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1. Introduction

In {1] active energy flow control techniques were considered for
interconnected modal subsystems. These techniques are now ap-
plied to interconnected structural subsystems. For this purpose
we extend results given in [2| and derive two energy flow models
for structures interconnected either conservatively or dissipatively.
In the modal subsystem model considered in [1], each mode is
viewed as a subsystem, while in the structural subsystem model
each substructure is treated as & subsystem. For the modal subsys-
tem model we can directly apply the control techniques considered
in [1]. The structural subsystem model, however, requires special
care. In particular, a dissipation filter and a disturbance filter are
required since now the real part of the substructure impedance
and the disturbance spectral density are frequency-dependent.

Two distinct energy flow control techniques developed in [1] are
applied to the modal subsystem model and the structural subsys-
tem model. Specifically, the controller is designed either as an
additional subsystem or as a dissipative coupling to minimize en-
ergy flow entering a specified substructure. The goal in [1] was to
maximize the energy flow from a specified subsystem in the modal
subsystem model and thus reduce the vibration of this substruc-
ture.

In previous works [3,4] H, and H,, control techniques were used to
regulate energy flow in a certain frequency band. In this paper, as
in {1}, controllers are designed according to a specialized LQG pos-
itive real control approach [5] that yields positive real controllers.
Thus the resulting controller minimizes an H, performance index
and guarantees asymptotic stability of the closed-loop system in
spite of modeling uncertainty.

2. Structural Model

We consider r one- or two-dimensional structures under vibration
by means of pointwise external disturbance forces. Each pair of
structures is assumed to be mutually interconnected by means of
conservative or dissipative couplings. For convenience, we make
the simplifying assumption that all couplings to a given structure
are connected to a single point on that structure. The case of
structures interconnected at multiple points is more complicated
and is outside the scope of this paper.

The partial differential equation for the response of the ith struc-
ture is given by

a8 | £ e = mioE -8 - M6 6t ()
where £ € ; denotes the spatial coordinate defined in the region
of space €); for the ith structure. Furthermore, p;(€) is the mass
density, £; is the self-adjoint stiffness operator for the ith struc-
ture, and 4@;(t) is the external disturbance force acting on the ith
structure at the point £;. We assume that a;(t), i =1,...,r, are
mutuslly uncorrelated white noise disturbances with unit inten-
sity. Additionally, the coupling effect h;(£,£;;,t) at the coupling
position & is given by
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for an interaction force f;(t).

We consider a modal decomposition of the ith structure of the
form

) =§°_'i1q.~,-(t)w.-,~(5), i=1,...,n 3

where g;;(t) and v;(€) denote modal coordinates and normalized
eigenfunctions, respectively, and the double subscript ij denotes
the jth mode of the ith substructure. The normalized eigenfunc-
tions 1;;(€) satisfy the orthogonality properties

/m PilENs(E)PudE = b, -/m Lo (E)vude = wibin,  (4)

where w;; is the natural frequency of the jth mode of the ith struc-
ture and 6;x is the Kronecker delta. From (3), (4) and appropriate
boundary conditions, it follows that the modal coordinates g;(t)
satisfy the equations of motion

85(t) + 2ijwiiii 8) +whai(8) = aiilt) — Bywilt), ()
where v;(t) is the coupling interaction and the modal damping

term 2;;w;;4;5(t) is now included. In (5), the modal coefficient a,;
is defined by

a;; 2 y;(6), (6)
while
by 2 U6, ul®) 2 £i(0) Q)
for force interaction and
by 2 2 o8 g0, ®

for torque interaction.

The modal velocity y;(t) of the jth mode of the ith structure and
the velocity y;(t) of the ith substructure at the coupling point are
given by

i (8) = by;i;(t), ©)
133
%) = us(t),
3=
where 7; is the number of modes of the ith structure in the fre-

quency range of interest. For later use we note that the modal
impedance z;(s), i=1,...,r, j =1,...,n, is given by

(10)

_ S+ wis +wi
z;(s) = ““"—'—"“‘Js .

1

3. Energy Flow Modeling: Modal Subsystem Model

First we obtain the modal subsystem model by considering each
mode as a subsystem. Let w,;(t) denote the disturbance force
exciting the jth mode of the ith structure, that is,
!U.'"(t) = ll,'j’lil,'(t), i= 1, ey Ty j = 1, eavy Ty (12)
and we assumne that the coupling interaction v;(t) and the struc-
tural velocity y;(t) are related by a coupling transfer function L(s),
that is,
Yy = L(s)ys, (13)
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where 4,(£) 2 [11(t) - - - u-(&)]T and v,(t) £ [04(2)- - v (E)]T.

To obtain a feedback representation of the interconnected systems,
we define the modal impedance matrix

Zm(s) é diag(zn(s), 212(8)1 sany zlm(s)x ey 2,1(3), ey zmv(s)()l’4)
and the vectors
() 2 (@) G (8) G0~ doma(®) -G8+ qw(t)(lTé)
1
wa(t) £ [wn(t) - w1, @) wn(t) - Wanyt) - wnlt)--- wn(.,gt))lT,
1
w(t) & [@y(t) - ()" 17
Note that wn(t) = Dut(t), t(t) = Eqym(t) and ux(t) = Exu(t),
where the matrices Dy, and E,, are defined by
[ 11 -+ Gy O - O o 0 o 17T
Dmé ? P (.] a?l ~:~ B2n,y ' 0 , (18)
Lo . 0 0 o o o .
[byy -+« b, O -« 0 .o 0 ... o 1T
Y L ™
o . 0 o - o by o b,

With this notation the interconnected system (5) can be expressed
as the feedback system shown in Fig, 3.1, where u(t) & Wy (t) —
¥n(t) and the coupling matrix Ly(s) for the modal subsystem
model satisfying v = Ln¥p, is defined by

Lp(s) & E,L(s)ET. 20

Note that if L(8) is conservative, that is, L{w)+L*(jw) = 0, it fol-
lows that Ly, (jw)+ Lt (3v) = 0 so that L (s) is also conservative.
In the same manner if L(s) is dissipative, that is, L(w)+L* () >
0, then Ly(s) is also dissipative, Ly (3w) + L%, (w) > 0. Since now
Zn(s) is strictly positive resl, the feedback system in Fig. 3.1 is
asymptotically stable.

Now we consider three steady-state average energy flows P, P}
and F,i=1,...,n, j=1,...,n; which symbolize

Fg = the_ steady-state average energy ﬂ(')W entering the jth mode
of ith structure through the coupling Ly (s),

Pg = the steady-state average energy dissipation rate of the jth
mode of ith structure,

P = the steady-state average external power entering the jth
mode of ith structure.

To evaluate these steady-state average energy flows consider state-
space realizations of Z7(s) and L(s) in Fig. 3.1 given by

im(t) = Amxm(t) + Bmum(t)v (21)
Un(t) = Cnn(t), (22)
£1(t) = Ar{t)z.(t) + B (2), (28)
4,(t) = Cray(t), (9
respectively. Since uy(t) = wy(t) ~ vy(t) = Duw(t) — Emv,(t)
and y,(t) = Elyn(t), the sugmented system (21)-(24) is given by
Tan(t) = Azyn(t) + Di(t), (25)
where 2 (1) & [ 2200 |

fi>

An
BLELC, AL 0

Also define le and Cmg by

Cor2Cu 0], Cual(0 E.CL, (26)
50 that Y () = CoZan(t) a0 U (£) = Cogum 0) '
Next we define the diagonal damping matrix
Crma 2 Re[Zn(s)], @7)
and note that (11) and (14) imply
Craaiji; = i, (28)

where Ajjp, denotes A n,g) 8nd ng; 2 (Sizln,) + j. With this
notation the steady-state average energy flows Fg, Pd and F} are
given by [2]

P = —EldiiVm gy} = —(Coa@uCly ijis» 29)

P = ~Ellijtmy)] = —(CondCon1@unChy i (30)
, 1 -

Fj = Eldywaiep] = 5(DmD"Cr)ijis @1)

where Vmn, ) U (ny) 804 Wry(n,,y ate the nyth element of vm(t).
um(t) and wy(t), respectively, and the steady-state covariance

Qm B lim, o, & (@ (t)TL, (£)) satisfies the algebraic Lyapunov equa-
tion

+QuAT + DDT = (32)

P, satisfy
P+ P+

Furthermore, if L(s) is conservative, then {2]

r n{
S5 r=0,

i=1j=1

while if L(s) is dissipative, then [2]

>3 F <o

f=1 j=1
4. Energy Flow Modeling: Structural Subsystem Model

Now we obtain the structural subsystem energy flow model by
treating each substructure as a subsystem. In this model the en-
ergy flows are evaluated at the coupling points of the substruc-
tures. Hence the total impedance z;(s) of the ith structure at the
coupling point is given by

AQn
As shown in (2], Pg, P3 and
+PE=0,i=1,.

whi=1..n (33)

(34)

(35)

1 & B
PO AL (36)

for i =1,...,r. Additionally, by using the fact that the transfer
admxttance from the extemal force 4;(t) at §. to the velocity y;(t)
at & is given by 2,__., vt it follows that the filter function T;(s)
defined by
Ti(s) 2 z(s

(8) = 2z )]Z_:x % ( 3)
transforms the external disturbance force w; at é; into the distur-
bance force w; at the coupling point £, that is,

@37

w; = ﬁwi' (38)
With this notation (5) can be rewritten as
z(8)ys = w; — v (39)
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Since z;(s) is strictly positive resl, it follows that

W) A Re[z(w)] >0, i=1,...,r, weR, (40)

where ¢;(w) is the frequency-dependent resistance or damping. For
convenience, define the r x r diagonal transfer function

Z,(s) & diag(z(s), ..., z(s)), (41)
and the frequency-dependent resistance or damping matrix
Ca(w) & Re[Z,(w)] = disg(c1(w), ..., & (@)). (42)

With this notation the interconnected system in (39) can be ex-
pressed as a feedback system in Fig. 41. In Fig. 4.1 w,(f) £
(wit)- - wr @I, wa(t) £ [ua(t) - ue ()T = wa(t) ~0a(2) and wa(t),
y,(t) and L(s) satisfy (13).

Now we consider the steady-state average energy flow among sub-
structures. In a similar manner to the previous section the steady-

state average energy flows Pf, P2 and PP are defined for i =
1,...,7 by

P 2 gyt (43)
PP 2 —Elytyu(t)), (44)
P2 & £y (tywi(t)], (45)

where u;(t) is the ith element of u,(t). The meaning of these
energy flow quantities corresponds to the meanings of Fg, Pg and
P in the previous section, respectively, but now Ff, P? and F¢
are the energy flows for the sth substructure and F¥ is the energy
flow through the coupling L(s) in Fig. 4.1.

In the previous section we expressed P,-‘},Pf_,-, P in terms of the
steady-state covariance @, according to the approach in [2,3]. In
the structural energy flow model, however, the real part c;(s) of
%(s), is not constant and the disturbance w;(t) entering z(s) is
no longer white noise. Thus to obtain the steady-state covariance
corresponding to @, we now introduce two filter transfer func-
tion matrices T'(s) and Ry(s) as shown in Fig. 4.1, where the
disturbance filter T'(s) is defined by

T(s) £ diag(T3(s), Ty(s), -, To(s)), (46)
and the stable dissipation filter Ry(s) satisfying [4]

Ry(s)R3(~8) = Cq(s). (47

Now let Z71(s), T(s) and Rq(s) have the realizations
£5(t) = A.(t) + Buu(t), (48)
w(t) = Coza(t), (49)
Eu(t) = Auzu(t) + B,w(t), (50)
W,(t) = Cpyy (t) + Dy,o(t), (51)
&a(t) = Arzr(t) + Brus(t), (52)
Yr(t) = Crzr(t) + Dag(t), (59)

respectively. By considering the state space model of L(s) given
in (23) and (24) the augmented system is given by
Ea(t) = /izu(t) +D (t), (59)

where Z,,(t) 2 [ 7.(t) z(t) za(t) z.(t) |, and

A, BC, 0 -BC, B.D,
ol 0 Aw 0 0 Al B
A=\, 0 Ap o [2DPE] 7

BC. 0 0 A 0

Furthermore, define '
Ca2[C. 000}, Ca2[0 00 Cyl, Ca?[DrC, 0 Cr 0],

50 that 4,(t) = CZan(t), 9(t) = CoaZus(t) a0d yr(t) = Cuaus(t).
With the above notation, P¥ and P are given by (2]

Py = —(Ca@uCH)iys (5)
P = ~(Cu@,Ch)60» (56)

where the steady-state covariance Qy 2 lim_.o, £[,(t)T, (t)] sat-
isfies o o

0= AQ, +Q,AT + DDT. (67
As in the modal subsystem energy flow model, Ff, P? and P¢
satisfy

Fr+ P+ P =0, (8)
Furthermore if L{s) is conservative, then
Y P =0, (59)
=1
while if L(s) is dissipative, then
Y P<o. (60)

=1

5. Design of an Energy Flow Controller as an Additional
Subsystem: Modal Subsystem Model

In this section we consider a control problem involving r— 1 struc-
tures interconnected by a stiffness (lossless) coupling and design
the controller as an additional subsystem.

Now we connect the single-input single-output controller z:(s)
to the structures Z(s) whose state space model is given by (21)
and (22). The additional subsystem, that is, the controller z7(s)
is assumed to be expressed by

ic(t) = Aczc(t) + ch(t) ’ (61)
u(t) = Coze(t), (62)

where u(t) and y(t) are scalars and we now assume that the distur-
bance does not directly enter into the controller z7(s). Then the
augmented feedback representation of the feedback system corre-
sponding to Fig. 3.1 is shown in Fig. 5.1. In Fig. 5.1

Al En O al Dy
E& - { 0 1 } 13 Dl - [ 0 1
where Dy, and E,, are defined by (18), (19), respectively.
As shown in Fig. 5.1 the admittance matrix corresponding to
Z2'(s) in Fig. 3.1 is now comprised of Z7(s) and 27*(s). In this
case the augumented vectors yup(t), Uan(t), Wan(t) and w,(t) in
Fig. 5.1 are defined by

ual) & [ Ut } e (t) 2 [ tn(?) }

u(t) y(t)
w(t It
Wm@)%{wo()}lwsm% w‘g)}’

respectively.

On the other hand the stiffness coupling L(s) is now expressed by

L) = 3C1, (63)
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where the symmetric matrix C;, € R"*" is partitioned as

Ccy a [ gg‘n CLu ] .

Ly CLm

(64)

We define the position vectors gpm () 2 [ yn(t)dt = Comn(t) for
Z3'(s) and a scalar state z,(t) by

Epelt) £ u(t), (65)
for the controller z71(s) so that the output vector v, of the stiff-
ness coupling L, (s) is given by

Ve = Bus Gy Eyem = BLCy [ Com Fam ] )
s Tpe

By using (61) - (66) the feedback system shown in Fig. 5.1 is
expressed &s

iam(t) = /ix&m(t) + Dﬁ)(t), (67)
where
[ Auw= BuBuCry EECpny —BuBunCi, 0
Aé 0 0 Ce {,
—BLT, EiCon ~BClun A
~ BuD, Zm(2)
DR 0 {, zua®) 2| ) (.
0 z(t)
Furthermore, define
Cam 2 [C 0 0], (68)

50 that Yam(t) = ConZenm(t).
We now determine (A, B;, C.) by means of the LQG positive real

approach. By defining 2(t) & [ ::‘cg) ], and

Al { Am - BmE:BCLuE',r,C'pm "BmEO'mCLm ]’ BA[p...01T,

y

C :.A" [-—GLmEchm "CLM}; D1 é [ BmODm }

it follows that A and D in (67) can be expressed as

[ 4 Bec - [ D
i=lae W] o=[ab, ]

B.C A,
where D, in D represents fictitious messurement noise required
by the LQG approach.

Now the controller is required to reduce the vibration of a specified
substructure. For this purpose we define the total energy flow
through the coupling to all n; modes of the ith structure P given
by Pf = 7L, Pg, while P and P} defined by

(69)

Am Am
Pg“ngv P:"ZP:;

i=1 Jj=1

heve a similar interpretation. Furthermore, from (33) it follows

that
QC + A‘ = -459 (70)

Since P§ represents energy flow entering the ith structure through
the coupling and P represents external energy flow entering the
ith structure, it follows that the left hand side of (70) represents
the total energy flow entering the ith structure. Hence by mini-
mizing —P§, we can minimize the total energy flow entering the

ith structure and as a result we can reduce the vibration of the
ith structure,

Now defining the augmented diagonal matrix Cyy,

ot % 5] (r1)

where Cg is defined (27), and using (70) with (30) and (67) yields
~Pg = (2L, CL C1ConTam)s

where the steady-state covariance Qun 2 limy.o £ {Zam(®)2T, ()]
satisfies

0= AQum + QunAT + DDT, (72)
and
. g
G, A Y ewe,'{'“C,m. (73)
=1
Thus letting the performance variables have the form
2(t) = Eyz(t) + Exul(t), (74)

it follows that Ej is given by E; = 6°C,.,.
8. Example

We design an energy flow controller to serve as a dissipative cou-
pling for two uniform cantilever beams as shown in Fig. 6.1, The
beams are of lengths Ly, Ly, mass densities g, py, and bending
stiffnesses Eylay, Ealag, respectively. Each beam is subjected to
mutually uncorrelated white noise disturbances w;(t),i = 1,2,
with unit intensity applied at & and with control force from the
coupling controller f.(t) applied at &

We consider the first three modes of each beam and let L,
3y =25, p=p = 12 EILA} = 1, Bplyg = 115 Gj
0.01,(; =002, j=1,2,8,§, = ,§3 = 1.5 and & = &, = 2.2.

To reduce the vibration of the ith beam, i = 1,2, we design four
controllers. Controllers 1 and 2 are designed by the modal subsys-
tem model to minimize —P§ and —P4, respectively, while Con-
trollers 3 and 4 are designed by the structural subsystem model to
minimize —~ P and — Py, respectively. The resulting energy flow
diagrams are illustrated in Figs. 6.2 and 6.3 for the modal sub-
system model and the structural subsystem model, respectively,
where OL denotes the open-loop system and G4 represents Con-
troller i. Figs. 6.2 and 6.3 show that the controlier absorbs energy
from all of the subsystems and minimizes the energy dissipation
from each beam. Furthermore, Controllers 1 and 2 remove max-
imal energy from beams 1 and 2, respectively, while Controllers
3 and 4 minimize the total energy flow entering beams 1 and 2,
respectively.
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