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How Slippery Is Viscous Friction?

ANNA PRACH, OMRAN KOUBA, and DENNIS S. BERNSTEIN

How Slippery Is Viscous Friction?

One of the many things that humans and many ani-
mals are very good at is picking up objects. Teaching 
robots to pick up objects is not so easy, however, for 

at least two reasons. First, the coefficient of friction may 
be unknown, and therefore, an object may slip through 
the robot’s grasp. Although this uncertainty can be over-
come by using a tighter grip, another issue arises, namely, 
that excessive force may crush the object. Furthermore, the 
length of the object must also be accounted for since the 
ultimate goal is to achieve a slip distance that is less than 
the length of the object. Consequently, reliable gripping is 
a control problem that requires a careful tradeoff between 
the possibility of dropping an object and the potential for 
crushing it.

The literature on slip control for robot grippers is ex-
tensive. In [1], the controller uses the object’s velocity, ac-
celeration, and detection of incipient slippage to adjust the 
grasping force. The control law employs empirical rules 
and an inference mechanism, which are based on fuzzy 
logic. In [2], a slip-suppression control algorithm is based 
on a fixed threshold value for the normal force, while [3] 
presents a grasp controller inspired by the physiology of 
human grasping. A controller decides on the initial grasp-
ing force, detects object slippage, and regulates the grasp 
force. In [4], a fuzzy sliding mode controller combined with 
a disturbance observer is designed for contact force con-
trol and slip prevention. Using multiple manipulators to 
grasp objects is considered in [5]. A proportional-derivative 
shear-force feedback control law and adaptive slip-preven-
tion algorithm are given in [6] and [7]. Assuming a Cou-
lomb friction model, a Lyapunov-based adaptive controller 
based on a friction estimate is used in [8] for grasping and 
lifting from zero initial velocity.

As discussed in “Summary,” the goal of this article is 
to investigate the normal force needed to achieve finite 
slip distance. To do this, a classical control perspective is 
taken by assuming that the requested normal force is the 

output of a proportional-integral (PI) controller, where in-
tegral control is motivated by the desire to asymptotically 
reach the setpoint of zero slip velocity. Although many 
friction models can be assumed, such as viscous, Cou-
lomb, Dahl, and LuGre [9]–[13], we focus on Coulomb and 
viscous friction. 

First, we consider the case of horizontal slip motion, 
in which gravity plays no role. Since this is a stabiliza-
tion problem, integral control for disturbance rejection is 
not needed. Next, we consider the case of vertical slip mo-
tion with arbitrary initial vertical velocity, in which case 
gravity affects the motion of the object. This is a distur-
bance-rejection problem with constant disturbance, and 
thus integral control is needed. As long as the normal 
force multiplies the velocity through the viscous damp-
ing coefficient, the closed-loop dynamics are nonlinear.  
Since the closed-loop dynamics are nonlinear, standard lin-
ear techniques cannot be used to analyze the vertical slip 
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Summary
robotic gripper is often required to pick up or catch an 

object with unknown mass and unknown friction. The 

goal is to reliably hold the object without applying exces-

sive force, which could crush it. The ability of the robot to 

grasp the object depends on the nature of the friction be-

tween the gripper and the object, and the simplest type of 

friction is viscous. This article shows that, under viscous 

friction and with bounded normal force, it is impossible 

to bring the object to rest. Furthermore, under viscous 

friction and using a proportional-integral control law with 

unbounded normal force, it is also impossible to bring the 

object to rest. This result is based on the asymptotic analy-

sis of a second-order nonlinear differential equation and 

illustrated through numerical simulation. These results 

show that the ability of a robot (or human) to grasp an ob-

ject requires static friction. In other words, viscous friction 

is extremely slippery.

A
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motion of the object under PI control. We therefore present 
a detailed analysis of the nonlinear dynamics. Specifically, 
the main contribution is to demonstrate that, although the 
vertical slip velocity converges to zero, the slip distance 
is infinite. In fact, infinite slip distance occurs whether or 
not the normal force is bounded; in other words, infinite 
normal force applied by the PI control is not sufficient to 
bring the object to rest with finite slip distance. This obser-
vation is surprising to us and, to the best of our knowledge, 
has not been discussed in the literature. Some of the back-
ground material in this article is based on [14].

GRIPPER DYNAMICS AND FRICTION MODELS
Consider an object with mass m  held by a gripper (as 
shown in Figure 1), where ( )q t  is the position of the object 
relative to the zero reference on the gripper, ( )tfd  is the 
disturbance force applied to the object, ( )tf 0n $  is the nor-
mal force applied to the object by the gripper, and ( )tff  is 
the friction force applied to the object due to ( ) .tfn  Gravity 
with acceleration g  acts along the x-axis. If ,q 0=o  then the 
object is fixed relative to the gripper, and thus no slipping 
is occurring; the object is said to be sticking. If ,q 0!o  then 
the object is slipping relative to the gripper.

In Figure 1, the object is held vertically. In this case, the 
force on the object due to gravity is ,mg  which can be viewed 
as a constant disturbance. The objective of feedback control 
is command following with a zero-velocity setpoint and con-
stant disturbance rejection. We can also consider the simpler 
case where the object is held horizontally. In this case, grav-
ity is absent, and thus, the objective of feedback control is 
command following with a zero-velocity setpoint, which is 
equivalent to stabilization.

For the vertical slip case, the equation of motion of the 
object is given by

 ( ) ( ),t tmq mg ff= -p  (1)

where the friction force ( )tf 0f $  is defined by the friction 
model. Note the minus sign, which shows that the friction 
force opposes the downward velocity. In terms of the slip 
velocity ,( ) ( )v t q t_ o  (1) becomes

 .( ) ( )mv t mg f tf= -o  (2)

Since gravity is in the downward direction, the object can 
only move downward; therefore, ( )v t  is nonnegative. Note 
that fn  is physically constrained to be nonnegative; this 
sign constraint is enforced for the control signal. For the 
horizontal slip case, the term mg  is omitted.

The slip distance ( )td  is defined as

 ( ) ,( ) ( ) ( ) ( )dt q t q v q 00 0
t

0
_ $d x x- = -#  (3)

and thus, .( ) ( ) ( )t q t v td = =o o  The asymptotic slip distance is 
given by

 .( )lim t
t
_d d

"
3

3
 (4)

FRICTION MODELS
We consider two friction models, namely, viscous and Cou-
lomb.

Viscous Friction
The viscous friction model is given by [9]

 ,f vc c ff n n= +^ h  (5)

where the normal force ( )f t 0n $  augments the effect of the 
viscous damping coefficient c 0$  as a result of the normal 
force viscous damping coefficient .c 0n2  In (5) and hence-
forth, where no confusion can arise, the time argument t  
is omitted.

Note that the viscous friction model (5) does not in-
clude a static friction term. This means that, at zero veloc-
ity, the tangential friction force is zero. In the presence of 
gravity, the object would begin to accelerate. Consequent-
ly, (5) implies that the object cannot be brought to rest and 
maintained at rest. However, the viscous friction model 
does not a priori preclude the possibility that an appropri-
ate normal force can be applied by the gripper to attain 
asymptotic stopping with finite slip distance.

Coulomb Friction
The Coulomb friction model is given by
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FIGURE 1 The gripper and object. The normal force fn  applied by 
the gripper is specified by the controller. The case of vertical slip is 
shown, as indicated by the acceleration due to gravity.
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where the Coulomb friction force fC  and the static friction 
force fst  are given by

 ,f fC nn=  (7)

 ,f fst st nn=  (8)

where 02n  is the sliding-friction coefficient and 0st2n  is 
the static friction coefficient. During sticking, the direction 
of the friction force is defined by the direction of the dis-
turbance force .fd  During slip, the friction force ff  is equal 
to fC  or ,fC-  depending on the sliding direction. In this 
article, all sliding is in a single direction.

Comparison of the Free Response
The parameters of the viscous and Coulomb friction 
models are chosen so that the time constants of the cor-
responding free responses are approximately the same. 
In particular, for viscous friction, let .c 0 4=  N-s/m and 
c 1n =  s/m; for Coulomb friction, let 1stn =  N-m and 

.0 7n=  N-m. For the open-loop responses, consider an 
object with mass .m 1 kg=  Let the initial slip velocity of 

the object be v 10 =  m/s, and consider the constant normal 
force .f 1 Nn =  Figure 2 shows the slip distance, slip ve-
locity, and friction force with both viscous and Coulomb 
friction in the case of horizontal slip, while Figure 3 shows 
the corresponding response for vertical slip. For horizon-
tal slip, viscous and Coulomb friction lead to finite slip 
distance, whereas, for vertical slip, both friction models 
yield infinite slip distance. In Figure 4, the normal force is 
increased by a factor of 15 compared to Figure 3. With this 
increase, it can be seen that, for Coulomb friction, the slip 
distance is finite; however, for viscous friction, the slip 
distance remains infinite.

PROPORTIONAL INTEGRAL CONTROL  
WITH VISCOUS FRICTION
The objective of feedback control is to adjust the normal 
force applied by the gripper to drive the slip velocity to 
zero with finite asymptotic slip distance. Note that asymp-
totic convergence of the slip velocity to zero does not imply 
that the asymptotic slip distance is finite. However, a suf-
ficient condition for achieving finite slip distance is for the 
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FIGURE 2 Open-loop response of the gripper model (2) for horizontal slip with the viscous and Coulomb friction models. The parameters 
of both friction models are chosen so that the time constants and slip distances of the free responses are approximately the same. For 
both simulations, the initial slip velocity is v 10=  m/s, and the normal force is f 1n=  N. (a) Both friction models yield finite slip distance. 
(b) Coulomb friction provides finite-time convergence but viscous friction does not. (c) Friction forces versus time.

0 5

50

100

150

S
lip

 D
is

ta
nc

e 
(m

)

Time (s)

(a)

0 5

20

40

60

S
lip

 V
el

oc
ity

 (
m

/s
)

Time (s)

(b)

0 5

5

10

F
ric

tio
n 

F
or

ce
 (

N
)

Time (s)

(c)

Viscous
Coulomb

FIGURE 3 Open-loop response of the gripper model (2) for vertical slip with the viscous and Coulomb friction models. For both simula-
tions, the initial slip velocity is v 10=  m/s, and the normal force is f 1n=  N. For viscous friction, (a) the slip distance increases linearly, 
(b) the slip velocity reaches a terminal velocity, and (c) the asymptotic friction force is approximately equal to the force of gravity. For 
Coulomb friction, the slip distance in (a) increases quadratically corresponding to the linear increase in slip velocity shown in (b). Note 
that, for both types of friction, the object does not come to rest. 
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slip velocity to converge exponentially to zero. A stronger 
condition is for the slip velocity to converge to zero in fi-
nite time. To avoid damaging the object, it is necessary to 
achieve finite asymptotic slip distance without applying 
excessive normal force.

A block diagram of the control system is shown in Fig-
ure 5, where the friction model block represents either 
viscous or Coulomb friction. The gripper-object dynam-
ics are given by (2). The slip-velocity error e  is defined by 

.e v vref_ -  For slip suppression, the reference slip velocity 
is .v 0ref =

Consider the PI controller

 ,h v=o  (9)

 ,f K h K vIn P= +  (10)

where the constants K 0P $  and K 0I $  are the propor-
tional and integral gains, respectively. The purpose of the 
proportional term K vP  is to bring the slip velocity to zero 
for horizontal slip, while the purpose of the integral term 
K hI  is to asymptotically reject the effect of gravity for ver-
tical slip.

With the viscous friction model (5), the horizontal slip 
velocity satisfies

 .mv c c f v mgn n+ + =o ^ h  (11)

Combining (9)–(11) and using v d= o  yields

 m c c K c K mgn P n Id d d dd+ + + =p o o o^ h  (12)

with the initial conditions

 , .v0 0 0 00 $d d= =o^ ^h h  (13)

PROPORTIONAL CONTROL OF HORIZONTAL SLIP
We first consider horizontal slip. Considering that no dis-
turbance is present, this is a stabilization problem, and only 
proportional control is used. Using (5), the closed-loop dy-
namics for the viscous friction model are given by

 .mv cv c K v2
n P=- -o  (14)

Solving (14) yields

 .( )v
c c K v e

cv et
1 ( / )

( / )

c m t

c m t

0

0

n P
=
+ - -

-

^ h  (15)

Note that, since the open-loop velocity is ,( )v t v e ( / )c m t
0= -  it 

follows from (15) that the ratio of the controlled slip veloc-
ity to the open-loop slip velocity decreases as KP  increases. 
In addition, for each value of ,K 0P $  the terminal slip ve-
locity is given by
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FIGURE 4 Open-loop response of the gripper (2) model for vertical slip with the viscous and Coulomb friction models. For both simula-
tions, the initial slip velocity is v 10=  m/s, and the normal force is f 15n=  N. For viscous friction, (a) the slip distance increases linearly, 
(b) the slip velocity reaches a terminal velocity, and (c) the friction force is approximately equal to the force of gravity. For Coulomb 
friction, the slip distance in (a) reaches a terminal value as the slip velocity converges to zero, as shown in (b). (c) During sticking, 
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FIGURE 5 Feedback control of the gripper. The controller specifies the normal force .fn
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 .limv v t 0
t
_ =

"
3

3
^ h  (16)

Furthermore, integrating (15) yields the slip distance

 ( ) ,logt c K
mv

c
c K e1 1 ( / )c m t0

n P

n Pd = + - -^ h; E  (17)

and thus

 ,logc K
mv

c
c K10

n P

n Pd = +3 c m  (18)

which is a decreasing function of .KP  The velocity con-
verges exponentially to zero, and thus the asymptotic slip 
distance is finite. Finally, the normal force fn  is decreas-
ing and converges to zero. Figure 6 illustrates proportional 
control of horizontal slip for viscous and Coulomb friction.

ASYMPTOTIC VERTICAL SLIP  
UNDER BOUNDED CONTROL
To avoid unbounded ,fn  assume, as is the case in prac-
tice, that the normal force is bounded; that is, there exists 
f 0,maxn 2  such that, for all ,t 0$  .f ft ,maxn n#^ h  This con-

straint can be enforced by replacing (9) and (10) with

 ,h v=o  (19)

 ,f K h K vsatn I P= +^ h  (20)

where the saturation function is defined as

 
,

,
| | ,
| | .

z
f

z f
z fzzsat sign ,

,

,max

max

maxn

n

n

1
$

=^ ^h h)  (21)

For all ,t 0$ $x  defining the state transition matrix

 , ,t e e( / )( ) ( / ) ( )dc m t c m f s sn
t

nxU =
9 x- - -

x^ h #  (22)

it follows from (11) that

 ( ) ( , ) ( , ) .v t t v t g0 d
t

0
0

x xU U= + #  (23)

It thus follows from (23) that

 ,( )v t t v e e g0 d( / )( ) ( / ) dc m tt c m f s
0

0

,max
t

n n$ xU + x- - -
x^ h # #

 .c c f
mg

e1
,

/( )

max

mt c c f

n n

n n,max$
+

- - +^ h  (24)

Therefore,

 .( )lim inf v t c c f
mg

,maxt n n
$
+"3

 (25)

Consequently, the slip velocity ( )v t  is asymptotically 
bounded from below, and thus the slip distance is infinite. 
Therefore, finite slip distance cannot be achieved under 
bounded control by any feedback control law. Figure 7 il-
lustrates bounded PI control of vertical slip for viscous and 
Coulomb friction.

The lower bound in (25) suggests that, if unbounded nor-
mal force could be applied, then the slip velocity may converge 
to zero and, perhaps, the asymptotic slip distance would be 
finite. We examine this conjecture in the next section.

ASYMPTOTIC VERTICAL SLIP UNDER UNBOUNDED 
PROPORTIONAL INTEGRAL CONTROL
The goal is to analyze the asymptotic properties of the 
asymptotic vertical slip d  satisfying (12) as well as the 
corresponding normal force .fn  Unlike in the previ-
ous section, where the normal force was assumed to be 
bounded, the normal force in this section is allowed to be 
unbounded.

Theorem 1
Let d  satisfy (12) with the initial conditions (13). Then the 
following statements hold:

1) d  is defined and C2  on [ , ) .0 3
2) If

 ,mg cv c K v0 0
2

n P1 +  (26)

then v d= o  is decreasing on ( , ) .0 3  If
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FIGURE 6 Proportional control of the gripper model (2) for horizontal slip with the viscous and Coulomb friction models and K 10p=  N-s/m. 
The parameters of both friction models and the initial velocities are chosen as in Figure 2. (a) The slip distance, (b) slip velocity, and (c) 
normal force are shown. For both friction models, the asymptotic slip distance is finite. 



78 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2019

 ,mg cv c K v0 0
2

n P$ +  (27)

 then there exists 02v  such that v d= o  is increasing 
on ,0 v^ h and decreasing on , .3v^ h

3) For all ,t 0$  .( )v t 0$
4) .( )lim v t 0t ="3

5) As ,t "3

 ~ .( )t c K
mg

t
2

n I
d  (28)

Hence, d  and fn  are unbounded.

Proof
Note that, for positive constants , ,p q  and ,r  the function

 ( ) ( )t p qt r_{ d +  (29)

satisfies

 .pm
c K

c K
cp

r K
qK

K
qK

pq g2n P

n I P

I

P

I
{ { { {+ - + + =p o oc m; E  (30)

Defining

 , , ,p m
c K q K

K r c K
cp

mK
cK2n P

I

P

n I I

P_ _ _ =  (31)

it follows from (30) that {  satisfies

 22{ { {{ n+ + =p o o  (32)

with the initial conditions

 , ,0 0{ a { b= =o^ ^h h  (33)

where

 , , .mK
cK

mK
c K v

mK
gc K2 42

0 2

3

I

P

I

n P

I

n P
_ _ _a b n  (34)

Note that ,0$a  ,0$b  and .02n
Considering that (32) is an autonomous differential 

equation with a Lipschitz-continuous vector field, it follows 
from [15, Ch. 1] that there exists a unique, maximal solution 
{  of (32) satisfying the initial conditions (33). The following 
result describes the asymptotic properties of the maximal 
solution of (32) and yields statements 2–5 of Theorem 1.

Proposition 1 
Let : [ , )t0 RI max "_{  denote the maximal solution satisfy-
ing (32) with the initial conditions (33). In addition, consider 
the conditions

 ,221n b ab+  (35)

 .22$n b ab+  (36)

Then the following statements hold:
1) There exists t I0 !  such that .t 00 1{p^ h
2) If t I0 !  and ( ) ,t 00 1{p  then, for all [ , ),t t tmax0!  

.( )t 01{p

3) If (35) is satisfied, then ( )t 01{p  for all , .t t0 max! ^ h  If 
(36) is satisfied, then there exists a unique , t0 max!v ^ h 
such that ( )t 02{p  for all ,t 0! v^ h and ( )t 01{p  for all 

, .t tmax! v^ h
4) If the first case in 3) holds, then, for all , ,t t0 max! ^ h

.( )t 02{o  If the second case in 3) holds, then, for all 
, ,t tmax! v^ h  .( )t 02{o

5) For all ,t I!  ( )t 0${o  and .( )t 0${

6) ( )lim tt tmax{- o  exists and is nonnegative.
7) .tmax 3=

8) For all ,t 0$  .( )t t 2#{ n a b+ +

9) .( )lim t 0t { ="3 o

10) ( ( )/ ) .lim t t 1
t

{ n =
"3

 Hence, {  is unbounded.

Proof of Proposition 1
To prove 1), note that, in the case where 0 2{ n b= -p^ h  

,2 01ab-  it suffices to let .t 00 =  Hence, we consider the 
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FIGURE 7 Bounded proportional-integral (PI) control of the gripper model (2) for vertical slip with the viscous and Coulomb friction models 
using K 10p=  N-s/m, K 20i=  N/m, and .f 20 N,maxn =  The parameters of both friction models and the initial velocities are chosen as in 
Figure 2. (a) The Coulomb friction yields finite slip distance, whereas, for viscous friction, the slip distance is infinite. (b) For Coulomb fric-
tion, zero slip velocity is reached in finite time. For viscous friction, however, bounded PI control does not yield finite slip distance. (c) For 
viscous friction, the corresponding normal force reaches a saturation limit equal to .f ,maxn  For Coulomb friction, saturation of the normal 
force does not occur. 
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case where ,0 2 02 ${ n b ab= - -p^ h  and thus, .#b n  
Now, suppose that ( )t 0${p  for all ,t I!  and thus, {o  is 
nondecreasing on .I  As ,0 0${o ^ h  it follows that {o  is 
 nonnegative on .I  Therefore, {  is nondecreasing on ,I  and 
since ( ) ,0 0${  it follows that {  is nonnegative on .I

Next, since all terms in (32) are nonnegative, it follows 
that ( )t #{ no  for all .t I!  Therefore, since {o  is nonde-
creasing on ,I  it follows that ( )lim tt tmax, #_ { n- o  ex-
ists and is nonnegative. Now, suppose that .0,=  Since {o  
is nonnegative and nondecreasing on ,I  it follows that 

0/{o  on ,I  and, thus, (32) implies that ,0n=  which is a 
contradiction. Hence, , .0, ! n^ h  Since {o  is continuous and 
nondecreasing on ,I  there exists ,t t0 max1 ! ^ h such that, for 
all , ,t t tmax1! ^ h  ( ) / .t 2,${o  Furthermore, since {  is nonde-
creasing and satisfies ( ( ))t2{( ) /t #{ n o  for all ( , ),t t tmax1!  
it follows that /n=/ ( )( )lim limk tt 2 2t t t tmax max ,#_ { n {- - o^ ^h h  
exists. Now suppose that tmax  is finite. Since ( )lim tt tmax{-  
and ( )lim tt tmax{- o  exist, it follows that {  can be continued to 
the right. Therefore, .tmax 3=  Finally, since /( )t 2,${o  for all 

, ,t t1 3! ^ h  it follows that ( ) ,lim tk t 3{= ="3  which contra-
dicts ./k 2,# n ^ h  Consequently, there exists t I0 !  such that 

,t 00 1{p^ h  which proves 1).
To prove 2), let t I0 !  be such that ,t 00 1{p^ h  and 

suppose there exists ,t t tmax2 0! ^ h  such that .t 02 ${p^ h  
Therefore, , : ( )tt t t 0max0! ${p^ h" ,  is not empty, and 

: .( )inft t t t t01 0 0_ $ $ ${p" ,  Since {p  is continuous on ,I   
it follows that t 01{ =p^ h  and, for all [ , ), .( )t t t t 00 1 1! {p    
Therefore, for all sufficiently small ,02f  {p  is negative in 

,t t1 1f-^ h and positive in , .t t1 1 f-^ h  Furthermore, since { is 
C3  and zero at ,t1  it follows that .t 01 ${q^ h  Now, differentiating

22{ { {{ n+ + =p o o

implies that

.2 2 2 02{ {{ { {{+ + + =q p o o p

In particular, setting t t1=  implies 

( ) ,t t2 01 1
2{ {+ =q o^ ^h h

which is the sum of two nonnegative terms. Hence, .t 01{ =o ^ h  
Setting t t1=  in (32) implies ,0n=  which is a contradiction. 
Therefore, for all [ , ),t t tmax0!  ,( )t 01{p  which proves 2). 
To prove 3), note that 1) and 2) imply that [ , ) :{t t0 max0 !  
for all , ,  ( ) }t t t 0t max0 1! {p^ h  is not empty. Hence, define 

[ , ):inf t t0 max0_ !v "  , , .( )t t t 0for all t max0 1! {p^ h ,
In the case where 0v= , which holds if and only if (35) 

is satisfied, it follows that, for all , ,t t0 max! ^ h  ( ) .t 01{p  Now 
consider the case where ,02v  which holds if and only if 
(36) is satisfied, and suppose there exists ,t 00 ! v^ h such 
that .t 00 1{p^ h  Then 2) implies that, for all , ,t t tmax0! ^ h  

,( )t 01{p  which, since t01v , contradicts the definition of 
.v  Therefore, ( )t 0${p  for all ( , ) .t 0! v  Next, suppose there 

exists ( , )t 01 ! v  such that ( ) .t 01{ =p  As a result of ( )t 0${p  

for all ( , ),t 0! v  it follows that t1  is a local minimizer of ,{p  
and thus ( ) .t 01{ =q  However, as in the proof of 2), 

( ) ( ( )) ,t t2 01 1
2{ {+ =q o

which implies that ( ) .t 01{ =o  Now, setting t t1=  in (32) yields 
,0n=  which is a contradiction. Therefore, ( )t 02{p  for all 

( , )t 0! v  and ( )t 01{p  for all ( , ),t tmax! v  which proves 3).
To prove 4), suppose that the first case in 3) holds, that 

is, for all ( , ),t t0 max!  ( ) .t 01{p  Therefore, for all [ , ),t t0 max!

,( ) ( ) ( )( )t t tt2 02 2 2{ { { n { n+ = -o o p

and thus ( )t 0!{o  for all ( , ) .t t0 max!  Since {o  is continuous, 
it follows that either ( )t 02{o  for all ( , )t t0 max!  or ( )t 01{o  
for all ( , ) .t t0 max!  Suppose that, for all ( , ),t t0 max!  ( ) .t 01{o  
Therefore, ( ) ,0 0#b {= o  and thus, .0b=  Now, setting t 0=  
in (32) yields ,0#n  which is a contradiction. Therefore, for 
all ( , ), ( ) .t t t0 0max 2! {o

Now, suppose that the second case in 3) holds, and let 
02v  given by 3). Since, for all ( , ),t tmax! v

,( ) ( ) ( ) ( )t t t t2 02 2 2{ { { n { n+ = -o o p

it follows that ( )t 0!{o  for all ( , ) .t tmax! v  Since {o  is continu-
ous, it follows that either ( )t 02{o  for all ( , )t tmax! v  or ( )t 01{o  
for all ( , ) .t tmax! v  Suppose that, for all ( , ), ( ) .t t t 0max 1! v {o  
Then, ( ) .0#{ vo  Since, for all ( , )t 0! v , ( ) ,t 02{p  it follows 
that ( ) ( ) ,0 0 02$ ${ v { b=o o  which is a contradiction. There-
fore, ( )t 02{o  for all ( , ),t tmax! v  which proves 4).

To prove 5), consider the second case in 4), and suppose 
there exists ( , )t 02 ! v  such that ( ) .t 02 1{o  Since ( ) ,0 0${  it 
follows that there exists ( , )t t01 2!  such that ( ) .t 01 1{p  How-
ever, this contradicts the fact that, for all ( , ),t 0! v  ( ) .t 02{p  
Therefore, for all ,t I!  ( ) .t 0${o  Finally, since ( )0 0${  and {  
is nondecreasing on ,I  it follows that { is nonnegative on ,I  
which proves 5).

To prove 6), consider the first case in 4). Since ( )t 01{p  for 
all ( , ),t t0 max!  it follows that {o  is decreasing and nonnega-
tive on ( , ) .t0 max  Therefore, ( )lim tt tmax{- o  exists and is non-
negative. The same conclusion holds in the second case in 
4), which proves 6).

To prove 7), suppose that tmax  is finite. Consider the 
first case in 4). It follows from 3) that, for all ( , ),t t0 max!  

( ) ,t 01{p  and thus, {o  is decreasing on ( , ) .t0 max  In addition, 
it follows from 4) that {o  is positive on ( , ) .t0 max  Hence, for 
all ( , ), ( ) ( ) .t t t0 0 0max 1 1! { { b=o o  Therefore, {  is increas-
ing on ( , )t0 max!  and bounded by .tmaxb  It thus follows that 

( )lim tt tmax{-  exists. However, since tmax  is finite, it follows 
that I  cannot be the maximal interval of existence of .{  
Hence, ,tmax 3=  and {  is defined on , ).[0 3  A similar ar-
gument applies in the second case in 4), which proves 7).

To prove 8), note that integrating

2 2 2#{ {{ { {{ { n+ + + =p o p o o
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implies that, for all ,t 0$

,( ) ( ) ( )t t t t2 2 2# #{ { { n a b+ + +o

which proves 8).
To prove 9), consider the first case in 4). It follows from 3) 

that, for all ( , ),t 0 3!  ( ) .t 01{p  Therefore, ( )t{o  is decreasing 
and, by 5), is nonnegative. Thus, ( )limL tt_ {"3 o  exists and 
is nonnegative. Therefore, for all ( , ),t 0 3!

.( ) ( )t Ltd
t

0
2{ { xx= o#

It therefore follows from 8) that, for all ( , ),t 0 3!

,Lt t 21 n a b+ +

and thus

/ .L t t21 n a b+ +

Hence,

/ ,limL t t0 0
t

2# # n a b+ + =
"3

which implies that .L 0=  A similar argument yields the 
same result for the second case in 4), which proves 9).

To prove 10), consider the first case in 4), so that, for all 
,t 02  ( ) .t 01{p  It thus follows from (32) that

,( ) ( ) ( )t t t2 2${ { n {+ +o6 @

which implies that

 .( ) ( ) ( )
( ) ( ) ( )

t t t
t t t2

2
2

$ ${ n { {
n { {

n

{ n

n
+ - =

+ + +
o

Therefore,

.( ) ( )t t2 ${ n { n+ o^ h

Integrating yields

,( ) ( )t t t2 2 40
2 2

$ ${
n

n {
n

n
n

+ + + +c cm m

which implies

( ) .t t 4 2${ n
n n

+ -

Combining this with 9) yields

( )
.lim

t
t

1
t n

{
=

"3

A similar argument yields the same result for the second 
case in 4), which proves 10).  

Figure 8 illustrates unbounded PI control of vertical slip 
for viscous and Coulomb friction. As shown in Theorem 1, 
the slip distance is infinite despite the fact that the normal 
force is unbounded. Finally, Figure 9 illustrates both cases 
in 2) of Theorem 1.

CONCLUSIONS AND OPEN QUESTIONS
This article showed that, in the presence of viscous friction, 
finite slip distance is not achievable under bounded normal 
force by any control law. Additionally, allowing unbounded 
normal force, finite slip distance is not achievable under PI 
control. In both cases, the control law is unable to reject the 
force due to gravity, which constitutes a step disturbance. 
Although extension to proportional-integral-derivative con-
trol was not considered, numerical experiments (not shown) 
suggest that the addition of derivative action provides no ad-
ditional benefit in terms of slip distance.

These properties are a consequence of the gripper model, 
where the normal force multiplies the velocity analogously 
with the viscous friction coefficient. Since standard linear 
techniques are not applicable, these results were obtained 
by analyzing the nonlinear closed-loop dynamics.
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FIGURE 8 Unbounded proportional-integral control of the gripper model (2) for vertical slip with the viscous and Coulomb friction models 
using K 10p=  N-s/m and .K 20 N/mi=  The parameters of both friction models and the initial velocities are chosen as in Figure 2.  
(a) The Coulomb friction yields finite slip distance, whereas, for viscous friction, the slip distance is infinite, despite the fact that the 
normal force is unbounded. (b) For Coulomb friction, finite slip velocity is reached in finite time. (c) For viscous friction, however, the slip 
velocity converges to zero but not sufficiently fast to achieve finite slip distance, despite the unbounded normal force. 
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The inability to achieve finite slip distance with vis-
cous friction under PI control with unbounded normal 
force does not imply that it is impossible to achieve finite 
slip distance under unbounded control. In fact, there may 
exist nonlinear control laws (such as sliding mode con-
trollers [5]) that meet this objective. However, such control 
laws would not be useful in practice because they would 
require infinite normal force. Nevertheless, the form of 
such a nonlinear control may suggest control laws with 
improved performance under bounded control for objects 
that do not have purely viscous friction. The development 
of such nonlinear control laws is left for future research.
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Recursive Least Squares for Real-Time Implementation

SYED ASEEM UL ISLAM and DENNIS S. BERNSTEIN

Many estimation and control problems involve a pro-
cess of the form

 ,yk kz i=  (1)

where , , ,k 0 1 2 f=  is the discrete-time step correspond-
ing to the continuous-time step size ,Ts  the scalar or vector 
y Rk

p!  is the measurement at step ,k  the matrix Rk
p n!z #  

is the regressor at step k  whose entries consist of current 
and past data, and Rn!i  is a column vector of n  unknown 
parameters. The objective is to use yk  and kz  to estimate the 
components of .i  In applications, yk  and kz  are corrupted 
by noise, and thus (1) does not hold exactly. This motivates 
the need for the least squares estimates of i  given below.

The measurements yk  and the data in kz  are typically 
obtained from a continuous-time process and, as such, are 
available at the sample times ,kTs  where Ts  is the sample 
interval. The batch approach to this problem is to collect 
a large amount of data and then apply least squares op-
timization to the collected data to compute an estimate 
of .i  In particular, collecting data over the time window 

, , ,i k0 f=  it follows from (1) that

 ,Y iU=  (2)

where

 , .Y
y

yk k

0 0

h h_ _

z

z

U> >H H  (3)

Note that (2) has the form ,Ax b=  where A  denotes ,U  x  
denotes ,i  and b  denotes .Y

In the presence of noise corrupting the data Y  and ,U  (2) 
may not have a solution. In this case, it is useful to replace 
(2) by a least squares optimization problem of the form

 
( ) ( ( ( ) ( )

( ( ( ) ( ),

J y y R

Y Y R

k i i
i

k

i i
0

0 0

0 0

T T

T T

_i z i z i i i i i

i i i i i iU U=

- - + - -

- - + - -
=

) )

) )

t t t t t

t t t t

/
 (4)

where R is a positive semidefinite (and thus, by definition, 
symmetric) matrix, and 0i  is an initial estimate of .i  Assum-
ing that R is chosen such that the inverse in (5) exists, the regu-
larization term ( ) ( )R0 0

Ti i i i- -t t  weights the initial estimate 
and ensures that Jk  has a unique global minimizer. In particu-
lar, the batch least squares (BLS) minimizer of (4) is given by

 ( ) ( ) .R Y R,R
1

0opt
T Ti iU U U= + +-  (5)

Note that the inverse required to compute (5) is of size ,n n#  
and thus the computational requirement of the inverse is of 
order .n3  In addition to the inverse, three matrix multipli-
cations are needed. Note also that the memory needed to 
store U  grows with .k  Furthermore, if U  has full column 
rank, then R  can be set to zero, and thus (5) becomes

 ( ) .Y,0
1

opt
T Ti U U U= -  (6)

In the case where (2) has a solution and U  has full column 
rank, (6) is the unique solution of (2).

In many applications, computational speed and memo-
ry are limited. One way to alleviate these requirements is 

Digital Object Identifier 10.1109/MCS.2019.2900788

Date of publication: 17 May 2019

1066-033X/19©2019IEEE


