - - - - - -T- -
2- = R o [HoCo + NoCo(A - BoMICo) - BoP]Q
aHo

-T - - - - - -T- T -I I[Co - (HoCo + NoCo(A - BoM1Co) - BoP) R o (M2 - M I ) - ]

(209)

Note that since No, H o E [)1m, it is only the diagonal elements of a;ejaNo and
a;eja Ho which can be directly influenced through the optimization process, and
thus set to zero.

The synthesis approach is from Haddad and Bernstein (1991 a) and How et
al. (1992 b), and employs a numerical BFGS search algorithm to solve the
optimality conditions in (187), (191)-(194), (208) and (209). As discussed in § 7,
the optimal compensator and multiplier can be found simultaneously, thus
avoiding the need to iterate between controller design and optimal multiplier
evaluation. A homotopy algorithm on the robustness bounds M I and M 2 is used
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to achieve the desired values M l f and M2f . With initial values of Ho and No,
initial conditions for the optimization are developed from iterative solutions of
(201)-(203). Then, for given values of M I and M 2, (187), (191)-(194), (208)
and (209) are solved to determine the optimal values of A e, Be' Ce, Ho and No.
If the optimization algorithm converges, M I and M 2 are increased and the
current design is used as an initial guess for the next iteration. If the
optimization fails to converge, the increments in M I and M 2 are reduced. The
process is continued until M If and M 2f are achieved. The final result is a family
of robust control designs which enable an examination of the trade-offs between
performance and robustness. Collins, Jr. et al. (1994) discuss more sophisticated
versions of this homotopy algorithm for the optimal analysis problem, and this
can be applied to the synthesis problem.

The following section applies this synthesis algorithm to an illustrative
example taken from Cannon and Rosenthal (1984).

8.1. Benchmark control example
In this section, we apply the numerical algorithm presented in the previous

section to an illustrative numerical example. Specifically, we consider the
coupled four-disc system shown in Fig. 6 from Cannon and Rosenthal (1984). In
this configuration, the angular sensor and torque actuator are non-collocated.
The uncertainty in the system enters the model through errors in the stiffnesses
of the springs connecting discs 1-2 and 3-4. The influence of these model errors
is illustrated in Fig. 7. It is evident that small modelling errors in the spring
stiffnesses, or equivalently, in the modal frequencies, result in large magnitude
and phase changes in the plant transfer function. As discussed by Cannon and
Rosenthal (1984), the sensitivity of the system phase to these parameter
variations means that the four-disc problem represents a very difficult challenge

-- Nominal

10'

IUJ
~
.~

10°:;;,
~::;:

10"

10"
0 0.5

200

100

~
-- Nominal

.c 0
0..

'.~~.~~~.~ Perturbed
-100

-200
0 0.5

1.5

I.5

Frequency

2

2

2.5

2.5

Perturbed

3

Figure 7. Influence of stiffness uncertainty on transfer function magnitude and phase. The
two uncertainties are assumed equal in the analysis. For a lightly damped system, 5%
uncertainty in both stiffness values can result in plant phase variations of ± 100·.
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to robust control design. This benchmark problem is important because of the
similarlity of the uncertainty to the characteristics which are typical of uncertain,
lightly damped flexible structures.

For this example, we only consider full-order controllers nc = n, and no
consideration is given to the potential spillover to higher frequency unmodelled
dynamics. A reduced order design is presented by How et at. (1992 a). High
frequency, unmodelled dynamics can be addressed by using frequency weighted
cost functionals in the specification of the ~2 problem. In the following, we
present a state-space model of the system, performance robustness buckets for
several values of the stability bounds M 1 and M 2 , and an interpretation of how
this robustness is achieved. Unlike many control approaches such as ~2 (Doyle
1978) or MEOP designs (Bernstein and Hyland 1988), M 1 and M 2 represent the
guaranteed robust stability bounds, which are lower bounds to the actual
stability limits achieved.

A state-space model for the four-disc system illustrated in Fig. 6, with states
associated with the angular positions of each disc, is given by the matrices

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A = [-J~IK _)ID} B= 0
CT = 1 D1

0 0

1
0 0 0
0 0 0

III 0
0 0

1
0

0 III

(210)

and D2= [0 1], where

["' 0 0 nK~ {-j -1 0

-1]J = III ~
1 0 2 -1
0 1 -1 2
0 0 0 -1

D ~{-j
-] 0

-1]2 -1
(211)

-] 2
0 -]

111 = k = 1, and a low damping value d = 0·01 is used.
We consider two uncertainties in the spring stiffnesses between discs 1-2 and

discs 3-4. Several characteristics make this problem important in the study of
controllers for lightly damped flexible structures. First of all, the performance is
dominated by the lower frequency rigid body and first flexible modes, which are
essentially unaffected by the model uncertainty. Furthermore, the two higher
frequency modes and the zero at ]·4 rad S-I are highly uncertain, resulting in
large phase uncertainties in the system with only 5% variations in the two
stiffnesses.



D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

17
:1

0 
5 

Ju
ne

 2
00

8 

Absolute stability theory and mixed-u 947

The uncertainty in the dynamics matrix A can then be represented as
Ll.A =- Boll. KCo, where

86 - _[0 0 0 0 -2 1 0 n- 0 0 0 0 0 0 -1

CO =G -1 0 0 0 0 0
~J (212)

0 1 -1 0 0 0

and Ll.K = diag (Ll. k ! , Ll.k2) . The general Popov multiplier H o + Nos (Ho, No E

[112) was used for this example. To complete the noise and performance
specifications for 'JCz synthesis, define Ru =CTC!, Vz =Rll u =P and
VI = D I DT, where p = 0·005 and C I = [0 0 0 1 0 0 0 0·1]. Note that the open
loop cost is infinite since the rigid body motion is observable in the cost. The
cost curves are normalized with respect to the optimal LOG cost for the nominal
system.

While the robust control synthesis procedure assumes that the two uncertain­
ties are uncorrelated, for simplicity in the analysis we will consider the case
where Ll.k 1 = Ll.kz = Ll.k. The robust stability and performance results are
presented in Fig. 8 and the Table. Note that the compensator in design Gpc3

:

• , I ••; •• _._

-."~ :::~:-f;):~:~:~:r~··,~·,~·····

4

3.5

3

8 2.5

"-e
.1i 2.,;
E
0z 1.5

-- LQG
------- Gpel
.. .--.-. Gpe2

0.5
. _. _._. Gpe3

0
-0.15 -0.1 -0.05 o 0.05 0.1

:

0.\5 o.a

Correlated stiffnessuncertainty

Figure 8. Closed loop robus! stability and performance with two stiffness uncer!ainties. It is
assumed for analysis I'1k, = I'1k,. See the Table for stability bounds.

Fig. 8 Lower bound Upper bound
label lnorm achieved guaranteed guaranteed achieved

LQG 1·00 -0·003 0 0 0·028
Gpcl 1·12 -0·025 -0·019 0·019 0·060
Gpc2 1·25 -0·045 -0·035 0·035 0·100
Gpc3 1·38 -0·063 -0·051 0·051 0·140

Closed loop robust stability and performance with two stiffness uncertainties. It was assumed
that I'1k, = I'1k, for the analysis.
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10' .-----~---~---~---~--~---__.

3

...............

20.5

'-"'-G(s)
........ Gpc3
..••••• LQG

. --_ ..-:---:,--~.".",~_.'

10" L---~::_--~---.,...,..---:_--___?~--___.J.
o

10'\

21X)

J 0
-200

-400

--G(s)
.......... Gpc3
.•••••• LQG <... ,:?'~~"'--""--<~.""""'"- .

o 0.5 1.5 2 2.5 3

Frequency

Figure 9. Comparison of optimal LQG (Glc) and Popov (Gpc3) compensators for the system
with two stiffness uncertainties. See the Table for stability bounds.

guarantees stability for 5% independent variations in the stiffness values, and
this value corresponds to approximately 100° phase variations in the system and
represents a significant improvement over values that the LQG design actually
achieves. The optimal multiplier for Gpc3 is WapleS) = diag (1 + 0'16s,
2-9(1 + 0·27s)).

In many robust control problems, there is a 'stiff' uncertainty direction which
is more difficult than other directions. In this example, it is the negative
uncertainty values which are more difficult, as can be seen by the closeness of
the guaranteed and achieved lower bounds in the Table. While the discrepancy
in the guaranteed and achieved upper bounds is, to some extent, a measure of
the conservatism in the technique, it is also a reflection of the relative ease of
'robustifying' the system to this type of uncertainty.

The optimal LQG and Gpc3 compensators are compared in Fig. 9. The
uncertainty in the zero-pole combination at approximately 1·4 rad S-1 is re­
flected in the Popov compensator by lower compensator gains, and a much
smoother phase than the LQG design. Note that the LQG compensator pole at
approximately 1.4 rad S-1 is shifted away from the plant zero in the Popov
design. This avoids the pole-zero cancellation of plant inversion, which is
extremely sensitive to plant uncertainties. Further comparisons of the two design
approaches have been presented by How et at. (1992 a).

9. Conclusions
The goal of this paper has been to make explicit connections between

classical absolute stability theory and modern mixed-u analysis and synthesis. To
this end, we extended previous results on absolute stability theory for monotonic
and odd monotonic nonlinearities to provide a tight approximation for constant'
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real parametric uncertainty. Specifically, by using a parameter-dependent Lya­
punov function framework in which the uncertain parameters appear explicitly in
the Lyapunov function, the allowable time-variation of the parameters is
restricted, thereby reducing conservatism with respect to constant real para­
metric uncertainty.

Connections to fl-analysis are made through frequency domain tests, demon­
strating that the stability multipliers are parametrizations of the D, N -scales in
mixed-fl. Combining the parameter-dependent Lyapunov functions with fixed­
order optimization techniques leads to a Riccati equation characterization for
robust 'iJez controllers. An advantage of this approach is that reduced-order
controllers with optimal frequency domain multipliers can be designed directly,
thereby avoiding the standard D, N - K iteration and curve-fitting procedure.
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