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In this paper we present a thermodynamic energy flow model for dissipatively coupled
systems. The resulting model shows that there exist two distinct energy flow components
through the coupling; namely, an inter-subsystem component and a dissipative component.
This energy flow model is shown to be more accurate than models given by prior
researchers.

1. INTRODUCTION

Using the conceptual foundation of reference [1] as a starting point, a thermodynamic
model for energy flow among coupled systems was developed in Part I [2]. The analysis
in reference [2] showed that if the coupling elements neither store nor dissipate
energy—that is, the coupling is conservative—then energy flows from higher
thermodynamic energy subsystems to lower thermodynamic energy subsystems.
Furthermore, under an appropriate condition this property is guaranteed independently
of the strength of coupling and the number of subsystems [2].

The purpose of the present paper is to extend the results of reference [2] to the case
of dissipative coupling. In prior work, Sun et al. [3] and Fahy et al. [4] calculated the
energy flow between two oscillators connected by a dissipative coupling composed of a
spring and damper. Their results show that there exists a term expressing dissipative energy
flow in addition to the term proportional to the energy difference between oscillators.
Although they obtained an explicit expression for the energy flow model, their model is
complicated and difficult to extend to more than two subsystems. In addition, the approach
in these papers involves incorporating the damping coefficients of the coupling within the
subsystem. In this regard, their energy flow model combines the dissipative ability of the
subsystem with that of the coupling, which makes the actual energy flow between each
subsystem and the coupling difficult to interpret.

Our contribution to this problem is twofold. First we show that, as in the conservative
coupling case [2], there exists an energy flow model for dissipatively coupled systems that
predicts energy flow in a systematic manner, independently of the number of subsystems
and the strength of the coupling. To obtain such an energy flow model, we define a general
dissipatively coupled system (Section 2) and analyze energy flow among subsystems
(sections 3–5) in a manner similar to reference [2]. It is shown that there exist two distinct
energy flow components through the coupling; namely, an inter-subsystem component and
a dissipative component.
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Our second contribution is an examination of the relationship between this energy
flow model and those obtained by Sun et al. and Fahy et al. (section 6). An analysis of
three oscillators coupled by dissipative elements illustrates the improved accuracy of the
thermodynamic energy flow model (section 7).

The notation is listed in Appendix F of reference [2].

2. DEFINITIONS AND ASSUMPTIONS

As in Part I, we consider r subsystems z1(s), . . . , zr (s) interconnected by an r× r linear
time-invariant coupling L(s). An electrical representation of this interconnection involving
scalar impedances zi (s) is given by Figure 1 of reference [2]. The assumptions and notations
concerning the subsystems and disturbances are stated in Part I. In contrast to reference
[2], however, where L(s) was assumed to be conservative, we assume now that L(s) is
dissipative; that is

L( jv)+L*(jv)e 0, v $ R. (1)

This condition implies that Re [L( jv)]+Re [L( jv)]T e 0. Since Z−1(s) is strictly positive
real, where Z(s)=diag (z1(s), z2(s), . . . , zr (s)), and L(s) is positive real, it follows that the
closed loop system is asymptotically stable.

3. ENERGY FLOW ANALYSIS IN THE FREQUENCY DOMAIN

In this section, we analyze energy flow among the dissipatively coupled systems shown
in Figure 1 of reference [2], while an equivalent block diagram is given by Figure 2 of
reference [2]. Since the following results are straightforward extensions of results given in
reference [2], the proofs are omitted.

Our first result involving the energy flow through the ports of L(s) is due to the
dissipative nature of the coupling L( jv).

Lemma 3.1. The coupling energy flow Ec
i (v) satisfies

s
r

i=1

Ec
i (v)E 0, v $ R. (2)

The energy flow per unit bandwidth quantities Ec
i (v), Ed

i (v) and Ee
i (v) satisfy the

following relations.
Lemma 3.2. The energy flows per unit bandwidth matrices Ec(v), Ed(v) and Ee(v) satisfy

Ec(v)+Ed(v)+Ee(v)=0, v $ R. (3)

Corollary 3.1. The energy flows per unit bandwidth quantities Ec
i (v), Ed

i (v) and Ee
i (v)

satisfy

Ec
i (v)+Ed

i (v)+Ee
i (v)=0, i=1, . . . , r, v $ R, (4)

and

s
r

i=1

[Ed
i (v)+Ee

i (v)]e 0, v $ R. (5)

Lemma 3.1 and Corollary 3.1 describe the properties of the average energy flows per unit
bandwidth among the coupled subsystems. That is, equation (5) shows that more external
power is generated than is dissipated at each subsystem, while equation (4) indicates that
at each subsystem the effect of the external power generated by the disturbance is to change
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the rate of energy dissipation and energy flow through its port. External power is dissipated
by the dissipative coupling L( jv), as shown by equation (2).

Corollary 3.2. The steady state energy flow quantities Pc
i , Pd

i and Pe
i satisfy

s
r

i=1

Pc
i E 0, Pc

i +Pd
i +Pe

i =0, i=1, . . . , r, (6, 7)

and

s
r

i=1

(Pd
i +Pe

i )e 0. (8)

As in reference [2], by defining the steady state thermodynamic energy of the ith
subsystem as

Eth
i (v),Swiwi (v)/2ci (v), (9)

and the steady state thermodynamic cross energy as

Eth
ij (v),Swiwj (v)/2zci (v)cj (v), (10)

we obtain the following result.
Theorem 3.1. For each i=1, . . . , r, Ec

i (v) and Ed
i (v) can be expressed as

Ec
i (v)=Ec

Inc,i (v)+Ec
Coh,i (v), Ed

i (v)=Ed
Inc,i (v)+Ed

Coh,i (v), v $ R, (11, 12)

respectively, where

Ec
Inc,i (v), s

r

j=1

j$ i

[dij (v)Eth
j (v)− dji (v)Eth

i (v)]− ai (v)Eth
i (v), (13)

Ec
Coh,i (v), s

r

p=1

s
r

q=1

q$ p

dipq (v)Eth
pq (v)− s

r

q=1

q$ i

dpiqEth
iq (v)]− s

r

s=1

s$ i

ais (v)Eth
is (v), (14)

Ed
Inc,i (v),−dii (v)Eth

i (v)− s
r

j=1

j$ i

dij (v)Eth
j (v), (15)

Ed
Coh,i (v),− s

r

p=1

s
r

q=1

q$ p

dipq (v)Eth
pq (v), (16)

and, for i, j, p, q, s=1, . . . , r, v $ R,

dipq,
ci (v)

p
zcp (v)cq (v) Re [(L( jv)+Z( jv))−1

(i,p)(L( jv)+Z( jv))−*(q,i) ], (17)

dij (v),dijj (v)=
1
p

ci (v)cj (v)=[(Z( jv)+L( jv))−1](i, j)=2, (18)

ais(v),
1
2p

zci (v)cs (v) Re [(L( jv)+Z( jv))−*(L( jv)+L*(jv))(L( jv)+Z( jv))−1](i,s),

(19)

ai (v),aii (v)=
1
2p

ci (v)[(L( jv)+Z( jv))−* (L( jv)+L*(jv))(L( jv)+Z( jv))−1](i,i).

(20)
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From equations (18) and (20), it can be seen that dij (v)e 0 and si (v)e 0,
i, j=1, . . . , r, v $ R. Thus it can be seen from equation (13) that the incoherent coupling
energy flow Ec

Inc,i (v) is decomposed into two kinds of energy flows; namely, the
inter-subsystem energy flow (the summation in equation (13)) determined by dij (v), and the
dissipative energy flow (the last term in equation (13)) governed by ai (v). The
inter-subsystem energy flow depends on the thermodynamic energy of each subsystem,
whereas the dissipative energy flow depends only on the thermodynamic energy of the
subsystem into which the energy is flowing.

By introducing one additional assumption on the dissipative coupling L(s), we can
guarantee that the inter-subsystem energy flows from higher thermodynamic energy
subsystems to lower thermodynamic energy subsystems.

Corollary 3.3. If L( jv) is symmetric for all v $ R, then

dij (v)= dji (v), i, j=1, . . . , r, v $ R, (21)

and, for each i=1, . . . , r,

Ec
Inc,i (v)= s

r

j=1

j$ i

dij (v)[Eth
j (v)−Eth

i (v)]− ai (v)Eth
i (v), v $ R. (22)

Remark 3.1. Note that the assumption that L( jv) is symmetric implies that Re [L( jv)]
is symmetric non-negative definite and Im [L( jv)] is symmetric.

Equation (22) can be interpreted thermodynamically as saying that energy flows among
subsystems in proportion to energy differences and dissipatively in proportion to
subsystem energy. As in reference [2], this equation holds independently of the number of
subsystems and the strength of the coupling.

Finally, we rewrite the rate of energy dissipation Ed
Inc,i (v) in equation (15) so that Ed

Inc,i (v)
can be expressed as a function of Eth

i (v) only; that is,

Ed
Inc,i (v)=−di (v)Eth

i (v), v $ R, (23)

where

di (v), s
r

j=1

dij (v)
Eth

j (v)
Eth

i (v)
. (24)

Obviously di (v)e 0, i=1, . . . , r, v $ R.
Theorem 3.1 is illustrated in Figure 1 for the case r=3 and Coh [Sww (v)]=0. In

Figure 1 it is shown that there exist inter-subsystem energy flows dji (v)Eth
i (v) and

dij (v)Eth
j (v) between the ith and jth subsystems, and that the difference between these

energy flows is the net energy flow Jij (v),dij (v)Eth
j (v)− dji (v)Eth

i (v). Furthermore, there
also exists dissipative energy flow ai (v)Eth

i (v) through the coupling L(s). Then
Ec

Inc,i (v)=Sr
j=1,j$ i Jij (v)− ai (v)Eth

i (v). According to Corollary 3.3, if dji (v)= dij (v),
i, j=1, . . . , r, there is a net energy flow among subsystems, from higher thermodynamic
energy subsystems to lower thermodynamic energy subsystems.

4. ENERGY FLOW MODEL FOR TIME DOMAIN ANALYSIS

In this section, we consider an alternative point of view involving compartmental
modelling and time domain analysis. As in reference [2], we now assume that wi (t) is white
noise with intensity matrix Sww =DDT, where D is given in reference [2], and that ci = ci (v),
the real part of zi (v), is constant. Using the notation of reference [2] for Cd , C1, C2, A	 ,
B	 and B, we have the following results.
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Figure 1. The subsystem energy flow diagram (frequency domain).

Theorem 4.1. The steady state energy flow matrices Pc, Pe and Pd are given by

Pc =−C2Q	 CT
1 , Pe = 1

2DB	 TCT
1 , Pd =(C2Q	 − 1

2DB	 T)CT
1 , (25–27)

where the steady state covariance Q	 ,E[x(t)xT(t)] satisfies the algebraic Lyapunov
equation

0=A	 Q	 +Q	 A	 T +B	 B	 T. (28)

Corollary 4.1. For i=1, . . . , r, Pd
i is given by

Pd
i =−(CdC1Q	 CT

1 )(i,i), (29)

where the steady state covariance Q	 satisfies the algebraic Lyapunov equation (28).
Proposition 4.1. For i=1, . . . , r, Pc

i , Pd
i and Pc

i can be decomposed as

Pc
i =Pc

Inc,i +Pc
Coh,i , Pd

i =Pd
Inc,i +Pd

Coh,i , Pe
i =Pe

Inc,i +Pe
Coh,i , (30–32)

where

Pc
Inc,i,−(C2Q	 IncCT

1 )(i,i), Pc
Coh,i,−(C2Q	 CohCT

1 )(i,i),

Pd
Inc,i,−(CdC1Q	 IncCT

1 )(i,i), Pd
Coh,i,−(CdC1Q	 CohCT

1 )(i,i),

Pe
Inc,i,1

2(Inc [Sww ]BTCT
1 )(i,i), Pe

Coh,i,1
2(Coh [Sww ]BTCT

1 )(i,i) ,

and Q	 Inc and Q	 Coh satisfy

0=A	 Q	 Inc +Q	 IncA	 T +B Inc [Sww ]BT, (33)

0=A	 Q	 Coh +Q	 CohA	 T +B Coh [Sww ]BT. (34)



.   . . 64

Proposition 4.2. For i=1, . . . , r,

Pc
Inc,i +Pd

Inc,i +Pe
Inc,i =0, Pc

Coh,i +Pd
Coh,i +Pe

Coh,i =0. (35, 36)

Now, as in reference [2] we consider a compartmental model expression for the coupled
system.

Theorem 4.2. Define

sij,g
a

−a

dij (v) dv, i$j, i, j=1, . . . , r, (37)

si,g
a

−a

di (v) dv, āi,g
a

−a

ai (v) dv, i=1, . . . , r, (38, 39)

hi,si + āi , i=1, . . . , r; Pij,sijEth
j − sjiEth

i , i, j=1, . . . , r, (40, 41)

where dij (v), ai (v) and di (v) are given by equations (18), (20) and (24), respectively.
Then, energy flow in the coupled system satisfies

− hiEth
i + s

r

j=1

j$ i

Pij +Pe
Inc,i =0, i=1, . . . , r. (42)

Proof. From the definition of Pc
Inc,i it follows that

Pc
Inc,i =g

a

−a

Ec
Inc,i (v) dv

=g
a

−a

s
r

j=1

j$ i

[dij (v) dv Eth
j − dji (v) dv Eth

i ]−g
a

−a

ai (v) dv Eth
i

= s
r

j=1

j$ i

$g
a

−a

dij (v) dv Eth
j −g

a

−a

dji (v) dv Eth
i %−g

a

−a

ai (v) dv Eth
i

= s
r

j=1

j$ i

[sijEth
j − sjiEth

i ]− āiEth
i = s

r

j=1

j$ i

Pij − āiEth
i .

In a similar manner,

Pd
Inc,i =g

a

−a

Ed
Inc,i (v) dv=−g

a

−a

di (v) dv Eth
i =−siEth

i .

Finally, by using equation (35) in Proposition 4.2, equation (42) can be obtained. q
Obviously, hi e 0, sij e 0 and Pe

Inc,i e 0, so that equations (41) and (42) represent a form
of a compartmental model [5].

We also obtain the following result corresponding to Corollary 3.3.
Corollary 4.2. If L( jv) is symmetric, then

sij = sji , i, j=1, . . . , r, (43)
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and

Pc
Inc,i = s

r

j=1

j$ 1

sij (Eth
j −Eth

i )− āiEth
i . (44)

Proof. This result follows immediately from Corollary 3.3. q
Although Theorem 4.2 provides closed form expressions for sij and āi , the integration

may be difficult, especially for re 3. Next we provide explicit expressions for integrals in
terms of algebraic Lyapunov equations.

Proposition 4.3. The coefficients sij and si , i, j=1, . . . , r, defined by equations (37) and
(38), respectively, are given by

sij =2cicj (C1Q	 jCT
1 )(i,i), i, j=1, . . . , r, si = s

r

j=1

sij
Eth

j

Eth
i

, i=1, . . . , r, (45, 46)

where Q	 j , j=1, . . . , r, satisfies the algebraic Lyapunov equation

0=A	 Q	 j +Q	 jA	 T +BejeT
j BT, (47)

and ej denotes the jth column of the r× r identity matrix. Furthermore, suppose that
T�,L( jv)+L*(jv) is constant. Then āi defined by equation (39) is given by

āi = ci (BTQ
 B)(i,i), (48)

where Q
 satisfies the algebraic Lyapunov equation

0=A	 TQ
 +Q
 A	 +CT
1 T�C1. (49)

If, in addition, L( jv) is symmetric, then āi is also given by

āi = ci (C1Q�CT
1 )(i,i), (50)

where Q� satisfies the algebraic Lyapunov equation

0=A	 Q� +Q�A	 T +BT�BT. (51)

Proof. See Appendix A. q
By using Proposition 4.3, we can obtain coefficients for the time-domain energy flow

model, which allows us to calculate energy flow among an arbitrary number of coupled
subsystems.

Finally, the energy flow model obtained in this section is illustrated in Figure 2 for the
case r=3 and Coh [Sww ]=0. Figure 2 has the same interpretation as Figure 1.

5. EQUIPARTITION OF ENERGY

In this section we show, as in reference [2], that equipartition of energy is equivalent
to zero net energy flow into or out of each subsystem.

Theorem 5.1. Assume that L( jv) is symmetric. If

Eth
i (v)=Eth

j (v), i, j=1, . . . , r, (52)

then

s
r

j=1

j$ i

Jij (v)=0, i=1, . . . , r, v $ R. (53)
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Figure 2. The subsystem energy flow diagram (time domain).

Corollary 5.1. Assume that Swiwi and ci are constant for i=1, . . . , r and that L( jv) is
symmetric. If

Eth
i =Eth

j , i, j=1, . . . , r, (54)

then

s
r

j=1

j$ i

Pij =0, i=1, . . . , r. (55)

Theorem 5.1 and Corollary 5.1 show that there is no net energy flow among subsystems
when each subsystem has the same thermodynamical energy; that is, when equipartition
of energy holds.

The converse of Theorem 5.1 and Corollary 5.1 can be obtained by defining the r× r
matrices H(v) and S by

H(v)(i,j),dij (v), H(v)(i,i),− s
r

j=1

j$ i

dji (v), i, j=1, . . . , r,

S(i,j),sij , S(i,i),− s
r

j=1

j$ i

sji , i, j=1, . . . , r,

respectively.
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Theorem 5.2. Assume that L( jv) is symmetric and that rank H(v)= r−1 for all v $ R.
If

s
r

j=1

j$ i

Jij (v)=0, i=1, . . . , r, v $ R, (56)

then

Eth
i (v)=Eth

j (v), i, j=1, . . . , r, v $ R. (57)

Corollary 5.2. Assume that L( jv) is symmetric and that rank S= r−1. If

s
r

j=1

j$ i

Pij =0, i=1, . . . , r, (58)

then

Eth
i =Eth

j , i, j=1, . . . , r. (59)

6. INCREASED DISSIPATION FEEDBACK SYSTEM

As mentioned in section 1, Sun et al. [3] and Fahy et al. [4] obtained an energy flow
model for two dissipatively coupled oscillators, as shown in Figure 3. In their framework,
the thermodynamical energy of each subsystem is effectively increased according to

E	 th
i =Swiwi /2(ci +C), i=1, 2, (60)

where C is the damping coefficient of the coupling. In reference [4] E	 th
i is called the

time-averaged total energy of the ith uncoupled oscillator. The difference between their
energy flow model and the energy flow model obtained in the previous sections results from
the signals to be used for calculating the energy flow. To clarify this point, we formulate
the system interconnection by using feedback in Figure 2 of reference [2]. Because of
equation (60), the energy flow model of references [3, 4] can be viewed as an increased
dissipation feedback system. For simplicity, we assume that Coh [Sww (v)]=0.

Figure 3. The two coupled oscillator system with dissipative coupling.
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Figure 4. The three coupled oscillator system with dissipative coupling.

First we extend the energy flow model of references [3, 4] to more than two coupled
oscillators. For such systems the coupling L(s) has the form

L(s)=DL +CL /s, (61)
where DL $ Rr× r is symmetric and satisfies

DL(i,j) =DL( j,i),−dij E 0, i$ j, i, j=1, . . . , r; (62)

DL(i,i) = s
r

j=1

j$ i

dij , i=1, . . . , r, (63)

and CL $ Rr× r is symmetric. For example, the coupling L( jv) of the three coupled
oscillator system in Figure 4 is given by

L( jv)=DL +CL /s ,

where

DL = &C12 +C13

−C12

−C13

−C12

C12 +C23

−C23

−C13

−C23

C13 +C23',
and

CL = &K12 +K13

−K12

−K13

−K12

K12 +K23

−K23

−K13

−K23

K13 +K23'.
Obviously, this coupling L( jv) satisfies equation (62), equation (63), and CL is symmetric.
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To transform the feedback system, we define

{DL},diag (DL(1,1), DL(2,2), . . . , DL(r,r)), Z	 ( jv),Z( jv)+ {DL}, (64, 65)

and

L	 ( jv),DL − {DL}+CL /s. (66)

Then from Figure 2 of reference [2] it follows that

y=Z−1(s)(w− v)=Z−1(s)(w−L(s)y)=Z−1(s)(w− {DL}y−L	 (s)y). (67)

Since Z(s) is square and invertible, and I+Z−1(s){DL} is also square and invertible, it
follows from equation (67) that

y=(I+Z−1(s){DL})−1Z−1(s)(w−L	 (s)y)= (Z(s)+ {DL})−1(w−L	 (s)y)

=Z	 −1(s)(w−L	 (s)y). (68)

Thus, the feedback system in Figure 2 of reference [2] is transformed to a system with
increased dissipation as shown in Figure 5, where v1, v2, u2 $ Rr are given by

v1 = {DL}(L	 (s)+Z	 (s))−1w, v2 =L	 (s)(L	 (s)+Z	 (s))−1w, u2 =Z	 (s)(L	 (s)+Z	 (s))−1w.

Figure 5. Transformation of the feedback system: (a) a feedback system equivalent to Figure 2 of reference
[2]; (b) reformulation of (a); (c) increased dissipation feedback system.
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Now

Re [Z	 ( jv)](i,i) = ci + s
r

j=1

j$ i

dij e 0, i=1, . . . , r; (69)

that is, the dissipative ability of each subsystem z̃i ( jv),[Z	 ( jv)](i,i) is increased compared
with that of zi ( jv). Thus the thermodynamical energy of each subsystem z̃i ( jv) can be
defined by

E	 th
i (v),

Swiwi (v)

22ci + s
r

j=1

j$ i

dij3
, (70)

and the coupling and dissipation energy flow matrices are now calculated according to y,
v2 and u2 (instead of y, v and u) as

P	 c,−E[v2(t)yT(t)], p̃d,−E[u2(t)yT(t)].

The energy flow model of references [3, 4], which was calculated without using the
feedback representation, is based on this increased dissipation system. As shown later,
the energy flow predicted by the approach of references [3, 4] is completely different
from the energy flow obtained by means of the model developed in the previous
sections.

Remark 6.1. It is important to note that L	 ( jv) defined by equation (66) for the
increased dissipation feedback system does not necessarily satisfy L	 ( jv)+L	 *(jv)e 0.
Thus, some of the results obtained in the previous sections cannot be used to analyze this
system. Specifically, Lemma 3.1, equation (5) in Corollary 3.1, equation (6), equation (8)
in Corollary 3.2, equations (48) and (50) in Proposition 4.3 and the non-negativity of ai (v)
and āi do not apply. With these exceptions, the remaining results can be used to analyze
energy flow in the increased dissipation feedback representation.

Remark 6.2. Note that since equation (6) in Corollary 3.2 does not necessarily hold,
the increased dissipation feedback system may imply that energy is increasing at the
coupling. On the other hand, since Corollary 3.3 still holds for symmetric L	 ( jv), the
inter-subsystem energy flows according to E	 th

i in the increased dissipation feedback
representation. Thus, if the ordering of E	 th

1 , . . . , E	 th
r is different from the ordering of

Eth
1 , . . . , Eth

r , then these energy flow models may predict different directions for the
inter-subsystem energy flows.

7. EXAMPLES

In this section we numerically illustrate an energy flow model for the dissipatively
coupled systems shown in Figures 3 and 4. For simplicity, we assume that Coh [Sww (v)]=
Coh [Sww ]=0. Now the coupling L( jv) is symmetric so that the net inter-subsystem energy
flow is from higher thermodynamic energy subsystems to lower thermodynamic energy
subsystems according to Corollaries 3.3 and 4.2. From Theorem 5.1 and Corollary
5.1, all the inter-subsystem energy flows are zero when each subsystem has the same
thermodynamical energy.
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7.1.  1
Consider the system consisting of two coupled oscillators shown in Figure 3 and define

D1u,c1/m1, D2u,c2/m2, v2
1,(K+ k1)/m1, v2

2,(K+ k2)/m2,

D1,(C+ c1)/m1, D2,(C+ c2)/m2,

v2
1u,k1/m1, v2

2u,k2/m2, D1c,C/m1, D2c,C/m2,

m,C/zm1m2, n,K/zm1m2.

First we obtain the energy flow coefficients for the actual feedback system in Figure 2 of
reference [2]. From equations (18) and (20), d12(v), a1(v) and a2(v) are given by

d12(v)=
D1u D2uv

2(m2v2 + n2)
pG(v)

, (71)

a1(v)=
D1u D1cv

2(D2
2u +(v2 −v2

2u )2]
pG(v)

, a2(v)=
D2u D2cv

2[D2
1u +(v2 −v2

1u )2]
pG(v)

,

(72, 73)

where

G(v),[v4 − (v2
1 +v2

2 )v2 +v2
1v

2
2 − n2]2 +v2[(D1 +D2)v2 − (D1v

2
2 +D2v

2
1 −2mn)]2.

(74)

By using the integral formula [6], we obtain

s12 =D1uD2u [(D1 +D2)n2 + (D1v
2
2 +D2v

2
1 −2mn)m2]/L, (75)

ā1 =D1uD1cA1/L, ā2 =D2uD2cA2/L, (76, 77)

where

L,D1 D2[(v2
1 −v2

2 )2 + (D1 +D2)(D1v
2
2 +D2v

2
1 −2mn)]

+ n2(D1 +D2)2 +2mn[(D1 −D2)(v2
1 −v2

2 )−2mn]

+ m2(D1 +D2)(2mn−D1v
2
2 −D2v

2
1 ), (78)

A1,(D1 +D2)(n2 −v2
1v

2
2 )+ (v2

1 +v2
2 +D1D2 − m2)(D1v

2
2 +D2v

2
1 −2mn)

+ (D1 +D2)v4
2u +(D1v

2
2 +D2v

2
1 −2mn)(D2

2u −2v2
2u ), (79)

A2,(D1 +D2)(n2 −v2
1v

2
2 )+ (v2

1 +v2
2 +D1D2 − m2)(D1v

2
2 +D2v

2
1 −2mn)

+ (D1 +D2)v4
1u +(D1v

2
2 +D2v

2
1 −2mn)(D2

1u −2v2
1u ). (80)

On the other hand, the coefficients for the increased dissipation feedback system are
obtained in a similar manner, as

d	 12(v)=D1D2v
2(m2v2 + n2)/pG(v), (81)

ã1(v)=2[mD1(n− mD2)v2 − mnv2
2D1]v2/pG(v), (82)

ã2(v)=2[mD2(n− mD1)v2 − mnv2
1D2]v2/pG(v), (83)

s̃12 =D1D2(D1 +D2)n2 + (D1v
2
2 +D2v

2
1 −2mn)m2]/L, (84)

ā 	1 =2[(D1v
2
2 +D2v

2
1 −2mn)(n− mD2)mD1 − (D1 +D2)mnv2

2D1]/L, (85)

ā 	2 =2[(D1v
2
2 +D2v

2
1 −2mn)(n− mD1)mD2 − (D1 +D2)mnv2

1D2]/L. (86)
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These results show that the energy flow coefficients (71)–(73) and (75)–(77) obtained
by the actual feedback system are different from equations (81)–(86) obtained by the
increased dissipation feedback system. Furthermore, while in the actual feedback system
the positivity of d12(v), a1(v) and a2(v) is guaranteed from equations (71), (72) and (73),
in the increased dissipation feedback system ã1(v) and ã2(v) given in equations (82) and
(83) are not necessarily non-negative. Thus the energy flow model based on the actual
feedback system reflects the fact that energy is dissipated through the dissipative element
(damper) of the coupling L(s). On the other hand, the energy flow model based on the
increased dissipation feedback system may predict energy flow increased through the
coupling for some combinations of parameters, which is shown more clearly in the next
example.

7.2.  2
Next we analyze the three coupled oscillator system shown in Figure 4, where k1 =1,

k2 =2, k3 =3, m1 =1, m2 =2, m3 =3, K12 =0·05, K13 =0·07, K23 =0·1 and other
parameters are varied for analysis. Furthermore, let the disturbances wi (t), i=1, 2, 3, be
white noise with unit intensity; that is, D= I. In Figure 6 it is shown that at each
subsystem, Pc

i +Pd
i +Pe

i =0 for i=1, 2, 3, as stated in Corollary 3.2, and that there
exist inter-subsystem energy flow and dissipative energy flow at the coupling. In
Figures 7 and 8 are shown the energy flows for the increased dissipation feedback system
and the feedback system in Figure 2 of reference [1], respectively. Although the energy flow
is calculated for the same system, the results shown in Figures 7 and 8 are completely
different, because the signals used to calculate energy flow are different. In particular, the
energy flow model for the increased dissipation feedback system, Figure 7, shows that

Figure 6. Energy flow among three coupled oscillators with dissipative coupling. c1 =0·1, c2 =0·2, c3 =0·3,
C12 =0·01, C13 =0·02, C23 =0·03.
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Figure 7. An energy flow model based on the increased dissipation feedback system. c1 =0·1, c2 =0·2, c3 =0·3,
C12 =1·0, C13 =0·5, C23 =0·1.

Figure 8. An energy flow model based on the actual feedback representation. c1 =0·1, c2 =0·2, c3 =0·3,
C12 =1·0, C13 =0·5, C23 =0·1.
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Figure 9. Inter-subsystem energy flow with equipartition of thermodynamic energy. c1 =0·1, c2 =0·1, c3 =0·1,
C12 =0·01, C13 =0·02, C23 =0·03.

the dissipation at each subsystem is increased while, at the coupling, energy is not
dissipated but increased, even though the coupling is dissipative. Furthermore, the
predicted inter-subsystem energy flows between all pairs of subsystems are completely
reversed in Figures 7 and 8. These results show that the clear assignment of the cal-
culated signals for the energy flow calculation is important and that for this purpose
the feedback framework is effective. Finally, in Figure 9 it is shown that there is no
net energy flows among subsystems when each subsystem has the same thermodynamic
energy.

8. CONCLUSIONS

In this paper we have derived an energy flow model for dissipatively coupled systems.
It has been shown that there exist two kinds of energy flow; namely, the inter-subsystem
energy flow, which depends on the thermodynamic energy of each subsystem, and the
dissipative energy flow, which depends only on the thermodynamic energy of the subsystem
into which the energy is flowing. Furthermore, if the coupling matrix L(s) is symmetric,
then it has been shown that energy flows between subsystems in proportion to energy
differences and dissipatively in proportion to subsystem energy. As in reference [2], this
equation holds independently of the number of subsystems and the strength of the
coupling. Additionally, it was shown that a compartmental model expression is valid for
the dissipatively coupled system. This energy flow model was compared to the energy flow
models obtained by Sun et al. [3] and Fahy et al. [4]. It was shown that the feedback
representation of the coupled system provides a rigorous framework for predicting energy
flow with dissipative coupling.
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APPENDIX A: PROOF OF PROPOSITION 4.3

Equations (45) and (46) are proved in Proposition 4.4 in reference [2]. By using
Parseval’s theorem with equations (39) and using the fact that T� is a non-negative definite
constant matrix, we obtain

āi =
1
2p

ci g
a

−a

[(L( jv)+Z( jv))−* T�(L( jv)+Z( jv))−1](i,i) dv

=
1
2p

ci g
a

−a

[(L( jv)+Z( jv))−* T�1/2(L( jv)+Z( jv))−1](i,i) dv

= ci
1
2p g

a

−a

([T�1/2C1( jvI−A	 )−1B]*[T�1/2C1( jvI−A	 )−1B])(i,i) dv

= ci
1
2p g

a

−a

([BT(−jvI−A	 T)−1(T�1/2C1)T][BT(−jvI−A	 T)−1(T�1/2C1)T]*)(i,i) dv

= ci
1
2p g

−a

a

([BT( jv'I−A	 T)−1(T	 1/2C1)T][BT( jv'I−A	 T)−1(T�1/2C1)T]*)(i,i)(−dv')

= ci
1
2p g

a

−a

([BT( jv'I−A	 T)−1(T�1/2C1)T][BT( jv'I−A	 T)−1(T�1/2C1)T]*)(i,i)(dv')

= ci (BTQ
 B)(i,i),

where v',−v and Q
 satisfies equation (49).
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Additionally, if L( jv) is symmetric, then L( jv)+Z( jv) is symmetric. Thus

āi =
1
2p

ci g
a

−a

[(L( jv)+Z( jv))−* T�(L( jv)+Z( jv))−1](i,i) dv

=
1
2p

ci g
a

−a

tr [eT
i (L( jv)+Z( jv))−* T�(L( jv)+Z( jv))−1ei ] dv

=
1
2p

ci g
a

−a

tr [eieT
i (L( jv)+Z( jv))−* T�(L( jv)+Z( jv))−1] dv

=
1
2p

ci g
a

−a

[(L( jv)+Z( jv))−1T�(L( jv)+Z( jv))−* ](i,i) dv

=
1
2p

ci g
a

−a

([C1( jvI−A	 )−1BT�1/2][C1( jvI−A	 )−1BT�1/2]*)(i,i) dv

= ci (C1Q�CT
1 )(i,i),

where Q� satisfies equation (51). q


