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Optimal nonlinear, but continuous, feedback control of systems with 
saturating actuators 

DENNIS S. BERNSTEINt 

This paper presents a modification of the optimal saturating feedback control 
laws given by Frankena and Sivan (1979) and Ryan (1982 a) for asymptotically 
stable systems. Unlike their results, which involve bang-bang action and 
singular extremals, the modified control law is continuous. Specifically, the new 
control law is linear inside a cylinder set and saturated elsewhere. Using 
steady-state Hamilton-Jacobi-Bellman theory. this control law is shown to be 
optimal for a modified performance functional with a discontinuous integrand. 

1. Introduction 
Since all real actuators are subject to physical constraints, one of the most 

widespread and fundamental problems in control engineering is coping with 
actuator saturation. The literature on this problem is extensive and reflects 
considerable current activity, e.g. Keerthi and Gilbert (1987), Astrom and 
Rundqwist (1989), Campo et al. (1989). Sontag and Sussmann (1990), Sznaier 
and Damborg (1990), Dolphus and Schmitendorf (1991), Sussmann and Yang 
(1991). Teel (1992), Tsirukis and Morari (1992), and Yang el al. (1992). The 
purpose of this paper is to approach this problem within an optimal nonlinear 
feedback control framework as in Frankena and Sivan (1979), Ryan (1982 a ,  b) 
but with certain crucial differences described below. 

The starting point for our  approach is Frankena and Sivan (1979) which 
considers the linear plant 

with an ellipsoidal control constraint set 

where R2 > 0. If the control were not confined to Q, then one could apply the 
usual linear-quadratic approach which involves minimizing the performance 
functional 

J = [xTR,x + uTRZu]dl  
inm (3) 

where R,  3 0 .  Assuming that ( R I ,  A )  is detectable and ( A ,  B )  is stabilizable, 
minimizing J yields the linear feedback control law u = Q(x), where 

@ ( x )  = -R;'B~PX (4) 
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1210 D.  S. Bernstein 

where P 3 0 satisfies the Riccati equation 

where S 2 BR;'BT.  Although the feedback control law (4) yields a globally 
asymptotically stable closed-loop system, u = @ ( x )  can clearly violate the control 
constraint given by Q. 

To account for the control constraint set Q, we confine out attention, as in 
Frankena and Sivan (1979) and Ryan (1982a) ,  to open-loop asymptotically 
stable systems. In this case, the approach in Frankena and Sivan (1979) involves 
the modified performance functional 

where Po is the solution to the Lyapunov equation 

0 = ATPo + PoA + R,  

Note that Po exists and is non-negative definite since A is assumed to be  
asymptotically stable. Although the term ~ ( X ~ P ~ S P ~ X ) ' ~ ~  in ( 6 )  is not quadratic, 
it serves to penalize further the deviation of the state x from the origin. 
Furthermore, although the presence of Po in the performance functional ( 6 )  is 
somewhat contrived, this approach is completely consistent with the techniques 
used by Bass and Webber (1966), Speyer (1976) and Bernstein (1993).  Specific- 
ally, the nonlinear control laws obtained in these papers were based upon 
non-quadratic performance functionals involving auxiliary terms whose presence 
was used to obtain closed-form solutions to the steady-state Hamilton-Jacobi 
-Bellman equation. In the case of ( 6 ) ,  the auxiliary term ~ ( X ~ P ~ S P ~ X ) ' ~  
appears in place of the usual quadratic control-weighting term u T R 2 u .  

A s  shown in Frankena and Sivan (1979),  the optimal feedback control law 
c i  = @ ( x )  for ( 6 )  is given by 

@ ( x )  = ( x ~ P ~ s P ~ x ) - ~ ~ ~ R ; ' B ~ P ~ x  ( 8 )  

if B'~P ,X  + 0. If, however, BTPox = 0, then ( 8 )  must be  replaced by a singular 
control law which requires special analysis to determine whether the control 
constraint is satisfied. Nevertheless, in the non-singular case, that is, BTPox f 0, 
the control law ( 8 )  is bang-bang and is thus discontinuous. The  purpose of this 
paper is to replace ( 8 )  with a continuous control law that is guaranteed to satisfy 
the control constraints. A s  will be seen, an additional advantage of this modified 
controller is that special treatment of the singular control is no  longer needed. 
In addition to the ellipsoidal constraint set ( 2 )  we obtain analogous results for 
the rectangular control constraint set considered by Ryan (1982 a). 

2. Continuous saturating controls 
We now replace the performance functional ( 6 )  used by Frankena and Sivan 

(1979) with the modified performance functional 

where 



D
ow

nl
oa

de
d 

B
y:

 [R
og

er
s,

 E
.] 

A
t: 

17
:1

4 
5 

Ju
ne

 2
00

8 

Feedback control of syslems with saturatitzg actuators 1211 

and where Po is given by ( 7 ,  and we now assume R1 > 0 .  Although this minor 
modification of ( 6 )  leaves the optimal feedback control ( 8 )  unchanged for 
X ~ P ~ S P ~ X  2 1,  the control law for X ~ P ~ S P ~ X  < 1 (and, in particular, for 
BTPox = 0 in which case X ~ P ~ S P ~ X  = 0 )  is now quite different. Specifically, 
applying Theorem A. l  of the Appendix yields the optimal stabilizing feedback 
control law 

Closed-loop stability is guaranteed by the Lyapunov function V ( x )  = xTPox 
whose derivative is given by 

Details are given in the Appendix. 
The form of h ( x ,  u )  in (10)  can be viewed as a merging of ( 3 )  and ( 6 )  so 

that, in the region X ~ P ~ S P ~ X  < 1 ,  ( 9 )  yields the usual linear LQR controller (4) 
with P = Po, while, in the complementary region X ' P ~ S P ~ X  2 1, ( 9 )  yields the 
saturated control law ( 8 ) .  Furthermore, these regions are chosen so that at their 
common boundary the control law is continuous. Note that in order to achieve 
this continuous control law the function h ( x ,  u) was chosen to be a discontinu- 
ous function of x and u.  This is permitted by Theorem A . l  of Appendix A 
given by Bernstein (1993). 

In discussing ( l l ) ,  it is convenient to define the set 

To see that % is a cylinder set with ellipsoidal cross-section, apply an orthogonal 
coordinate transformation to PoSPo so that in the new basis PoSPo has the form 

where the size of the positive diagonal matrix D is equal to the rank of PoSPo. 
Thus, % corresponds to the translation of an ellipsoid along the null space of 
PoSPo. 

It can now be seen that @ ( x )  given by (11) is a continuous saturation-type 
control law that remains within the control constraint set R. Outside of the 
cylinder set %, the control @ ( x )  is saturated, while inside % the control is linear 
and thus the control effort diminishes gracefully to zero. In fact, during 
operation, the system is free to pass in and out of % without large, discontinuous 
control variations. Note, however, that the linear portion of @(x) is different 
from the usual LQR control law (4) since Po is given by the Lyapunov equation 
(7) rather than the Riccati equation (5). This construction is allowable since A is 
assumed to be asymptotically stable. Finally, since @ ( x )  is defined globally, no 
special attention is needed for the case BTPox = 0 ,  as in Frankena and Sivan 
(1979). 

3. Rectangular control constraint set 
We now consider the rectangular control constraint set 
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where a; > 0, i = 1, . . ., m ,  in place of the ellipsoidal control constraint set ( 2 ) .  
In most applications the rectangular control constraint set (13 )  provides a more 
realistic model of control constraints than the ellipsoidal control constraint set 
since each control signal u; (and hence the corresponding actuator) saturates 
independently of the other control signals. Optimal, discontinuous controllers 
for this problem were given by Ryan (1982 a ,  b). 

Applying the same ideas as in 8 2 ,  we consider the cost functional ( 9 )  but 
now with h ( x ,  u )  given by 

,n 

h ( x ,  u )  = z h i ( x ,  u )  
i=l 

(14) 

where, for i = 1, . . ., m ,  

( B T P ~ x ) ~  + u f ,  I B T P ~ x ~  < a; h i ( x ,  u )  = 
2a;l BTP,xI ,  I BTP,XI 3 ai (15 )  

where Bi denotes the ith column of B .  Note that if ~ B T P ~ x ~  < ai for all i = 1, 
. . ., m ,  then h ( x ,  u )  = [ ~ ~ ~ l x T ~ o ~ i ~ T ~ o x ]  + u T u  = x T P B B T P x  + u T u ,  which 
is identical to (10 )  for the case X ' P ~ S P ~ X  < 1  with R2 equal to the identity 
matrix. 

With (15 )  we consider the feedback control law @ ( x )  = [ & ( x ) .  . . @,(x) lT ,  
where, for i = 1, . . ., m ,  @ ; ( x )  is given by 

r -  B T P ~ X ,  I B T P , x ~  < a; 

As before, this control law is linear within a cylinder set which now has 
polygonal cross-section. Outside of this cylinder set a t  least one component of 
@ ( x )  is saturated, while @ ( x )  is continuous throughout R". 

Closed-loop stability is guaranteed by means of the Lyapunov function 
V ( x )  = x' Pox whose derivative is given by 

where I l i , ( x )  4 { i :  I B ~ P ~ X ~  < a ; }  and I,, ,(x) 6 {i: I B T P ~ X ~  3 a ; }  denote the un- 
saturated and saturated components of @ ( x ) ,  respectively. Finally, optimality is 
guaranteed by condition ( A  8), which is of the form 

H ( x ,  v ' ~ ( x ) , u ) =  ~ ( ~ ~ ~ ~ x + u ; ) ~ + 2 ~ [ a ; l ~ ~ P ~ x l +  B T P ~ X ~ ; ]  ( 18 )  
i s  lli, ;€ I=, 

Finally, with (16), it follows that H ( x ,  v ' ~ ( x ) ,  @ ( x ) )  = 0  SO that ( A 7 )  holds, 
which verifies Theorem A.1. 

4. Output feedback dynamic compensation 
We now consider the more practical case in which only measurements are 

available for feedback. Hence, consider 

x = A x  + Bu (19) 
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8 Feedback control of systems with saturating actuators 1213 

with the observer-based output feedback dynamic compensator 

xc = Ax, + Ru + B,(y - Cx,) 

u = @(xc) 

where u E Q C  Rm, y E R', x, E R" and @(0) = 0. The following result, which is 
based on the approach of Yang et al. (1992), guarantees closed-loop stability 
using the optimal saturated controllers given in 0 2 and 3.  

Proposition4.1: Assume that A and A - B,C are asymptotically stable matrices, 
and let @(x) be given by either (11) or  (16) with Po given by (7) with R1 > 0. 
Then, the zero solution of the closed-loop system (19)-(22) is globally asymptot- 
ically stable. 

Proof: Define e k x, - x and write (19)-(22) as 

Now let Re be an n X n positive-definite matrix such that 

and let Pe > 0 satisfy 

Now, by defining the positive-definite Lyapunov candidate V(x, e) by 

it follows from the ellipsoidal control constraint set with control given by (11) 
that 

where P(x, e) 4 (x + ~) 'P~SP~(X + e). For the rectangular control constraint set 
a slight modification of (28) is needed. From (25) it follows that 

R1 + 2P(x, ~)-@POSPO > P(x, e)-' POSPOR;'POSP~ (29) 

for both P(x, e) < 1 and P(x, e) 2 1. Thus, both matrices in (28) are positive 
definite. Consequently, ~ ( x ,  e) is negative definite, as required. 0 

Remark 4.1: The Lyapunov function proof of Proposition 4.1 takes the place of 
the CICS (converging-input converging-state) property used by Yang et al. 
(1992) to prove asymptotic stability of the observer-based dynamic compensator. 
While our results are limited to open-loop asymptotically stable plants, the 
results of Sontag and Sussmann (1990), Sussmann and Yang (1991) and Yang et 
a[. (1991) apply to plants with poles on the imaginary axis. As shown by 
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Sussmann and Yang (1991), plants such as the multiple integrator are not 
stabilizable by means of a saturation of a linear control law, which is precisely 
the form of (11) and (15). 0 

Remark4.2: Although the control law given by Proposition 4.1 is globally 
asymptotically stabilizing, it is not guaranteed to be optimal for some perform- 
ance functional. Since the open-loop system is assumed to be stable, it is 
necessary to compare open and closed-loop performance in order to determine 
the benefits of implementing (21), (22). 0 
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Appendix 
First we quote the steady-state Hamilton-Jacobi-Bellman result from Bern- 

stein (1993). Let f :  R" x Q+ R", where 0 E R C  R m ,  and consider the system 

where f(0,O) = 0. A control t i ( . )  is admissible if it is measurable and u(t) E R, 
I 3 0. Furthermore, let L:  Rn x Rm 4 R and, for p E Rn, define H(x ,  p ,  u) 2 
L(x, u) + p T f ( ~ ,  u). The following result is proved in Bernstein (1993). 

Theorem A.l :  Consider the controlled system (A 1) with performance functional 

Assume that there exist a C' function V: R" 4 R and a function @: Rn 4 Q such 
that 

Furthermore, assume that V(x) + m as l(x 1 )  4 m. Then, with the feedback control 
law u ( .  ) = @(x(.)),  the solution x(t) = 0, t 3 0, of the closed-loop system is 
globally asymptotically stable, and 

J(x0, @(x(.))) = V(x0) (A 9) 

Finally, the feedback control u( . ) = @(x( . )) minimizes J(xo, u( . )) in the sense 
that 
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8 Feedback control of systems with saturating actuators 1215 

where 

Y ( x o )  4 { u (  . ): U (  . ) is admissible and x( . ) given by  ( A  1 )  satisfies 

Now consider the problem of finding admissible u ( . )  t o  minimize (9), where 
SZ is given by ( 2 ) .  T o  d o  this let V ( x )  = xTPox,  where Po satisfies (7),  and let 
@( .) be given by (11 ) .  Then clearly @: R" + SZ and ( A  3 ) - ( A  5) are satisfied. 
For the case X ~ P ~ S P , - , X  < 1, we have 

which verifies ( A  6 ) .  Next, we obtain H ( x ,  v t T ( x ) ,  U )  = ( U  + R ; ' B ~ P ~ X ) ~ R ; '  
( u  + R;'BTPox) ,  which proves ( A  7) and ( A  8). For the case X ~ P ~ S P ~ X  3 1 
with @ ( x )  given by ( l l ) ,  it follows that 

V 1 ( x )  f ( x ,  @ ( x ) )  = -xTIR1 + 2(xT P ~ S P ~ X ) - ' ~ P O S P &  

which implies ( A  6 ) .  T o  obtain ( A  7) note that 
- I t 2  R 1 / 2 U ) ]  

H ( X ,  v t T ( ~ ) ,  U )  = ~ [ ( x ~ P ~ s P ~ x ) ~ ~  - ( - . T ~ P ~ B R Z  )( 

3 2 ( x T ~ o ~ ~ o x ) 1 1 Z [ 1  - ( u ~ R ~ u ) ' ~ ]  

Thus. ( A  8) is satisfied by (11) since @ ( x )  R2@(x)  = 1. 

Remark: In the case X ~ P ~ S P ~ X  21, the control law @ ( x )  must be 
chosen t o  satisfy x T P o B @ ( x )  c 0 and @ T ( X ) R ~ @ ( X )  = 1. Although @ ( x )  = 
- ( x T ~ o ~ ~ , l x ) ' I Z ~ ; l ~ T ~ o ~  given by ( 1 1 )  satisfies these conditions, it is clearly 
not the only choice of @ ( x )  to d o  so. However, with @ ( x )  = - R ; ' B ~ P ~ X  for the 
case X ~ P ~ S P ~ X  < 1, it follows that the resulting control law (11)  is continuous on 
R". 0 
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