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For About This Issue: In their tutorial article “What Is the Adjoint of a Linear System,”
Omran Kouba and Dennis Bernstein view a linear system as an infinite-dimensional operator2

and use this framework to derive the corresponding adjoint operator. Their goal is to show that
the form of the adjoint operator explains the duality between estimation and control as well as4

the fact that, in classical optimal control, time runs backwards.

Summary: Duality is a bedrock principle of control and estimation, but where does this6

duality come from? The short answer is: adjoints. In fact, adjoints play a key role in numerous
branches of engineering and computation, but what exactly is an adjoint? This article describes8

how adjoints are used to compute sensitivities and then derives the adjoint of a linear time-
varying system as an operator between Hilbert spaces. A connection is made with the costate10

equation of classical optimal control theory, which is shown to be a partial adjoint. This tutorial
article is intended for all students of systems and control theory who want to understand why12

duality shows up in unexpected ways.

Although controllability and observability are distinct properties, one of the fundamental—14

and most attractive—results of our field is the fact that (A,B) is controllable if and only
if (AT, BT) is observable. As mentioned in “Summary,” this duality provides a deep linkage16

between the linear-quadratic regulator (LQR), which seeks a feedback gain K such that A+BK

is asymptotically stable, and the linear-quadratic estimator (LQE), which seeks an output-error-18

injection gain F such that A+FC is asymptotically stable. In the case of LQR, the controllability
of (A,B) implies that there exists a feedback gain K that arbitrarily places the eigenvalues20

of A + BK, thus facilitating closed-loop asymptotic stability. In the dual case of LQE, the
observability of (A,C) implies that there exists an error-injection gain F that arbitrarily places22

the eigenvalues of A+FC, thus facilitating closed-loop asymptotic stability of the error dynamics.
A key distinction worth noting is that A + BK is the dynamics matrix of a physical feedback24

loop, whereas A+ FC is the dynamics matrix of a nonphysical error system.

As mention in the Summary, the duality between estimation and control suggests that26

something deeper is going on. As shown by the elegant approach of [1, p. 198], these problems
are related by the adjoint operator. In the case of an n ×m real matrix A, the adjoint of A is28
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simply its transpose AT, which is an m × n matrix. Within the context of a Hilbert space H
with inner product 〈·, ·〉, which can be thought of as an infinite-dimensional Euclidean space,2

the adjoint of a bounded linear operator A : H → H is the linear operator A∗ that satisfies
〈Av, w〉 = 〈v,A∗w〉 for all v, w ∈ H. Bounded and unbounded linear operators are extensively4

studied in mathematics [2], [3]. Although unbounded linear operators are not considered in this
article, these operators represent partial differential operators, which define infinite-dimensional6

systems [4].

Adjoints are ubiquitous in computational mathematics and optimization theory [5, pp.8

150–154, 159]. Data assimilation and optimization methods use adjoint models to compute the
sensitivity of a cost function to parameter changes [6]–[9]. Within the context of optimal control10

theory, the adjoint system defines the costate, which appears in the statement of the minimum
principle based on strong control variations and first-order variational necessary conditions based12

on weak control variations [10, pp. 188, 233], [11, p. 258]. The adjoint operator is used in [1,
pp. 198, 199] to derive the optimal estimator from the optimal regulator; this approach thus14

reveals the origin of the deep duality between estimation and control mentioned above.

Within the context of differential equations, a linear system can be viewed as a linear16

operator that maps a vector-valued, square-integrable input u to a vector-valued, square-integrable
output y. The linear dynamical system thus defines a bounded linear operator that maps one18

Hilbert space to another Hilbert space. The adjoint of this linear operator corresponds to a linear
system that is different from the original linear system. The goal of this paper is to derive the20

dynamics of the adjoint system.

A bounded linear operator that maps one Hilbert space to another Hilbert space can be22

associated with its adjoint operator. For an operator defined by a linear dynamical system, the
adjoint operator can be expressed in terms of another linear dynamical system; this adjoint24

dynamical system is closely related to the original linear dynamical system. The purpose of this
article is to derive the adjoint dynamical system and show that it does, in fact, represent the adjoint26

of the bounded linear operator corresponding to the original dynamical system. Summaries of
this result are given in [1, pp. 85, 86] and [12, pp. 68–70].28

This note also presents the adjoint differential equation for the costate, which, as mentioned
above, arises in classical optimal control theory. We call this the partial adjoint since it does30

not represent the adjoint operator per se but rather provides a computationally convenient
representation of the state transition matrix. Details are provided in “The Costate Equation of32

Optimal Control as a Partial Adjoint.”
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Using Adjoints to Determine Sensitivity

One of the most fundamental problems in mathematics and engineering is to compute the2

solution x of the matrix-vector equation

Ax = b, (1)

where A is a matrix, b is a column vector, and x is a column vector. As discussed in “Existence4

and Uniqueness of Solutions to Ax = b and ATy = c,” (1) may or may not have a solution,
and, if (1) does have a solution, then either it is the unique solution or (1) has infinitely many6

solutions. The problem of interest is to determine how a function of the form f(x, c) = cTx,
where c is a given vector, changes as b changes. This dependence can be determined numerically8

by solving (1) for many different values of b; however, this is inconvenient in the case where
the dimensions of x and b are large. Adjoints provide a computationally efficient approach to10

determining this sensitivity.

Let A ∈ Rn×m. For all b ∈ Rn, define12

X (b)
4
= {x ∈ Rm : Ax = b}, (2)

and, for all x ∈ X (b) and c ∈ Rm, define the primal cost f : X (b)× Rm → R by

f(x, c)
4
= cTx. (3)

Furthermore, for all c ∈ Rm, define14

Y(c)
4
= {y ∈ Rn : ATy = c}, (4)

and, for all y ∈ Y(c) and b ∈ Rn, define the dual cost g : Y(c)× Rn → R by

g(y, b)
4
= bTy. (5)

For b ∈ Rn and c ∈ Rm, the sets X (b) and Y(c) may be empty. Assuming that these sets16

are not empty, the following result shows that the primal and dual costs are equal. This result
holds whether or not X (b) and Y(c) have unique elements.18

Proposition 1. Let b ∈ Rn and c ∈ Rm, and assume that X (b) and Y(c) are not empty.
Then, for all x ∈ X (b) and all y ∈ Y(c),20

f(x, c) = g(y, b). (6)

Proof. Note that

f(x, c) = xTc = xTATy = (Ax)Ty = bTy = g(y, b). �
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Note that f(x, c) depends on b due to the dependence of x on b; in many applications, it
is useful to determine this sensitivity. To do this, assume that A is either a nonsingular square2

matrix or a wide matrix with full row rank, which implies that, for all b ∈ Rn, Ax = b has at
least one solution and, for all c ∈ Rm, ATy = c has at most one solution. Now, let c ∈ R(AT),4

b ∈ Rn, and x ∈ X (b). Furthermore, let δb ∈ Rn and let δx ∈ Rm satisfy x + δx ∈ X (b + δb);
hence, Aδx = δb. Letting y

4
= (AAT)−1Ac denote the unique solution of ATy = c, it follows6

that the sensitivity δf(x, c) of f due to δb is given by

δf(x, c)
4
= f(x+ δx, c)− f(x, c)

= f(δx, c)

= f(δx,ATy)

= (ATy)Tδx

= yTAδx

= yTδb

= (δb)Ty

= g(y, δb). (7)

It thus follows that, for all b ∈ Rn, x ∈ X (b), δb ∈ Rn, and c ∈ R(AT),8

δf(x, c) = g(y, δb), (8)

where y 4= (AAT)−1Ac is the unique solution of ATy = c. In the case where A is wide and
thus not square, x is an arbitrary solution of Ax = b, which has infinitely many solutions.10

The Adjoint of a Bounded Linear Operator

The n × m real matrix A defines the linear function f that maps Rm to Rn defined by12

f(x) = Ax. We equip Rk with the inner product

〈x, y〉`k2
4
= yTx, (9)

where the subscript `k2 is analogous with the notation used below for the inner product on the14

function space L2. For all x ∈ Rk, the corresponding norm on Rk is the Euclidean norm

‖x‖`k2
4
= 〈x, x〉1/2

`k2
=
√
xTx. (10)
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The adjoint of A is the unique m × n matrix A′ that satisfies 〈Ax, y〉`n2 = 〈x,A′y〉`m2 for all
x ∈ Rm and y ∈ Rn. Since2

〈Ax, y〉`n2 = yTAx

= (Ax)Ty

= xTATy

= 〈x,ATy〉`m2 , (11)

it follows that A′ is the transpose AT ∈ Rm×n of A.

The notion of the adjoint of a matrix can be extended to bounded linear operators between4

Hilbert spaces. A Hilbert space (H, 〈·, ·〉H) is a vector space over the field of real or complex
numbers with an inner product 〈·, ·〉H and with the property that the normed vector space6

(H, ‖ · ‖H) arising from (H, 〈·, ·〉H) is complete in the sense that every Cauchy sequence in
H converges with respect to the norm ‖ · ‖H induced by the inner product to an element of H.8

More details can be found in [3, p. 112]. This article is restricted to the case of a real Hilbert
space, where the field is R. In particular, for all x ∈ H,10

‖x‖H
4
=
√
〈x, x〉H. (12)

Real Hilbert spaces have several useful features. Perhaps the most useful feature is the
notion of orthogonality, where the elements x and y of H are orthogonal if 〈x, y〉H = 0.12

Consequently, a Hilbert space can be viewed as a natural generalization of Euclidean space.
Second, if f : H → R is a bounded linear functional, then there exists a unique element yf ∈ H14

such that f(x) = 〈x, yf〉H; this is the Riesz representation theorem [3, p. 345]. As discussed
below, this theorem is the key to proving the existence of adjoints of bounded linear operators16

between Hilbert spaces. First, however, we explain the meaning of bounded linear operators and
bounded linear functionals.18

A linear functional f : H → R is bounded if there exists M ≥ 0 such that, for all x ∈ H,

|f(x)| ≤M‖x‖H. (13)

This property is equivalent to saying that f is bounded on bounded subsets. It is also equivalent to20

continuity: If the sequence (xi)
∞
i=1 converges to 0 in H, then (f(xi))

∞
i=1 converges to 0. Similarly,

the linear operator A : H1 → H2 between Hilbert spaces (H1, 〈·, ·〉H1) and (H2, 〈·, ·〉H2) is22

bounded if there exists M ≥ 0 such that, for all x ∈ H1,

‖Ax‖H2 ≤M‖x‖H1 . (14)

This property is equivalent to saying that A is bounded on bounded subsets. It is also equivalent24

to continuity: If the sequence (xi)
∞
i=1 converges to 0 in H1, then (Axi)∞i=1 converges to 0 in H2.
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Let A : H1 → H2 be a bounded linear operator. For y ∈ H2, the linear functional fy : x 7→
〈Ax, y〉H2 is bounded because A is bounded, and, by the Riesz representation theorem, there2

exists a unique vector A∗y ∈ H1 such that, for all x ∈ H1, fy(x) = 〈x,A∗y〉H1 . Furthermore, the
linearity of A implies the linearity of the mapping y 7→ A∗y, and the continuity (boundedness)4

of A implies the continuity (boundedness) of A∗. Therefore, for every bounded linear operator
A : H1 → H2 there exists a unique bounded linear operator A∗ : H2 → H1 such that, for all6

(x, y) ∈ H1 ×H2,

〈Ax, y〉H2 = 〈x,A∗y〉H1 . (15)

The bounded linear operator A : H → H, where H is a Hilbert space, is self adjoint if A = A∗.8

As discussed in [2], [3], self-adjoint operators, which are analogous to symmetric matrices, have
many convenient properties.10

An extremely useful Hilbert space is the vector space Lm2 [t0, tf ] of Lebesgue-measurable,
square-integrable functions mapping [t0, tf ] to Rm, where t0 < tf , equipped with the inner product12

〈f, g〉Lm
2 [t0,tf ]

4
=

∫ tf

t0

g(t)Tf(t) dt. (16)

We write L2[t0, tf ] in the case where m = 1. In fact, for finite t0 and tf , a Fourier series can
be viewed as a basis-function expansion of an element of the Hilbert space L2[t0, tf ]. As in the14

case of Rm, the norm induced by the inner product 〈·, ·〉Lm
2 [t0,tf ] is defined by

‖f‖Lm
2 [t0,tf ]

4
= 〈f, f〉1/2Lm

2 [t0,tf ]
. (17)

Note that16

‖f‖Lm
2 [t0,tf ] =

(∫ tf

t0

f(t)Tf(t) dt

)1/2

=

(∫ tf

t0

‖f(t)‖2`m2 dt

)1/2

. (18)

For example, let K : [t0, tf ]× [t0, tf ]→ R be a Lebesgue-measurable function that satisfies∫ tf

t0

∫ tf

t0

|K(t, τ)|2 dt dτ <∞. (19)

Now, let u ∈ L2[t0, tf ], and define the function Au : [t0, tf ]→ R by18

(Au)(t)
4
=

∫ tf

t0

K(t, τ)u(τ) dτ. (20)
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Then [13, Corollary 3.4.6] implies that Au is a Lebesgue-measurable function on [t0, tf ].
Furthermore, for all u, v ∈ L2[t0, tf ],2

〈Au, v〉L2[t0,tf ] =

∫ tf

t0

v(t)

∫ tf

t0

K(t, τ)u(τ) dτdt

=

∫ tf

t0

∫ tf

t0

v(t)K(t, τ)u(τ) dτdt

=

∫ tf

t0

∫ tf

t0

u(τ)K(t, τ)v(t) dτdt

=

∫ tf

t0

∫ tf

t0

u(τ)K(t, τ)v(t) dtdτ

=

∫ tf

t0

u(τ)

∫ tf

t0

K(t, τ)v(t) dtdτ

= 〈u,A∗v〉L2[t0,tf ], (21)

where the adjoint A∗ of A is the linear operator given by

(A∗v)(τ) =

∫ tf

t0

K(t, τ)v(t) dt. (22)

It can be seen that A is self adjoint if and only if, for almost all t, τ ∈ [t0, tf ], K(t, τ) = K(τ, t).4

The fact that A : L2[t0, tf ]→ L2[t0, tf ] is a bounded linear operator follows from the more general
case considered below for vector-valued functions.6

More generally, let σmax denote the maximum singular value, and let K : [t0, tf ]× [t0, tf ]→
Rl×m. Assume that K is Lebesgue measurable and that8

M
4
=

(∫ tf

t0

∫ tf

t0

σ2
max(K(t, τ)) dt dτ

)1/2

<∞, (23)

Since Rl×m is finite dimensional, all norms on this space are equivalent, and thus (23) is
equivalent to10 (∫ tf

t0

∫ tf

t0

‖K(t, τ)‖2F dt dτ

)1/2

<∞, (24)

where ‖·‖F is the Frobenius norm. Therefore, (23) is equivalent to the condition that every entry
of K is square integrable on [t0, tf ]× [t0, tf ].12

Next, for all u ∈ Lm2 [t0, tf ], define the function Au : [t0, tf ]→ Rl by

(Au)(t) =

∫ tf

t0

K(t, τ)u(τ) dτ. (25)
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Using the fact that, for all A ∈ Rl×m and all x ∈ Rm, ‖Ax‖`l2 ≤ σmax(A)‖x‖`m2 , it follows that,
for all t ∈ [t0, tf ],2

‖(Au)(t)‖`l2 =

∥∥∥∥∫ tf

t0

K(t, τ)u(τ) dτ

∥∥∥∥
`l2

≤
∫ tf

t0

‖K(t, τ)u(τ)‖`l2 dτ

≤
∫ tf

t0

σmax(K(t, τ)) ‖u(τ)‖`m2 dτ

≤
(∫ tf

t0

σ2
max(K(t, τ)) dτ

)1/2

‖u‖Lm
2 [t0,tf ], (26)

where the third inequality follows from the Cauchy-Schwarz inequality in L2[t0, tf ] [2, pp. 9,10].
Now, squaring and integrating yields4 ∫ tf

t0

‖(Au)(t)‖2`l2 dt ≤
(∫ tf

t0

∫ tf

t0

σ2
max(K(t, τ) dτ dt

)
‖u‖2Lm

2 [t0,tf ]

≤M2‖u‖2Lm
2 [t0,tf ]

. (27)

Therefore, for all u ∈ Lm2 [t0, tf ], it follows that Au ∈ Ll2[t0, tf ] and ‖Au‖Ll
2[t0,tf ]

≤M‖u‖Lm
2 [t0,tf ].

Hence, A : Lm2 [t0, tf ]→ Ll2[t0, tf ] is a bounded linear operator.6

To determine the adjoint A∗ of A, let u ∈ Lm2 [t0, tf ] and v ∈ Ll2[t0, tf ]. It thus follows that

〈Au, v〉Ll
2[t0,tf ]

=

∫ tf

t0

v(t)T(Au)(t) dt

=

∫ tf

t0

∫ tf

t0

v(t)TK(t, τ)u(τ) dτ dt

=

∫ tf

t0

∫ tf

t0

[KT(t, τ)v(t)]Tu(τ) dτ dt.

Therefore, A∗v is given by8

(A∗v)(τ) =

∫ tf

t0

KT(t, τ)v(t) dt. (28)

The Adjoint of a Linear Time-Invariant System

Consider the linear time-invariant system10

ẋ(t) = Ax(t) +Bu(t), (29)

x(t0) = x0, (30)

y(t) = Cx(t) +Du(t), (31)

8



where, for all t ∈ [t0, tf ], x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, y(t) ∈ Rl is the output,
and A,B,C,D are real matrices of appropriate size. It thus follows that, for all t ∈ [t0, tf ],2

y(t) = Ce(t−t0)Ax(t0) +

∫ t

t0

Ce(t−τ)ABu(τ) dτ +Du(t). (32)

In the case where x0 = 0 and D = 0, it follows that

y(t) =

∫ t

t0

CeA(t−τ)Bu(τ) dτ, (33)

which can be written as4

y(t) =

∫ tf

t0

K(t, τ)u(τ) dτ, (34)

where

K(t, τ)
4
= I[t0,t](τ)Ce(t−τ)AB, (35)

and where IX(x) = 1 if x ∈ X and IX(x) = 0 otherwise.6

For all u ∈ Lm2 [t0, tf ], (34) can be written as

y = Au, (36)

where A : Lm2 [t0, tf ]→ Ll2[t0, tf ] is a bounded linear operator. Using (28) it thus follows that, for8

all v ∈ Ll2[t0, tf ],

(A∗v)(τ) =

∫ tf

t0

I[τ,tf ](t)B
Te(t−τ)A

T

CTv(t) dt (37)

=

∫ tf

τ

BTe(t−τ)A
T

CTv(t) dt. (38)

Finally, interchanging the roles of t and τ yields the adjoint operator10

(A∗v)(t) =

∫ tf

t

BTe(τ−t)A
T

CTv(τ) dτ. (39)

It can be seen that (39) differs from (33) in two key ways. First, the integration in (33) is from t0

to t, whereas, in (39), the integration is from t to tf . Furthermore, the matrices A,B,C in (33)12

are replaced, respectively, by AT, CT, BT in (39). The first distinction shows that the adjoint
operator operates in reverse time, while the second distinction shows that properties of A,B are14

replaced by properties of AT, CT.

If l and m are different, then K(t, τ) is rectangular, and thus A cannot be self adjoint. In16

the case where l = m, it follows from the fact that K(t, τ) = 0 for all τ > t that A is not self
adjoint.18

The case where x0 and D are not necessarily zero is considered in the next section, where
the linear time-invariant dynamics (29), (31) are replaced by linear time-varying dynamics.20
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The Adjoint of a Linear Time-Varying System

For t ∈ [t0, tf ], consider the linear, time-varying system2

ẋ(t) = A(t)x(t) +B(t)u(t), (40)

x(t0) = x0, (41)

y(t) = C(t)x(t) +D(t)u(t), (42)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl, A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rl×n, D(t) ∈
Rl×m, and x0 ∈ Rn. We assume for simplicity that A,B,C,D, and u are continuous functions4

of time. The solution to these equations can be expressed in terms of the state transition matrix
Φ(t, τ), which generalizes the exponential function exp((t − τ)A) to the case where A is a6

function of t. Details on the state transition matrix are given in “Some Facts on the State
Transition Matrix.” For the following result, see [1, p. 82] and [14, pp. 46–49].8

Theorem 1. Equations (40), (41) have a unique continuously differentiable solution on
[t0, tf ]. In particular, for all t ∈ [t0, tf ],10

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ (43)

and

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ +D(t)u(t). (44)

Since each pair (x0, u) ∈ Rn × Lm2 [t0, tf ] gives rise to an output y ∈ Ll2[t0, tf ], we define12

the Hilbert space H̃ 4
= Rn × Lm2 [t0, tf ] with the inner product

〈(a, u), (b, v)〉H̃
4
= bTa+

∫ tf

t0

v(t)Tu(t) dt. (45)

Completeness of H̃ follows from the fact that Cauchy sequences in H are couples of Cauchy14

sequences in Rn and Lm2 [t0, tf ], which converge in their respective spaces. Therefore, (44) can
be represented by the linear operator A : H̃ → Ll2[t0, tf ] defined by16

(A(x0, u))(t)
4
= C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ +D(t)u(t). (46)

It can be seen that A has two parts, where one is defined by an integral and the other is the
multiplication operator (x0, u) 7→ CΦt0x0 +Du, where, for all t ∈ [t0, tf ],18

Φτ (t)
4
= Φ(t, τ). (47)

As shown in earlier, the continuity of B, C, D, and Φ implies that A : H̃ → Ll2[t0, tf ] is bounded.
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Next, to determine A∗ : Ll2[t0, tf ]→ H̃, define, for all t ∈ [t0, tf ],

Γ(t)
4
=

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ, (48)

It thus follows that, for all (x0, u) ∈ H̃ and v ∈ Ll2[t0, tf ],2

〈A(x0, u), v〉Ll
2[t0,tf ]

= 〈CΦt0x0, v〉Ll
2[t0,tf ]

+ 〈Du, v〉Ll
2[t0,tf ]

+ 〈Γ, v〉Ll
2[t0,tf ]

= 〈CΦt0x0, v〉Ll
2[t0,tf ]

+ 〈Du, v〉Ll
2[t0,tf ]

+

∫ tf

t0

∫ t

t0

〈C(t)Φ(t, τ)B(τ)u(τ), v(t)〉`l2 dτdt

= 〈x0,ΦT
t0
CTv〉Lm

2 [t0,tf ] + 〈u,DTv〉Lm
2 [t0,tf ]

+

∫ tf

t0

∫ t

t0

〈u(τ), B(τ)TΦ(t, τ)TC(t)Tv(t)〉`m2 dτdt

= 〈x0,ΦT
t0
CTv〉Lm

2 [t0,tf ] + 〈u,DTv〉Lm
2 [t0,tf ]

+

∫ tf

t0

〈
u(τ),

∫ tf

τ

B(τ)TΦ(t, τ)TC(t)Tv(t)dt

〉
`m2

dτ

= 〈x0, a(v)〉`m2 +

∫ tf

t0

〈
u(τ), (Ãv)(τ)

〉
`m2

dτ, (49)

where a : Ll2[t0, tf ]→ Rm is defined by

a(v)
4
=

∫ tf

t0

Φ(τ, t0)
TC(τ)Tv(τ) dτ (50)

and Ã : Ll2[t0, tf ]→ Lm2 [t0, tf ] is defined by4

(Ãv)(t)
4
= D(t)Tv(t) +

∫ tf

t

B(t)TΦ(τ, t)TC(τ)Tv(τ) dτ. (51)

Hence A∗v = (a(v), Ãv) ∈ H̃.

Next, note that (51) can be written as6

(Ãv)(t) = D(t)Tv(t) +

∫ tf

t0

B(t)TΦ(τ, t)TC(τ)Tv(τ) dτ

−
∫ t

t0

B(t)TΦ(τ, t)TC(τ)Tv(τ) dτ. (52)

Using the fact that Φ(τ, t)T = Φ(t0, t)
TΦ(τ, t0)

T, it follows from (52) that∫ tf

t0

B(t)TΦ(τ, t)TC(τ)Tv(τ) dτ = B(t)TΦ(t0, t)
T

∫ tf

t0

Φ(τ, t0)
TC(τ)Tv(τ) dτ

= B(t)TΦ(t0, t)
Ta(v). (53)
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Hence

(Ãv)(t) = B(t)TΦ(t0, t)
Ta(v) +

∫ t

t0

B(t)TΦ(τ, t)T(−C(τ)T)v(τ) dτ +D(t)Tv(t). (54)

Letting Ψ denote the state transition matrix of ẋ = −A(t)Tx, it follows from Corollary S1 in2

“Some Facts on the State Transition Matrix” that

(Ãv)(t) = B(t)TΨ(t, t0)
Ta(v)

+

∫ t

t0

B(t)TΨ(t, τ)(−C(τ)T)v(τ) dτ +D(t)Tv(t). (55)

Comparing (55) with (44), it follows that z(t)
4
= (Ãv)(t) is the output of the linear time-varying4

system

ṗ(t) = −A(t)Tp(t)− C(t)Tv(t), (56)

p(t0) = a(v), (57)

z(t) = B(t)Tp(t) +D(t)Tv(t), (58)

where a(v) is defined by (50). Using Corollary S1, it follows that6

p(t) =

∫ tf

t

Φ(τ, t)TC(τ)Tv(τ) dτ, (59)

which satisfies the initial condition (57) as well as the final condition p(tf) = 0. Consequently,
(57) can be replaced by the p(tf) = 0. It thus follows that A∗v = (a(v), Ãv) = (p(t0), z), where8

p and z are, respectively, the state and output of the linear time-varying system

ṗ(t) = −A(t)Tp(t)− C(t)Tv(t), (60)

p(tf) = 0, (61)

z(t) = B(t)Tp(t) +D(t)Tv(t). (62)

We thus have the following duality result, which provides a restatement of the adjoint identity10

〈A(x0, u), v〉Ll
2[t0,tf ]

= 〈(x0, u),A∗v〉H̃ . (63)

Theorem 2. Consider the linear time-varying system (40)–(42), where u ∈ Lm2 [t0, tf ], and
the corresponding adjoint system (60)–(62), where v ∈ Ll2[t0, tf ]. Then12

〈y, v〉H̃ = 〈x(t0), p(t0)〉`n2 + 〈u, z〉Lm
2 [t0,tf ]. (64)

12



Time Reversal for the Adjoint System

The dynamics of the adjoint system (60)-(62) involve a final condition rather than an2

initial condition. In addition, if A constant and asymptotically stable, then −AT is unstable.
Both of these concerns can be addressed by reversing the direction of time. In particular, for the4

continuous function t 7→ W (t) defined on [t0, tf ], let
←−
W denote the function t 7→ W (t0 + tf − t).

With this notation, let s and r denote, respectively, the state and output of the linear time-varying6

system

ṡ(t) =
←−
A (t)Ts(t) +

←−
C (t)T←−v (t), (65)

s(t0) = 0, (66)

r(t) =
←−
B (t)Ts(t) +

←−
D(t)T←−v (t). (67)

Then p =←−s and z =←−r , and the duality expressed in (64) takes the form8

〈y, v〉 = 〈x(t0), s(tf)〉`n2 + 〈u,←−r 〉Lm
2 [t0,tf ]. (68)

Conclusions and Extensions

The goal of this article was to derive the adjoint of a linear time-varying system as the10

adjoint of a linear operator between Hilbert spaces. This objective was motivated by the fact
that the adjoint of a linear system plays a fundamental role in control and estimation theory as12

demonstrated in [1]. In particular, the adjoint of a linear system explains the duality between
controllability and observability, which is a bedrock principle of systems theory.14

It was shown that the linear operator defined by a linear time-varying system is bounded—
and thus continuous—but not self adjoint, even in the case of a square linear time-invariant16

system. An interesting research topic would be to investigate the implications of the lack of self
adjointness in terms of the spectral properties of the operator.18

The development in the present paper was confined to linear time-varying systems on a
finite interval. In practice, however, the infinite-horizon case is important. This case is addressed20

in [1, pp. 188–194] through a limiting argument. An open problem is to directly address the
infinite-horizon case by determining the adjoint of a linear system on an unbounded interval.22

This extension is challenging since it entails an unbounded linear operator whose domain is a
dense, proper subspace of a Hilbert space.24
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Sidebar 1: The Costate Equation of Optimal Control as a Partial Adjoint

An adjoint system appears in classical optimal control theory within the context of the
minimum principle, where it is called the costate equation. The costate p(t) appears in the
Hamiltonian H defined by

H(x, u, p, t)
4
= L(x, u) + pTf(x, u, t) (S1)

for an optimal control problem with dynamics ẋ(t) = f(x(t), u(t), t) and cost function2

J(u)
4
=
∫ tf
t0
L(x(t), u(t), t) dt. The minimum principle states that H(x(t), u(t), p(t), t) is

minimized pointwise in time along the optimal state trajectory and control, where the costate p4

satisfies the partial adjoint equation ṗ(t) = −A(t)Tp(t), with the endpoint condition p(tf) = pf

in the case where the state trajectory of ẋ(t) = f(x(t), u(t), t) has a specified initial condition. In6

the folklore of optimal control, p is sometimes viewed as a dynamic Lagrange multiplier, where
the dynamics ẋ(t) = f(x(t), u(t), t) are viewed as the constraint ẋ(t)− f(x(t), u(t), t) = 0 [10,8

p. 187].

Letting δx(t) denote the solution to the linearized homogeneous dynamics δẋ(t) =

A(t)δx(t), it follows that
d

dt
[p(t)Tδx(t)] = ṗ(t)Tx(t) + p(t)Tẋ(t)

= [−A(t)Tp(t)]Tx(t) + p(t)TA(t)x(t)

= −p(t)TA(t)x(t) + p(t)TA(t)x(t)

= 0. (S2)

Hence, p(t)Tx(t) is constant, and thus p(t) − p(0) and x(t) are orthogonal along trajectories.10

The significance of this condition is explained in [15, p. 247] and [16, pp. 326, 327]. As shown
below, the costate p provides a convenient representation of the state transition matrix.12

Strictly speaking, the costate equation is not the adjoint of a linear system with an input
and an output. We thus refer to the costate equation as a partial adjoint. The following result is14

stated for l ≥ 1. In the case l = 1, the matrix P of the partial adjoint is the costate p.

Proposition S4. Let y be given by (40)–(42), and let P : [t0, tf ]→ Rn×l satisfy16

Ṗ (t) = −A(t)TP (t), (S3)

P (tf) = CT(tf). (S4)

Then,

y(tf) = P (t0)
Tx0 +

∫ tf

t0

P (τ)TB(τ)u(τ) dτ +D(tf)u(tf). (S5)

15



Proof. It follows from (S3) and (40) that

d

dt
[P (t)Tx(t)] = Ṗ (t)Tx(t) + P (t)Tẋ(t)

= −P (t)TA(t)x(t) + P (t)T[A(t)x(t) +B(t)u(t)]

= P (t)TB(t)u(t). (S6)

Next, integrating (S6) from t0 to tf and using (S4), (41), and (42) with t = tf yields∫ tf

t0

P (t)TB(t)u(t) dt = P (tf)
Tx(tf)− P (t0)

Tx(t0)

= C(tf)x(tf)− P (t0)
Tx0

= y(tf)−D(tf)u(tf)− P (t0)
Tx0,

which is equivalent to (S5). �

It can be seen that (S5) is an alternative expression for y(tf) given by (44), that is,2

y(tf) = C(tf)Φ(tf , t0)x0 +

∫ tf

t0

C(tf)Φ(tf , τ)B(τ)u(τ) dτ +D(tf)u(tf). (S7)

In order to obtain Φ(tf , τ) to evaluate (S7), equation (S20) must be integrated from τ to tf for
each τ ∈ [t0, tf ]. In contrast, (S5) requires only a single backward integration of P . To show4

the equivalence of (S5) and (S7), Corollary S1 in “Some Facts on the State Transition Matrix”
implies that6

P (t) = Ψ(t, tf)C(tf)
T = Φ(tf , t)

TC(tf)
T, (S8)

that is,

C(tf)Φ(tf , t) = C(tf)Ψ(t, tf)
T = P (t)T. (S9)

Replacing C(tf)Φ(tf , t0) and C(tf)Φ(tf , τ) in (S7) by P (t0)
T and P (τ)T, respectively, yields8

(S5).

In fact, P can be computed forward. To show this, define Q(t)
4
=
←−
P (t) = P (t0 + tf − t).10

Since Q̇(t) = −Ṗ (t0 + tf − t), it follows from (S3) that, for all t ∈ [t0, tf ],

Q̇(t) = A(t0 + tf − t)TQ(t), (S10)

Q(t0) = CT(tf). (S11)

Note that (S10), (S11) can be integrated forward in time. However, for online implementation,12

future values of A(t0 + tf − t) must be known.
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Finally, denoting (40), (42) by the time-varying matrix[
A B

C D

]
, (S12)

it follows that the adjoint system can be represented by2 [
−AT −CT

BT DT

]
. (S13)

Then (S13) can be written as
←−−−−−−−−−−−[
−AT −CT

BT DT

]
, (S14)

whose upper left corner corresponds to the costate equation ṗ(t) = −A(t)Tp(t), thus justifying4

the name partial adjoint.

17



Sidebar 2: Existence and Uniqueness of Solutions to Ax = b and ATy = c

For A ∈ Rn×m, let A+ ∈ Rm×n denote the Moore-Penrose generalized inverse of A. Let2

“R” denote range, and let “N ” denote null space.

Proposition S1. Let A ∈ Rn×m, b ∈ Rn, and c ∈ Rm. Then the following statements hold:4

i) If A is wide, then Ax = b has either zero or infinitely many solutions. Both cases can
occur.6

ii) If A is square or tall, then Ax = b has either zero, exactly one, or infinitely many solutions.
All three cases can occur.8

iii) The following statements are equivalent:
a) Ax = b has at least one solution.10

b) b ∈ R(A).

c) b = AA+b.12

iv) The following statements are equivalent:
a) ATy = c has at least one solution.14

b) c ∈ R(AT).

c) c = A+Ac.16

v) Ax = b has at most one solution if and only if N (A) = {0}.
vi) ATy = c has at most one solution if and only if N (AT) = {0}.18

vii) If Ax = b has at least one solution, then all solutions are given by A+b+N (A).

viii) If ATy = c has at least one solution, then all solutions are given by A+Tb+N (AT).20
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As an alternative proof of Proposition 1, assume that X (b) and Y(c) are not empty. Since
b ∈ R(A) and c ∈ R(AT), it follows from b = AA+b, c = A+Ac = ATA+Tc given by [S1,2

Proposition 8.1.7] that A+b ∈ X (b) and A+Tc ∈ Y(c). Therefore, [S1, Proposition 3.7.5] implies
that X (b) and Y(c) can be written as4

X (b) = A+b+N (A), (S15)

Y(c) = A+Tc+N (AT). (S16)

Now, let x ∈ X (b) and y ∈ Y(c). Since, by [S1, Proposition 8.1.7], N (A) = R(I − A+A) and
N (AT) = R(I − AA+), it follows from (S15) and (S16) that there exist x ∈ Rm and y ∈ Rn

6

such that x = A+b+ (I − A+A)x and y = A+Tc+ (I − AA+)y. Combining these facts yields

f(x, c) = cTx

= cT[A+b+ (I − A+A)x]

= cTA+b+ cT(I − A+A)x

= cTA+b+ xT(I − A+A)c

= cTA+b

= cTA+b+ yT(I − AA+)b

= bTA+Tc+ bT(I − AA+)y

= bT[A+Tc+ (I − AA+)y]

= bTy

= g(y, b).

[S1] D. S. Bernstein, Scalar, Vector, and Matrix Mathematics, revised and expanded edition,8

Princeton University Press, 2018.
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Sidebar 3: Some Facts on the State Transition Matrix

For t ∈ [t0, tf ], consider the linear time-varying system2

ẋ(t) = A(t)x(t), (S17)

x(t0) = x0, (S18)

where A : [t0, tf ]→ Rn×n is continuous. The solution of (S17), (S18) is given by

x(t) = Φ(t, t0)x0, (S19)

where Φ is the state transition matrix given by the following result.4

Proposition S2. Let A : [t0, tf ] → Rn×n be continuous. Then there exists a unique
continuously differentiable function Φ: [t0, tf ] × [t0, tf ] → Rn×n such that, for all t, τ ∈ [t0, tf ],6

the following conditions are satisfied:

∂

∂t
Φ(t, τ) = A(t)Φ(t, τ), (S20)

Φ(τ, τ) = In. (S21)

Furthermore, for all t, s, τ ∈ [t0, tf ], the following conditions are satisfied:8

det Φ(t, τ) 6= 0, (S22)

Φ(t, τ)−1 = Φ(τ, t), (S23)

Φ(t, s)Φ(s, τ) = Φ(t, τ). (S24)

The following result gives conditions under which the state transition matrix can be written
as a matrix exponential despite the fact that A is not constant. A proof is given in [14].10

Proposition S3. Let A : [t0, tf ]→ Rn×n be continuous, let Φ be given by Proposition S2,
and consider the following conditions:12

i) For all t, τ ∈ [t0, tf ], A(t) = A(τ).

ii) For all t, τ ∈ [t0, tf ], A(t)A(τ) = A(τ)A(t).14

iii) For all t, τ ∈ [t0, tf ], A(t)
∫ τ
t0
A(s) ds =

∫ τ
t0
A(s) dsA(t).

iv) For all t, τ ∈ [t0, tf ], Φ(t, t0) = e
∫ t
t0
A(τ) dτ

.16

Then, i) =⇒ ii) =⇒ iii) =⇒ iv).

Development of the adjoint operator requires the following corollary of Proposition S2.18
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Corollary S1. Let A(t) and Φ(t, τ) be given by Proposition S2, and, for all t, τ ∈ [t0, tf ],

define Ψ(t, τ)
4
= Φ(τ, t)T. Then, for all t, τ ∈ [t0, tf ], Ψ(t, τ) is the state transition matrix of2

ẋ(t) = −A(t)Tx(t).

Proof. It follows from (S23) that Φ(t, τ)Φ(τ, t) = In. Differentiating this equation with4

respect to t yields [
∂

∂t
Φ(t, τ)

]
Φ(τ, t) = −Φ(t, τ)

∂

∂t
Φ(τ, t).

Using (S20) yields6

A(t)Φ(t, τ) Φ(τ, t) = −Φ(t, τ)
∂

∂t
Φ(τ, t),

and thus (S23) and (S24) imply that

∂

∂t
Φ(τ, t) = −Φ(t, τ)−1A(t)

= −Φ(τ, t)A(t).

Therefore,8

∂

∂t
Ψ(t, τ) = −A(t)TΨ(t, τ).

Finally, for all τ ∈ [t0, tf ], Ψ(τ, τ) = Φ(τ, τ)T = In. Hence, for all t, τ ∈ [t0, tf ], the state
transition matrix of ẋ(t) = −A(t)Tx(t) is given by Ψ(t, τ). �10
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