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a b s t r a c t

In applications of system identification where the input signal is unknown, transmissibility iden-
tification can be used to estimate the operator between a pair of output signals. A limitation of
transmissibility identification is the fact that the numerator and denominator of a transmissibility are
numerators of the transfer functions from the input to the sensors. Consequently, transmissibility iden-
tification does not capture the poles of the system. To overcome this limitation, this paper introduces
transmissibility-based system identification (TBSID), which uses estimates of two transmissibilities to
identify the complete dynamics from two unmeasured inputs to two measured outputs. The method
assumes that the system can be excited nonsimultaneously by two input signals at two distinct
locations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

System identification uses input–output data to construct em-
pirical input–output models (Juang, 1994; Ljung, 1998; Söder-
ström & Stoica, 1989). For vibrational systems, the goal is to
estimate the modal characteristics of the structure, including
modal frequencies, damping ratios, and mode shapes (Ewins,
1984, 2000; Hermans & Van der Auweraer, 1999). In many ap-
plications, however, measurements of the response are available,
but measurements of the input are not. Examples include bridges
excited by vehicles as well as buildings excited by wind. In these
applications, only measurements of the structural response are
available.

Various techniques have been developed for identification us-
ing only sensor response data. These techniques include blind
identification (Abed-Meraim, Qiu, & Hua, 1997; Moulines,
Duhamel, Cardoso, & Mayrargue, 1995; Tong, Xu, & Kailath, 1994)
and operational modal analysis (Brincker, Zhang, & Andersen,
2001; Devriendt & Guillaume, 2008; Peeters & De Roeck, 2001;
Weijtjens, De Sitter, Devriendt, & Guillaume, 2014; Zhang, Wang,
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& Tamura, 2010). Since measurements of the input are not avail-
able, most of these techniques assume that the excitation is white
noise.

In the case where sensor (output) data are available from at
least two sensors but actuation (input) data are not available,
it is possible to estimate transmissibilities. Estimation of trans-
missibilities and their application to structures and acoustics has
been widely studied in the frequency domain (Brincker et al.,
2001; Devriendt & Guillaume, 2007, 2008; Maamar, Abdelghani,
Le, Gagnol, & Sabourin, 2019). More recently, techniques for time-
domain transmissibility identification have been developed (Lo,
Lynch, & Liu, 2011, 2012, 2013) along with a theoretical frame-
work for understanding the meaning of a transmissibility as an
operator (Aljanaideh & Bernstein, 2015a, 2015b, 2018a). In par-
ticular, it is shown in Aljanaideh and Bernstein (2017a) that a
transmissibility can be viewed within the framework of behav-
iors, where the transmissibility relates response signals and the
unknown input is viewed as a latent variable. Time-domain anal-
ysis of transmissibilities also shows that the ‘‘dynamics’’ captured
by a transmissibility operator correspond to the zeros of the
transfer functions from the external input to the sensors. Con-
sequently, transmissibility identification provides an estimate of
the numerators of transfer functions but not their denominators.

Transmissibility-based operational modal analysis (TOMA)
uses frequency-domain techniques to estimate transmissibili-
ties (Devriendt & Guillaume, 2008; Weijtjens et al., 2014). A
drawback of TOMA is that, under nonzero initial conditions, the
estimates depend on the initial condition and the excitation signal
acting on the underlying system. Transmissibilities identified
under a given operating condition may therefore be inaccurate
under other operating conditions (Aljanaideh & Bernstein, 2015b).
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In addition, as shown in Section 3, TOMA methods based on non-
parametric frequency-domain identification can estimate only
undamped or lightly damped modes. On the other hand, TOMA
methods based on parametric frequency-domain identification
such as Devriendt, De Sitter, and Guillaume (2010), Devriendt,
De Sitter, Vanlanduit, and Guillaume (2009) and Weijtjens et al.
(2014) do not consider the fact that transmissibility identification
is an errors-in-variables (EIV) identification problem. Moreover,
since these techniques consider a rational function model of the
transmissibility (Devriendt et al., 2010, 2009; Weijtjens et al.,
2014), overestimating or underestimating the order of the trans-
missibility may yield poor parameter estimates (Aljanaideh &
Bernstein, 2017b).

To overcome these limitations, the present paper develops
transmissibility-based system identification (TBSID). TBSID is a
novel approach to estimating the underlying dynamics of a sys-
tem in the case where only sensor response data are available.
In particular, as in the case of frequency-domain transmissibil-
ity estimation (Devriendt & Guillaume, 2008; Weijtjens et al.,
2014), TBSID assumes that the system can be excited nonsimul-
taneously by input signals at two distinct locations. Noncausal
FIR models and noncausal composite FIR/IIR models are used
for time-domain identification of transmissibility operators (Al-
janaideh & Bernstein, 2017b, 2018d). Moreover, an EIV algorithm
for transmissibility identification using noncausal FIR models is
introduced. The transmissibilities arising from the inputs are
identified, and these estimates are then combined to estimate
the system dynamics. In the case of structural vibration, this
technique provides estimates of the modal frequencies of the
structure using only response data.

An advantage of TBSID is the fact that the excitation sig-
nals and their locations can be completely unknown. In fact,
as long as they are sufficiently persistent and nonsimultaneous,
the excitation signals can be provided by any unspecified and
unknown ambient process at any pair of unspecified and un-
known locations. For example, TBSID was used in Aljanaideh
and Bernstein (2018c) to construct the lateral aircraft dynamics
with measurements of roll-rate and yaw-rate perturbations from
steady straight-line flight and without using knowledge of the
control-surface deflections and thrust.

The contents of this paper are as follows. In Section 2, trans-
missibility operators are constructed from state space models.
Section 3 reviews the classical frequency-domain-based approach
of modal identification using transmissibilities, and shows a mo-
tivating example. Section 4 shows that transmissibility operators
can be used to identify the dynamics and the complete input–
output model of the underlying system. Section 5 shows three
illustrative examples for the main result introduced in the paper.
Section 6 shows that noncausal FIR models and composite non-
causal FIR/IIR models can be used to identify transmissibility op-
erators. Section 7 shows an errors-in-variables (EIV) algorithm for
transmissibility identification. Section 8 shows a numerical ex-
ample, and experimental results applied to acoustic systems are
shown in Section 9. Finally, conclusions are given in Section 10.

Notation. Let A be an n×nmatrix. Then, A(i,j) denotes the i, j entry
of A; A[i,j] denotes the (n−1)× (n−1) submatrix of A obtained by
deleting the ith row and jth column of A; and A[{i,j},{k,l}] denotes
the (n − 2) × (n − 2) submatrix of A obtained by deleting the
ith row, jth row, kth column, and lth column of A. mspec(A)
denotes the multiset of eigenvalues of A including multiplicity,
mroots(p) denotes the multiset of roots of the polynomial p in-
cluding multiplicity, and mzeros(T ) denotes the multiset of zeros
of the rational function T including multiplicity.

2. Transmissibility operators

Consider the single-input, two-output system

ẋ(t) = Ax(t) + bu(t), (1)

x(0) = x0, (2)

yi(t)
△
= cix(t) + diu(t), (3)

yo(t)
△
= cox(t) + dou(t), (4)

where A ∈ Rn×n, b ∈ Rn, ci, co ∈ R1×n, and di, do ∈ R. The input
signal u and the output signals yi and yo are scalar. Define the
polynomials

Γi(p)
△
= ciadj(pI − A)b + diδ(p), (5)

Γo(p)
△
= coadj(pI − A)b + doδ(p), (6)

δ(p) △
= det(pI − A), (7)

where p △
= d/dt , and assume that Γi(p) is not the zero polyno-

mial. Combining (5), (6) yields (Aljanaideh & Bernstein, 2015b)

Γi(p)yo = Γo(p)yi. (8)

We write (8) as

yo = Tco,ci|b(p)yi, (9)

where the transmissibility operator from yi to yo is defined by (Al-
janaideh & Bernstein, 2015b)

Tco,ci|b(p)
△
=

Γo(p)
Γi(p)

. (10)

Since division by p is not defined, (9) and (10) provide a conve-
nient but not literal representation of the time-domain relation
(8). The subscript b indicates that the transmissibility operator
depends on the way in which the input drives the system.

Since Tco,ci|b is not the forced response of a linear system,
Tco,ci|b is not a transfer function in the usual sense. Moreover,
note that the roots of Γo and Γi are the zeros of the transfer
functions from u to yo and u to yi, respectively. Finally, unlike
the complex Laplace variable s, the time-domain operator p in (9)
accounts for nonzero initial conditions as explained in Aljanaideh
and Bernstein (2015b, 2018b).

3. Frequency-domain-identification-based approach

Identification of modal parameters based on frequency-domain
transmissibilities was considered in Devriendt et al. (2010), De-
vriendt and Guillaume (2008) and Weijtjens et al. (2014), where
parametric and nonparametric frequency-domain identification
methods were used to estimate the modal parameters using
transmissibility estimates.

As shown in Aljanaideh and Bernstein (2015b), a major
drawback of frequency-domain transmissibility estimation is that
under nonzero initial conditions the transmissibility estimates
depend on the initial condition and the excitation signal. This
implies that transmissibilities identified under a given operat-
ing conditions may be invalid under other operating conditions.
Moreover, as shown in Aljanaideh, Sanjeevini, and Bernstein
(2018), since both the input and output of the transmissibility
are outputs of the underlying system, and real measurements of
outputs are corrupted by noise, transmissibility identification is
an EIV identification problem, which was not considered in the
literature of TOMA. Parametric identification of transmissibilities,
which was considered in Devriendt et al. (2010) and Weijtjens
et al. (2014) requires knowledge of the order of the transmissi-
bility. Since the dynamics of the underlying system are unknown,
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then the order of the transmissibility is also unknown, and un-
derestimating or overestimating the order of the transmissibility
may yield erroneous estimates.

As shown in Devriendt and Guillaume (2008), the frequency
response of the transmissibilities between a given pair of outputs
but obtained under different loading conditions intersect at the
modal frequencies of the system. Therefore, the reciprocal of the
difference between these transmissibilities will have peaks at the
locations of the modal frequencies of the system. However, as
shown in the following example, this approach works only if the
poles of the system are undamped or lightly damped.

In the following example, we use the approach introduced
in Devriendt and Guillaume (2008) to estimate the modal fre-
quencies of a system from transmissibilities. To avoid errors in
the estimates of the modal frequencies due to spectral leakage
or nonzero initial conditions, we construct the transmissibil-
ities directly from the state space model instead of identify-
ing them from output measurements using frequency-domain
identification methods as in Devriendt and Guillaume (2008).

Example 3.1. Consider a continuous-time system with the state
space realization (A, B, C,D), where

A =

⎡⎢⎣0 −125 0 −2500
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎦ . (11)

Then, the spectrum of A consists of the eigenvalues eig(A) =

{±ȷ5, ±ȷ10}, which are located on the imaginary axis with natural
frequencies 5 rad/s and 10 rad/s. Next, suppose that

B =

⎡⎢⎣1 0
0 1
1 1
4 1

⎤⎥⎦ , C =

[1 1 0 0
1 0 0 1
1 0 1 0

]
, D = 03×2, (12)

the input u = [u1 u2]
T, and the output y = [y1 y2 y3]T. Let Ti,j|k

denote the transmissibility from yj to yi given that the input uk is
applied, where i, j ∈ {1, 2, 3}, i ̸= j, and k ∈ {1, 2}. Then,

T2,1|1(p) =
5p3

− 9999p2
− 2000p + 126

p3 − 9999p2 − 12500p − 2500
, (13)

T2,1|2(p) =
p3

− 2624p2
− 2374p − 2375

p3 − 2625p2 − 5000p − 5000
, (14)

T3,1|1(p) =
2p3

− 10000p2
− 2374p − 10000

p3 − 9999p2 − 12500p − 2500
, (15)

T3,1|2(p) =
p3

− 2624p2
− 2375p − 5000

p3 − 2625p2 − 5000p − 5000
. (16)

Fig. 1 shows plots of the magnitudes of the frequency responses
of 1/(T2,1|1 − T2,1|2) and 1/(T3,1|1 − T3,1|2), which have peaks at
the natural frequencies of the system, that is, ωn1 = 5 rad/s and
ωn2 = 10 rad/s.

Next, consider a continuous-time system with the state space
realization (A, B, C,D), where

A =

⎡⎢⎣−25 −325 −2375 −6250
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎦ . (17)

Then, the spectrum of A consists of the eigenvalues eig(A) =

{−5, −10, −5± ȷ10}, none of which are located on the imaginary
axis. In particular, the system has real poles at s = −5 and
s = −10 and complex-conjugate poles with a natural frequency
of approximately 11.2 rad/s. Moreover, let B, C,D be given by
(12), and let u = [u1 u2]

T and y = [y1 y2 y3]T. Then,

T2,1|1(p) =
5p3

− 27274p2
− 4925p + 9826

p3 − 27374p2 − 33625p − 6250
, (18)

Fig. 1. Magnitude plots of the frequency responses of 1/(T2,1|1 − T2,1|2) and
1/(T3,1|1 − T3,1|2), where the poles of the system are located on the frequency
axis. Note that the frequency responses of 1/(T2,1|1−T2,1|2) and 1/(T3,1|1−T3,1|2)
have peaks at the natural frequencies of the system, that is, ωn1 = 5 rad/s and
ωn2 = 10 rad/s.

Fig. 2. Magnitude plots of the frequency responses of 1/(T2,1|1 − T2,1|2) and
1/(T3,1|1−T3,1|2), where the poles of the system are not located on the frequency
axis. Note that the frequency responses of 1/(T2,1|1−T2,1|2) and 1/(T3,1|1−T3,1|2)
have no peaks at the frequencies of the poles of the system.

T2,1|2(p) =
p3

− 8924p2
− 8274p − 3525

p3 − 8925p2 − 17250p − 12500
, (19)

T3,1|1(p) =
2p3

− 27350p2
− 5924p − 25000

p3 − 27374p2 − 33625p − 6250
, (20)

T3,1|2(p) =
p3

− 8924p2
− 8275p − 12500

p3 − 8925p2 − 17250p − 12500
. (21)

Fig. 2 shows plots of the magnitudes of the frequency responses
of 1/(T2,1|1 −T2,1|2) and 1/(T3,1|1 −T3,1|2), which have no peaks at
the frequencies of the poles of the system. The absence of peaks
shows that the nonparametric frequency-domain-identification
approach fails to estimate real or highly damped poles using
transmissibilities. ⋄

4. Transmissibility-based system identification (TBSID)

Let b1, b2 ∈ Rn. Then the transmissibilities from yi to yo with
b = b1 and b = b2 are given, respectively, by

Tco,ci|b1 (p)
△
=

Γo,1(p)
Γi,1(p)

, Tco,ci|b2 (p) =
Γo,2(p)
Γi,2(p)

, (22)

where

Γi,1(p)
△
= ciadj(pI − A)b1 + diδ(p), (23)



4 K.F. Aljanaideh and D.S. Bernstein / Automatica 113 (2020) 108686

Γo,1(p)
△
= coadj(pI − A)b1 + doδ(p), (24)

Γi,2(p)
△
= ciadj(pI − A)b2 + diδ(p), (25)

Γo,2(p)
△
= coadj(pI − A)b2 + doδ(p). (26)

Using these two transmissibilities, define

∆(p) △
=

[
Γi,1(p) Γo,1(p)
Γi,2(p) Γo,2(p)

]
(27)

=

[
ciadj(pI − A)b1 + diδ(p) coadj(pI − A)b1 + doδ(p)
ciadj(pI − A)b2 + diδ(p) coadj(pI − A)b2 + doδ(p)

]
and note that

det∆(p) = Γi,1(p)Γo,2(p) − Γo,1(p)Γi,2(p)
= ciadj (pI − A)b1coadj (pI − A)b2
− coadj (pI − A)b1ciadj (pI − A)b2
+ δ(p)(dico − doci)adj (pI − A)(b2 − b1). (28)

The following lemma, which is used in the proof of Proposi-
tion 4.1, provides an expression for the determinant of a 2 × 2
submatrix of the adjugate of a matrix.

Lemma 1. Let A ∈ Cn×n and i, j, k, l ∈ {1, . . . , n}, where i ̸= k and
j ̸= l. Then,

det
[
(adj A)(i,j) (adj A)(i,l)
(adj A)(k,j) (adj A)(k,l)

]
(29)

= sign((k − i)(l − j))(−1)i+j+k+l(det A)det A[{j,l},{i,k}].

Proof. Using the fact that, for all p, q ∈ {1, . . . , n},

(adj A)(p,q) = (−1)p+q det A[q,p],

it follows that

det
[
(adj A)(i,j) (adj A)(i,l)
(adj A)(k,j) (adj A)(k,l)

]
= (−1)i+j+k+l

[(det A[j,i]) det A[l,k] − (det A[j,k]) det A[l,i]]. (30)

Next, the Jacobi identity for determinants (Brualdi & Schneider,
1983, Eqn. (13)) implies

(det A[j,i]) det A[l,k] − (det A[j,k]) det A[l,i]

= sign((k − i)(l − j))(det A) det A[{j,l},{i,k}]. (31)

Combining (31) with (30) yields (29). □

The following result shows that δ divides det∆.

Proposition 4.1. Let n ≥ 2. Then

det∆(p) (32)
= δ(p)[ε(p) + (dico − doci)adj (pI − A)(b2 − b1)],

where

ε(p) △
=

n∑
i,j,k,l=1
i̸=k,j̸=l

sign((k − i)(l − j))(−1)i+j+k+l

· ci,ib1,jco,kb2,l det[(pI − A)[{j,l},{i,k}]]. (33)

Proof. Let

ci =
[
ci,1 · · · ci,n

]
=

n∑
i=1

ci,ieTi , (34)

co =
[
co,1 · · · co,n

]
=

n∑
j=1

co,jeTj , (35)

b1 =
[
b1,1 · · · b1,n

]T
=

n∑
k=1

b1,kek, (36)

b2 =
[
b2,1 · · · b2,n

]T
=

n∑
l=1

b2,lel, (37)

where for all i ∈ {1, . . . , n}, ei ∈ Rn is the ith unit vector. For
i, k ∈ {1, . . . , n} and j, l ∈ {1, . . . , n}, replacing A by pI − A in
Lemma 1 yields

(adj (pI− A))(i,j)(adj (pI−A))(k,l)
− (adj (pI−A))(k,j)(adj (pI−A))(i,l) (38)

= sign((k − i)(l − j))(−1)i+j+k+l

· δ(p) det[(pI − A)[{j,l},{i,k}]].

Now, using (34)–(38) yields

ciadj (pI − A)b1coadj (pI − A)b2
− coadj (pI − A)b1ciadj (pI − A)b2

=

⎛⎝ n∑
i=1

ci,ieTi adj (pI − A)
n∑

j=1

b1,jej

⎞⎠
·

(
n∑

k=1

co,keTkadj (pI − A)
n∑

l=1

b2,lel

)

−

⎛⎝ n∑
k=1

co,keTkadj (pI − A)
n∑

j=1

b1,jej

⎞⎠
·

(
n∑

i=1

ci,ieTi adj (pI − A)
n∑

l=1

b2,lel

)

=

n∑
i,j,k,l=1

(
ci,ieTi adj (pI − A)b1,jej

)
·
(
co,keTkadj (pI − A)b2,lel

)
−

n∑
i,j,k,l=1

(
co,keTkadj (pI − A)b1,jej

)
·
(
ci,ieTi adj (pI − A)b2,lel

)
=

n∑
i,j,k,l=1

ci,ib1,jco,kb2,leTi adj (pI − A)ejeTkadj (pI − A)el

−

n∑
i,j,k,l=1

ci,ib1,jco,kb2,leTkadj (pI − A)ejeTi adj (pI − A)el

=

n∑
i,j,k,l=1

ci,ib1,jco,kb2,l[eTi adj (pI − A)ejeTk

· adj (pI − A)el − eTkadj (pI − A)ejeTi adj (pI − A)el]

=

n∑
i,j,k,l=1

ci,ib1,jco,kb2,l[(adj (pI − A))(i,j)

· (adj (pI − A))(k,l) − (adj (pI − A))(k,j)(adj (pI − A))(i,l)]

= δ(p)ε(p), (39)

where δ is defined by (7) and ε is defined by (33). Using (28) and
(39) yields (32). □

It follows from (28) that, if dico = doci and b1 and b2 are
linearly dependent, then det∆ = 0. Assuming that det∆ ̸= 0,
the following theorem shows that every eigenvalue of A is a root
of det∆. Moreover, this result shows that the eigenvalues of A can
be estimated using knowledge of two transmissibility operators.
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Theorem 1. Assume that det∆ ̸= 0. Then,

mspec(A) ⊆ mroots (det∆) = mzeros(Tco,ci|b1 − Tco,ci|b2 ). (40)

Furthermore,

mspec(A) = mroots (det∆) = mzeros(Tco,ci|b1 − Tco,ci|b2 ) (41)

if and only if deg det∆ = n.

Proof. Since det∆ ̸= 0, it follows from (32) that δ divides det∆.
Therefore, mspec(A) = mroots(δ) ⊆ mroots(det∆), which yields
the inclusion in (40). Moreover, it follows from (22) that

Tco,ci|b1 − Tco,ci|b2 =
Γo,1Γi,2 − Γo,2Γi,1

Γi,1Γi,2
= −

det∆
Γi,1Γi,2

,

which yields the equality in (40). The last statement is
immediate. □

Theorem 1 shows that mspec(A) may be a proper subset of
mzeros(Tco,ci|b1 − Tco,ci|b2 ). This means that the estimate of δ may
include spurious poles. As shown in Section 6, it may be possible
in practice to identify and remove these poles.

By using Theorem 1, it is possible to obtain input–output
models from the unknown inputs to the sensor measurements. In
particular, assuming that spurious modes are either not present
or can be identified and removed, Theorem 1 shows that δ can be
determined from knowledge of Tco,ci|b1 and Tco,ci|b2 . Furthermore,
since estimates of the numerators Γi,1, Γo,1, Γi,2, and Γo,2 of Gi,1,
Go,1, Gi,2, and Go,2, respectively, are available from the estimates
of Tco,ci|b1 and Tco,ci|b2 , it follows that estimates of the transfer
operators from u1 to yi, u1 to yo, u2 to yi, and u2 to yo can be
constructed as

Gi,1(p)
△
=

Γi,1(p)
δ(p)

, Go,1(p)
△
=

Γo,1(p)
δ(p)

, (42)

Gi,2(p)
△
=

Γi,2(p)

δ(p)
, Go,2(p)

△
=

Γo,2(p)
δ(p)

. (43)

The complete input–output transfer operators (42) and (43) can
thus be identified by using estimates of Tco,ci|b1 and Tco,ci|b2 .

5. Illustrative examples

In the following example, the sets mspec(A) and mzeros
(Tco,ci|b1 − Tco,ci|b2 ) are equal.

Example 5.1. Consider the matrix

A =

[
1 2
2 1

]
. (44)

Then, δ(p) = p2
− 2p − 3, and thus mspec(A) = {−1, 3}. Letting

ci =
[
1 0

]
, co =

[
0 1

]
, (45)

b1 =
[
1 0

]T
, b2 =

[
0 1

]T
, (46)

it follows from (23), (26) that

Γi,1 = p − 1, Γo,1 = 2, (47)

Γi,2 = 2, Γo,2 = p − 1. (48)

Using (28), we have

∆(p) =

[
p − 1 2

2 p − 1

]
,

and thus,

det∆(p) = p2
− 2p − 3. (49)

Since det∆ = δ, it follows that mroots(det∆) = {−1, 3}, which
confirms (40). ⋄

Fig. 3. Mass–spring system, where q1 q2 , and q3 are the displacements of m1 ,
m2 , and m3 , respectively, and f1 , f2 , and f3 are external forces.

In the following example, the sets mspec(A) and mzeros
(Tco,ci|b1 − Tco,ci|b2 ) are not equal.

Example 5.2. Consider the matrix

A =

[1 1 1
0 2 −1
0 1 1

]
. (50)

Then, δ(p) = p3
−4p2

+6p−3, and thus mspec(A) = {1, 1
2 ±

√
3
2 ȷ}.

Letting

ci =
[
1 2 −1

]
, co =

[
−1 3 −2

]
, (51)

b1 =
[
0 1 0

]T
, b2 =

[
0 1 −1

]T
, (52)

it follows from (23), (26) that

Γi,1 = 2p2
− 4p + 3, Γo,1 = 3p2

− 9p + 5, (53)

Γi,2 = 3p2
− 6p + 6, Γo,2 = 5p2

− 11p + 3. (54)

Using (28), we have

∆(p) =

[
2p2

− 4p + 3 3p2
− 9p + 5

3p2
− 6p + 6 5p2

− 11p + 3

]
,

and thus,

det∆(p) = p4
+ 3p3

− 22p2
+ 39p − 21. (55)

Noting that det∆(p) = δ(p)(p + 7), it follows that

mspec(A) = {1,
1
2

±

√
3
2

ȷ} ⊂ mroots(det∆)

= {1, −7,
1
2

±

√
3
2

ȷ}, (56)

which confirms (40). Note that deg δ = 3 < deg det∆ = 4.
Accordingly, mroots(det∆) contains one spurious root, namely,
−7, and thus mspec(A) is a proper subset of mroots(det∆). ⋄

Example 5.3. Consider the mass–spring system shown in Fig. 3
with external forces f1, f2, f3. We consider three cases, where, in
each case, only one external force is nonzero. We first consider
the case where f2 = f3 = 0 and u = f1.

Then (1) holds with

x
△
=
[
q1 q2 q3 q̇1 q̇2 q̇3

]T
, A

△
=

[
03×3 I3
Ω 03×3

]
, (57)

Ω
△
= −M−1K =

⎡⎢⎣−
k1+k2
m1

k2
m1

0
k2
m2

−
k2+k3
m2

k3
m2

0 k3
m3

−
k3+k4
m3

⎤⎥⎦ , (58)

b = b1
△
= [0 0 0 1

m1
0 0]T, u

△
= f1. (59)

Moreover, define

q1,1
△
= yi = ciadj(pI − A)b1, (60)

q3,1
△
= yo = coadj(pI − A)b1, (61)
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where

ci
△
=
[
1 0 0 0 0 0

]
, co

△
=
[
0 0 1 0 0 0

]
. (62)

Then

Γi,1(p) =
m2m3p4

+ a1p2
+ a0

m1m2m3
, Γo,1(p) =

k2k3
m1m2m3

, (63)

where

a0
△
= k2k3 + k2k4 + k3k4, (64)

a1
△
= (k3 + k4)m2 + (k2 + k3)m3, (65)

and the corresponding transmissibility operator is

Tco,ci|b1 (p) =
Γo,1(p)
Γi,1(p)

=
k2k3

m2m3p4 + a1p2 + a0
. (66)

Next, consider the case where f1 = f3 = 0 and u = f2. Then
(1) holds with (57), (58), b = b2 = [0 0 0 0 1

m2
0]T, and u = f2.

Then

Γi,2(p) =
k2m3p2

+ k2k3 + k2k4
m1m2m3

, (67)

Γo,2(p) =
k3m1p2

+ k1k3 + k2k3
m1m2m3

, (68)

and the corresponding transmissibility operator is

Tco,ci|b2 (p) =
Γo,2(p)
Γi,2(p)

=
k3m1p2

+ k1k3 + k2k3
k2m3p2 + k2k3 + k2k4

. (69)

Finally, consider the case where f1 = f2 = 0 and u = f3. Then
(1) holds with (57), (58), b = b3 = [0 0 0 0 0 1

m3
]
T, and u = f3.

Then

Γi,3(p) =
k2k3

m1m2m3
, Γo,3(p) =

m1m2p4
+ c1p2

+ c0
m1m2m3

, (70)

where

c0
△
= k1k2 + k1k3 + k2k3, (71)

c1
△
= (k2 + k3)m1 + (k1 + k2)m2, (72)

and the corresponding transmissibility operator is

Tco,ci|b3 (p) =
Γo,3(p)
Γi,3(p)

=
m1m2p4

+ c1p2
+ c0

k2k3
. (73)

Now, we consider Theorem 1 in all three cases. First, using (63)
and (68) we have

∆(p) =

[
Γi,1(p) Γo,1(p)
Γi,2(p) Γo,2(p)

]
, (74)

and thus

det∆(p) = Γi,1(p)Γo,2(p) − Γo,1(p)Γi,2(p)

=
k2

m1m2m3
δ(p), (75)

where

δ(p) = d3p6
+ d2p4

+ d1p2
+ d0, (76)

with the coefficients

d3
△
=

k2
m1m2m3

, (77)

d2
△
=

k2(k3 + k4)
m1m2m2

3
+

k2(k1m2 + k2m1 + k2m2 + k3m1)
m2

1m
2
2m3

, (78)

d1
△
=

k2(k1k2 + k1k3 + k2k3)
m2

1m
2
2m3

−
k2k23

m1m2
2m

2
3

(79)

+
k2(k3 + k4)(k1m2 + k2m1 + k2m2 + k3m1)

m2
1m

2
2m

2
3

,

d0
△
= (80)

k2(k3 + k4)(k1k2 + k1k3 + k2k3) − k2k3(k1k3 + k2k3)
m2

1m
2
2m

2
3

.

Therefore, mroots(det∆(p)) = mspec(A).
Next, using (63) and (70), we have

∆(p) =

[
Γi,1(p) Γo,1(p)
Γi,3(p) Γo,3(p)

]
, (81)

and thus

det∆(p) = Γi,1(p)Γo,3(p) − Γo,1(p)Γi,3(p)

=
m2p2

+ k2 + k3
m1m2m3

δ(p). (82)

Therefore, mspec(A) ⊂ mroots(det∆(p)).
Finally, using (68) and (70) we have

∆(p) =

[
Γi,2(p) Γo,2(p)
Γi,3(p) Γo,3(p)

]
, (83)

and thus

det∆(p) = Γi,2(p)Γo,3(p) − Γo,2(p)Γi,3(p)

=
k3

m1m2m3
δ(p). (84)

Therefore, mspec(A) = mroots(det∆(p)).
Consequently, in two of the three cases, mspec(A) is equal

to mroots(det∆), whereas, in the remaining case, mspec(A) is a
proper subset of mroots(det∆). ⋄

The transmissibility operators derived in Section 2 are formu-
lated in continuous time. These derivations are equally valid in
discrete time, where the differentiation operator p is replaced
by the forward-shift operator q (Middleton & Goodwin, 1990).
Henceforth, to facilitate applications with sampled data, we as-
sume that measurements of the output signals are obtained in
discrete time, and thus we henceforth consider discrete-time
transmissibilities.

6. Estimation of transmissibility operators

Since transmissibility operators may be unstable, noncausal,
and have unknown order (Aljanaideh & Bernstein, 2018a), non-
causal FIR models and noncausal composite FIR/IIR (CFI) models
are useful for approximation and identification of transmissibility
operators. This section briefly reviews these techniques. First, we
discuss noncausal FIR models (Aljanaideh & Bernstein, 2017b),
and then consider noncausal CFI models (Aljanaideh & Bernstein,
2018d). Noncausal CFI models are then used to approximate
transmissibility operators.

6.1. Using noncausal FIR models to approximate transmissibilities

A noncausal FIR model of T is a truncation of the Laurent
expansion of T in an annulus that contains the unit circle. Let
A(ρ1, ρ2) be the open annulus in the complex plane centered at
the origin with inner radius ρ1 and outer radius ρ2, where T
is analytic in A(ρ1, ρ2) and ρ1 < 1 < ρ2. Then, the Laurent
expansion of T in A(ρ1, ρ2) is given by

T (z) =

∞∑
i=−∞

Hiz−i, (85)
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where, for all i ∈ Z, Hi is the ith coefficient of the Laurent
expansion of T in A(ρ1, ρ2). Therefore, an approximate noncausal
FIR model of T is given by

T (q, θr,d)
△
=

r∑
i=−d

Hiq−i, (86)

where q is the forward-shift operator and

θr,d
△
=
[
H−d · · · Hr

]
∈ R1×(r+d+1). (87)

However, if T has poles on the unit circle, then the Laurent
expansion coefficients of T in each annulus are bounded away
from zero (Aljanaideh & Bernstein, 2017b). To overcome this diffi-
culty, composite FIR/IIR (CFI) models can be used to approximate
systems with poles on the unit circle (Aljanaideh & Bernstein,
2018d).

6.2. Using composite noncausal FIR/IIR models to approximate trans-
missibilities

Note that T can be written as

T (q) =
(q − z1) · · · (q − zm)
(q − p1) · · · (q − pn)

, (88)

where n is the order of T , z1, . . . , zm ∈ C are the zeros of T ,
and p1, . . . , pn ∈ C are the poles of T . Let l ∈ {0, . . . , n} be the
number of poles of T located on the unit circle. Hence, for all
i = 1, . . . , n − l, |pi|̸= 1, and, in the case where l ≥ 1, for all
i = n − l + 1, . . . , n, |pi| = 1. Then, define

DI,l(q)
△
= (q − pn−l+1) · · · (q − pn) = ql

+

l−1∑
i=1

ciqi, (89)

where c1, . . . , cl ∈ R. Then T can be written as

T (q) =
1

DI,l(q)
Tl(q), (90)

where

Tl(q)
△
=

(q − z1) · · · (q − zm)
(q − p1) · · · (q − pn−l)

, (91)

and n− l−m is the relative degree of Tl. Note that all of the poles
of Tl are either in the open unit disk or outside the closed unit
disk.

Let A(ρ1, ρ2)
△
= {z ∈ C : ρ1 < |z| < ρ2} denote the

open punctured plane centered at the origin with inner radius
0 ≤ ρ1 < 1 and outer radius 1 ≤ ρ2. Then, the Laurent expansion
of Tl in A(ρ1, ρ2) is given by

Tl(z) =

∞∑
i=−∞

hiz−i, (92)

where for all i ∈ Z, hi ∈ R. Using (90) and (92) implies that, for
all z ∈ A(ρ1, ρ2),

T (z) =
1

DI,l(z)

∞∑
i=−∞

hiz−i. (93)

Truncating the series in (93) yields the truncated model

Tl,r,d(q)
△
=

1
DI,l(q)

TF,l,r,d(q), (94)

where the noncausal FIR truncation TF,l,r,d of Tl is defined by

TF,l,r,d(q)
△
=

r∑
i=−d

hiq−i. (95)

Next, for all k ≥ 0, let yi(k) and yo(k) be the pseudo input and
pseudo output of T at step k, respectively, and let ℓ denote the
size of the data window.

6.3. Identification using least squares with noncausal FIR models

The least-squares estimate θ̂ LS
r,d,ℓ of θr,d satisfies

θ̂ LS
r,d,ℓ = argmin

θ̄r,d∈R1×(r+d+1)
∥Ψyo,r,d,ℓ − θ̄r,dΦyi,r,d,ℓ∥2, (96)

where ℓ is the number of samples of each signal and

Ψyo,r,d,ℓ
△
=
[
yo(r) · · · yo(ℓ − d)

]
, (97)

Φyi,r,d,ℓ
△
=
[
φyi,r,d(r) · · · φyi,r,d(ℓ − d)

]
, (98)

φyi,r,d(k)
△
=
[
yi(k + d) · · · yi(k − r)

]T
. (99)

It follows from (96) that the least-squares estimate θ̂ LS
r,d,ℓ of θr,d

satisfies

Ψyo,r,d,ℓΦ
T
yi,r,d,ℓ = θ̂ LS

r,d,ℓΦyi,r,d,ℓΦ
T
yi,r,d,ℓ. (100)

As shown in Eykhoff (1974, Chapter 6), the least-squares estimate
may be biased.

6.4. Identification using least squares with noncausal CFI models

Let θl,r,d ∈ R1×(l+r+d) denote the vector of parameters of the
truncated model Tl,r,d defined by (94), where

θl,r,d =
[
θc,l θh,r,d

]
, (101)

θc,l =
[
c1 · · · cl−1

]
, (102)

θh,r,d =
[
h−d · · · hr

]
. (103)

The least squares estimate θ̂l,r,d,ℓ of θl,r,d is given by

θ̂l,r,d,ℓ = argmin
θ̄l,r,d∈R1×(l+r+d)

Ψyo,r,d,l,ℓ − θ̄l,r,dΦl,r,d,ℓ

F , (104)

where the components of θ̂l,r,d,ℓ are the coefficients of the non-
causal CFI model (94) given by

θ̂l,r,d,ℓ =
[
θ̂c,l,r,d,ℓ θ̂h,l,r,d,ℓ

]
,

θ̂c,l,r,d,ℓ =
[
ĉ1,ℓ · · · ĉl−1,ℓ

]
,

θ̂h,l,r,d,ℓ =
[
ĥ−d,ℓ · · · ĥr,ℓ

]
,

Ψyo,r,d,l,ℓ
△
=
[
yo(r + l) · · · yo(ℓ − d + l)

]
,

Φl,r,d,ℓ
△
=

[
Φyo,l,ℓ
Φyi,r,d,ℓ

]
,

Φyo,l,ℓ
△
=
[
φyo,l(r) · · · φyo,l(ℓ − d)

]
,

Φyi,r,d,ℓ
△
=
[
φyi,r,d(r + d) · · · φyi,r,d(ℓ)

]
,

φyo,l(k) =
[
−yo(k + 1) · · · −yo(k + l − 1)

]T
,

φyi,r,d(k) =
[
yi(k) · · · yi(k − r − d)

]T
.

6.5. Constructing an IIR model from the identified transmissibilities

In order to construct an IIR model of a transmissibility based
on an approximate noncausal FIR model, we separately estimate
the asymptotically stable and unstable parts of the transmissi-
bility using the eigensystem realization algorithm (ERA) (Juang,
1994). Then, we obtain an IIR model of the transmissibility by
combining the estimates of the asymptotically stable and unsta-
ble IIR parts of the transmissibility. By choosing sufficiently large
model orders ns of the stable component and nu of the unstable
component of the transmissibility, we overestimate the orders
of the stable and unstable parts of the transmissibility. Methods
based on nuclear norm minimization can be used to estimate
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the orders of the stable and unstable components of the trans-
missibility from the estimated Markov parameters (Aljanaideh &
Bernstein, 2017b; Recht, Fazel, & Parrilo, 2010; Smith, 2014).

To construct an IIR model of a transmissibility based on an
approximate noncausal CFI model, we first estimate an IIR model
of the noncausal FIR part of the noncausal CFI model, which is
then multiplied by the estimated IIR part of the noncausal CFI
model.

7. Errors-in-variables identification of transmissibilities

In this section we consider EIV identification of transmissibil-
ities using least squares with noncausal FIR models.

For EIV identification we use a modified version of the algo-
rithm considered in Diversi (2008). The main difference between
the algorithm we use in this paper and the algorithm in Diversi
(2008) is that we use a noncausal FIR model to identify an IIR
transmissibility operator instead of using an FIR model to identify
an FIR system.

7.1. Assumptions

Suppose that both yi and yo are corrupted with additive white
noise, that is,

ŷi(k) = yi(k) + v(k), (105)

ŷo(k) = yo(k) + w(k), (106)

where ŷi and ŷo are measurements of yi and yo, respectively, and
v and w represent sensor noise.

We consider the following assumptions

(A1) yi is a realization of a zero-mean ergodic random process
that is persistently exciting of a sufficient order.

(A2) v and w are realizations of zero-mean ergodic white ran-
dom processes with unknown variances.

(A3) v and w are realizations of mutually uncorrelated random
processes and are uncorrelated with the random process
producing the realization yi.

7.2. EIV identification algorithm

Here we list the steps of the algorithm. The reader can refer
to Diversi (2008) for more details.

(1) Compute Φŷi,r,d,ℓΦ
T
ŷi,r,d,ℓ

and Ψŷo,r,d,ℓΦ
T
ŷi,r,d,ℓ

.
(2) Use (100) to compute the least squares estimate θ̂ LS

r,d,ℓ.
(3) Set θ̂EIV

r,d,ℓ,i = θ̂ LS
r,d,ℓ, where, for all i ≥ 1,

θ̂EIV
r,d,ℓ,i

△
=
[
Ĥi,−d,ℓ · · · Ĥi,r,ℓ

]
, (107)

and for all j = −d, . . . , r , Ĥi,j,ℓ is an estimate of Hj obtained
from the ith iteration of the algorithm using ℓ samples of
ŷi and ŷo.

(4) Construct the vector

H(θ̂EIV
r,d,ℓ,i)

△
=

⎡⎢⎢⎢⎢⎢⎣
∑r−1

j=−d Ĥi,j,ℓĤi,j+1,ℓ∑r−2
j=−d Ĥi,j,ℓĤi,j+2,ℓ

...

Ĥi,−d,ℓĤi,r,ℓ

⎤⎥⎥⎥⎥⎥⎦ . (108)

(5) For all k ≥ r , compute

Er,d,ℓ(k)
△
= ŷo(k) − θ̂EIV

r,d,ℓ,iφŷi,r,d(k). (109)

(6) Construct

Er,d,ℓ
△
=

1
ℓ

[
ΨE,r,d,ℓ,0Ψ

T
E,r,d,ℓ,1 · · · ΨE,r,d,ℓ,0Ψ

T
E,r,d,ℓ,r+d

]T
,

(110)

where, for all j = 1, . . . , r + d,

ΨE,r,d,ℓ,j
△
=
[
E(2r + d − j) · · · E(ℓ − j)

]
, (111)

(7) Compute

σ̂ 2
v,r,d,ℓ,i =

H(θ̂EIV
r,d,ℓ,i)

TEr,d,ℓ

H(θ̂EIV
r,d,ℓ,i)TH(θ̂EIV

r,d,ℓ,i)
. (112)

(8) Compute

θ̂EIV
r,d,ℓ,i+1 = θ̂ LS

r,d,ℓ + σ̂ 2
v,r,d,ℓ,iθ̂

EIV
r,d,ℓ,i(Φŷi,r,d,ℓΦ

T
ŷi,r,d,ℓ

)−1. (113)

(9) Set θ̂EIV
r,d,ℓ,i = θ̂EIV

r,d,ℓ,i+1 and go to step (4).
(10) Repeat steps (4)–(9) until

∥θ̂EIV
r,d,ℓ,i+1 − θ̂EIV

r,d,ℓ,i∥

∥θ̂EIV
r,d,ℓ,i+1∥

< ϵ, (114)

where ϵ is a predetermined convergence threshold.

8. A numerical example

This section shows a numerical example on TBSID, where
output measurements that are corrupted by noise are used to
identify the entire dynamics of a system.

Example 8.1. Consider the state space model

A =

⎡⎢⎣−0.7000 0.2300 0.2390 0.0546
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎦ , B =

⎡⎢⎣1 0
1 0
4 1
0 1

⎤⎥⎦ ,

(115)

C =

[1 2 3 0
8 1 1 0
1 3 1 6

]
, D = 03×2. (116)

The input is u = [u1 u2]
T and the output is y

△
= [y1 y2 y3]T.

We first consider the case where u1 is a realization of a zero-
mean, white, Gaussian random process with unit variance and
u2 = 0. We apply least squares identification with noncausal FIR
models with r = d = 25 to estimate the Markov parameters
of the transmissibilities T2,1|1 from y1 to y2 and T3,2|1 from y2
to y3, where y1, y2, and y3 are corrupted with zero-mean white
Gaussian noise with SNR values of 100 and 10. The estimated
Markov parameters obtained using least squares with r = d = 25
are averaged over 500 independent runs of the experiment with
ℓ = 50,000 samples for each run. Then, the averaged Markov
parameters are used in the EIV algorithm shown in Section 6 with
ϵ = 10−8 to obtain the corrected Markov parameters.

Next, we consider the case where u1 = 0 and u2 is a realization
of a zero-mean, white, Gaussian random process with unit vari-
ance. We apply least squares identification with noncausal FIR
models with r = d = 25 to estimate the Markov parameters
of the transmissibilities T2,1|2 from y1 to y2 and T3,2|2 from y2
to y3, where y1, y2, and y3 are corrupted with zero-mean white
Gaussian noise with SNR values of 100 and 10. The estimated
Markov parameters obtained using least squares with r = d = 25
are averaged over 500 independent runs of the experiment with
ℓ = 50,000 samples for each run. Then, the averaged Markov
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Fig. 4. Markov parameters of the transmissibilities T2,1|1 , T2,1|2 , T3,2|1 , and T3,2|2 ,
and estimated Markov parameters of the transmissibilities T̂2,1|1 , T̂2,1|2 , T̂3,2|1 ,
and T̂3,2|2 obtained using the EIV algorithm shown in Section 6. The least squares
estimate of the Markov parameters, which is used in the EIV algorithm, is
obtained with a noncausal FIR model with r = d = 25 and ℓ = 50,000 samples,
and averaged over 500 independent runs. Note that the true and estimated
Markov parameters of T2,1|1 , T2,1|2 , T3,2|1 , and T3,2|2 are close to each other.

parameters are used in the EIV algorithm shown in Section 6 with
ϵ = 10−8 to obtain the corrected Markov parameters.

Fig. 4 shows the Markov parameters of the transmissibilities
T2,1|1, T2,1|2, T3,2|1, and T3,2|2, and the Markov parameters of
the estimated transmissibilities T̂2,1|1,r,d, T̂2,1|2,r,d, T̂3,2|1,r,d, and
T̂3,2|2,r,d, respectively, obtained using the EIV algorithm shown in
Section 6. Note from Fig. 4 that the true and estimated Markov
parameters of T2,1|1, T2,1|2, T3,2|1, and T3,2|2 are close to each other.

Next, we use ERA with ns = nu = 5 to construct the IIR
models T̂2,1|1, T̂3,2|1, T̂2,1|2, T̂3,2|2 from the estimated transmis-
sibilities T̂2,1|1,r,d, T̂3,2|1,r,d, T̂2,1|2,r,d, T̂3,2|2,r,d, respectively, where
poles and zeros that are within a distance of 10−6 of each other
are canceled. Next, the zeros of the estimated transmissibilities

Fig. 5. Illustration of Theorem 1 using simulated noisy data. The eigenvalues of
A given in (115) and the zeros of the estimated transmissibilities T̂2,1|1 − T̂2,1|2
and T̂3,2|1− T̂3,2|2 are shown, where zero-mean white Gaussian noise is added to
the output measurements y1, y2 , and y3 with SNR’s 100 and 10. Note that all four
eigenvalues of A are estimated correctly using T̂2,1|1 − T̂2,1|2 and T̂3,2|1 − T̂3,2|2 ,
and the remaining zeros of T̂2,1|1 − T̂2,1|2 and T̂3,2|1 − T̂3,2|2 are spurious zeros
due to noise.

T̂2,1|1 − T̂2,1|2 and T̂3,2|1 − T̂3,2|2 are obtained. Fig. 5 shows the
eigenvalues of the A matrix given in (115) and the zeros of the
estimated transmissibilities T̂2,1|1 − T̂2,1|2 and T̂3,2|1 − T̂3,2|2. Note
that all eigenvalues of A are estimated correctly using T̂2,1|1−T̂2,1|2
and T̂3,2|1 − T̂3,2|2, where the remaining zeros of T̂2,1|1 − T̂2,1|2 and
T̂3,2|1 − T̂3,2|2 are spurious zeros due to noise. The results of the
example confirm Theorem 1.

Next, we consider estimating the transfer functions Gi,j from
ui to yj, where i = 1, 2, 3 and j = 1, 2, and the denominator
of these transfer functions is the polynomial constructed from
the estimated eigenvalues of A shown in Fig. 5. Note that the
numerator of the transfer function G2,1, for example, is also the
numerator of the transmissibility T2,1|1 and the denominator of
the transmissibility T3,2|1. Similarly, we use the estimated trans-
missibilities to construct the numerators of the transfer functions
Gi,j, where i = 1, 2, 3 and j = 1, 2, and to detect the spurious
zeros. Finally, the estimated transfer functions are obtained by
dividing the estimated numerators of the transfer function by the
estimated denominators. Figs. 6 and 7 show the frequency re-
sponse of the true and estimated transfer functions G2,2 and G3,2,
respectively. Note from Figs. 6 and 7 that the frequency responses
of the transfer function G2,2 and G3,2 are estimated correctly. ⋄

9. Experimental sensor-only estimation of the modal frequen-
cies of an acoustic system

We consider the experimental setup shown in Fig. 8, which
consists of an acoustic space with two speakers and three micro-
phones. The speakers are the actuators that excite the acoustic
space, and the microphones are the sensors that measure the
acoustic response at their locations. The goal is to use sensor-only
data to estimate the modal frequencies of the acoustic space. The
sampling time used in the experiment is Ts = 0.001 s.

Let Tj,i|k(q) denote the transmissibility whose pseudo input
is the ith microphone and whose pseudo output is the jth mi-
crophone with excitation from the kth speaker. Moreover, let
T̂j,i|k(q, θ̂r,d,l,ℓ) denote an estimated noncausal CFI model of the
transmissibility Tj,i|k(q), where θ̂r,d,l,ℓ is the vector of estimated
denominator coefficients and Markov parameters obtained using
least squares with a noncausal CFI model with orders r , d, and l
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Fig. 6. Frequency response of the transfer function G2,2 from u2 to y2 and the es-
timated transfer function Ĝ2,2 constructed from the estimated transmissibilities
T̂2,1|1 , T̂2,1|2 , T̂3,2|1 , T̂3,2|2 as shown in Section 5, where white, Gaussian noise
with SNR’s of 100 and 10 is added to the output measurements y1 , y2 , and
y3 . The denominator of Ĝ2,2 is constructed from the estimated eigenvalues of A
shown in Fig. 5, where the numerator of Ĝ2,2 is constructed from the numerator
of T̂2,1|2 and the denominator of T̂3,2|2 . Note that the frequency response of the
transfer function G2,2 is estimated correctly.

Fig. 7. Frequency response of the transfer function G3,2 from u2 to y3 and the
estimated transfer function Ĝ3,2 constructed from the estimated transmissibil-
ities T̂2,1|1 , T̂2,1|2 , T̂3,2|1 , T̂3,2|2 as shown in Section 5, where white, Gaussian
noise with SNR’s of 100 and 10 is added to the output measurements y1 , y2 ,
and y3 . The denominator of Ĝ3,2 is constructed from the estimated eigenvalues
of A shown in Fig. 5, where the numerator of Ĝ3,2 is constructed from the
numerators of T3,1|2 and T3,2|2 . Note that the frequency response of the transfer
function G3,2 is estimated correctly.

defined by (94) and where ℓ is the number of samples of each
signal used for identification.

We first consider the case where Spk1 is operating and Spk2
is not operating. We obtain measurements from microphones
Mic1–Mic3, and we use least squares with ℓ = 10,000 samples
to fit a noncausal CFI model with l = 5 and r = d = 33
in order to estimate the transmissibilities T2,1|1 and T3,2|1. Next,
we consider the case where Spk2 is operating and Spk1 is not
operating. We obtain measurements from the microphones Mic1,
Mic2, and Mic3, and we use least squares with ℓ = 10,000
samples to fit a noncausal CFI model with l = 5 and r = d =

33 in order to estimate the transmissibilities T2,1|2 and T3,2|2.
Fig. 9 shows the Markov parameters and poles of the estimated
noncausal CFI models of the transmissibilities T̂2,1|1(q, θ̂r,d,ℓ) and
T̂2,1|2(q, θ̂r,d,ℓ). Moreover, Fig. 10 shows the Markov parameters

Fig. 8. Acoustic experiment setup. Two speakers and three microphones are
used in the experiment to excite the three-dimensional acoustic space and
measure its response.

Fig. 9. Markov parameters and poles of the noncausal CFI models of the
estimated transmissibilities T2,1|1 and T2,1|2 .

and poles of the estimated noncausal CFI models of the transmis-
sibilities T̂3,2|1(q, θ̂r,d,ℓ) and T̂3,2|2(q, θ̂r,d,ℓ).

Note from Figs. 9 and 10 that all four estimated transmis-
sibilities T̂2,1|1(q, θ̂r,d,ℓ), T̂2,1|2(q, θ̂r,d,ℓ), T̂3,2|1(q, θ̂r,d,ℓ), and T̂3,2|2

(q, θ̂r,d,ℓ) have both causal and noncausal components. Fig. 11
shows a comparison of the frequency responses of the estimated
noncausal CFI models of the transmissibilities T2,1|1, T2,1|2, T3,2|1,
and T3,2|2 with l = 5, r = 33, and d = 33 with the frequency
response of the constructed IIR model with ns = 15 and nu = 15.

Next, we use ERA to construct state space realizations of
the stable and unstable components of the estimated transmis-
sibility models T̂2,1|1(q, θ̂r,d,ℓ), T̂2,1|2(q, θ̂r,d,ℓ), T̂3,2|1(q, θ̂r,d,ℓ), and
T̂3,2|2(q, θ̂r,d,ℓ) with ns = 15 and nu = 15. We then cancel all
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Fig. 10. Markov parameters and poles of the noncausal CFI models of the
estimated transmissibilities T3,2|1 and T3,2|2 .

pairs of poles and zeros of the estimated state space models of the
transmissibilities T̂2,1|1(q, θ̂r,d,ℓ), T̂2,1|2(q, θ̂r,d,ℓ), T̂3,2|1(q, θ̂r,d,ℓ), and
T̂3,2|2(q, θ̂r,d,ℓ) that are within a distance of 1×10−6 of each other.
Fig. 12 shows the pole-zero maps of the estimated state space
models of the transmissibilities T̂2,1|1(q, θ̂r,d,ℓ), T̂2,1|2(q, θ̂r,d,ℓ),
T̂3,2|1(q, θ̂r,d,ℓ), and T̂3,2|2(q, θ̂r,d,ℓ) after the pole-zero cancellation.

Next, we consider the differences of transmissibilities T2,1|1 −

T2,1|2 and T3,2|1 −T3,2|2. It follows from Theorem 1 that the modal
parameters of the acoustic system can be estimated from the
zeros of T2,1|1 − T2,1|2 and T3,2|1 − T3,2|2.

For validation, the modal parameters of the acoustic system
are directly estimated using measurements obtained from the
speakers and microphones. To do this, we identify the transfer
functions G1,2 from Spk2 to Mic1 and G2,2 from Spk2 to Mic2
using least squares with an IIR model of order n̂ = 10. Fig. 13
shows the estimated zeros of T2,1|1 − T2,1|2 and T3,2|1 − T3,2|2
as well as the estimated poles of G1,2 and G2,2. In particular,
estimates of the modal frequencies of the acoustic system are
obtained from the estimated zeros of T2,1|1 − T2,1|2 and T3,2|1 −

T3,2|2, where the scattered poles and zeros are spurious due to
noise. Fig. 13 shows that three pairs of poles of G1,2 and G2,2 are
close to three pairs of zeros of T2,1|1 − T2,1|2 and T3,2|1 − T3,2|2.
Table 1 shows the estimated modal frequencies and damping
ratios obtained by identifying the transfer functions G1,2 and G2,2
directly and by the estimated transmissibilities T2,1|1 − T2,1|2 and
T3,2|1 − T3,2|2. The average of the estimated modal frequencies
and damping ratios are computed for both cases. In particular,
the estimated modal frequencies of the system based on the
identified transfer functions are ωn1 = 423.5 rad/s, ωn2 = 785.1
rad/s, and ωn3 = 2214.8 rad/s, whereas the estimated modal
frequencies of the system based on the transmissibilities and
Theorem 1 are ω̂n1 = 415.0 rad/s, ω̂n2 = 773.5 rad/s, and
ω̂n3 = 2179.0 rad/s. The errors in the estimates of ωn1, ωn2, and
ωn3 are 2.0%, 1.5%, and 1.6%, respectively. Similarly, the estimated
damping ratios of the three modes obtained from the identified

Fig. 11. Comparison of the frequency responses of the estimated noncausal CFI
models of the transmissibilities T2,1|1 , T2,1|2 , T3,2|1 , and T3,2|2 obtained with l = 5,
r = 33, and d = 33 with the frequency responses of the constructed IIR models
obtained with ns = 15 and nu = 15.

transfer functions are ζ1 = 0.365, ζ2 = 0.19, and ζ3 = 0.12,
where the estimated damping ratios of the three modes obtained
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Fig. 12. Pole-zero maps of the estimated IIR models of the transmissibilities
T2,1|1 , T2,1|2 , T3,2|1 , and T3,2|2 .

Table 1
Modal frequencies (in rad/s) and damping ratios estimated from the identified
transfer functions G1,2 and G2,2 directly and from the estimated transmissibilities
T2,1|1 − T2,1|2 and T3,2|1 − T3,2|2 .

ωn1 ζ1 ωn2 ζ2 ωn3 ζ3

G1,2 441.7 0.37 787.3 0.16 2241.8 0.11
G2,2 405.3 0.36 782.9 0.21 2187.8 0.13

Averaged 423.5 0.365 785.1 0.19 2214.8 0.12

T2,1|1 − T2,1|2 383.9 0.47 789.2 0.24 2190.3 0.13
T3,2|1 − T3,2|2 446.1 0.39 757.8 0.32 2167.7 0.16

Estimated 415.0 0.43 773.5 0.28 2179.0 0.15

Error (%) 2.0 16.2 1.5 47.3 1.6 25

from estimated transmissibilities are ζ̂1 = 0.43, ζ̂2 = 0.28, and
ζ̂3 = 0.15, which correspond to errors of 16.2%, 47.3%, and 25.0%,
respectively. The large errors in the estimated damping ratios is
due to the lack of an EIV algorithm for noncausal CFI models.

10. Conclusions

This paper introduced transmissibility-based system identi-
fication (TBSID), which is a time-domain technique for system
identification that uses only output data. In particular, TBSID
uses output data from a system driven by unknown and un-
specified but sufficiently persistent inputs applied at distinct

Fig. 13. Estimated poles of G1,2 and G2,2 obtained using least squares with an IIR
model with order n = 10, and zeros of the estimated models of T2,1|1−T2,1|2 and
T3,2|1 −T3,2|2 . Note that there are three pairs of estimated poles of G1,2 and G2,2
that are close to three pairs of estimated zeros of T2,1|1−T2,1|2 and T3,2|1−T3,2|2 .
The estimated modal frequencies of the acoustic system are obtained from the
estimated zeros of T2,1|1−T2,1|2 and T3,2|1−T3,2|2 and compared to the estimated
modal frequencies obtained from G1,2 and G2,2 . The remaining poles and zeros,
which are scattered over the unit disk, are spurious due to noise.

locations to estimate two transmissibility operators, which are
then used to construct an input–output model. As in the case
of frequency-domain transmissibility estimation (Devriendt &
Guillaume, 2008; Weijtjens et al., 2014), the excitation must be
applied nonsimultaneously at two different locations, and the
identification method may produce spurious modes. The fea-
sibility of TBSID was illustrated on numerical examples and
demonstrated on an experimental acoustic application using non-
causal composite FIR/IIR (CFI) models, where the three modal
frequencies were estimated within 2%.

Further research will address the following challenges. First,
systematic techniques are needed to detect and remove spurious
modes. Next, the effect of sensor noise must be considered. Since
sensor data are used to identify the transmissibilities, sensor
noise leads to an errors-in-variables (EIV) problem (Söderström,
2018). In this case, the sensor noise may be colored but un-
correlated. The accuracy of TBSID may thus benefit from the
availability of an effective EIV technique for noncausal CFI models.
Finally, it can occur in practice that an additional input signal is
applied at a different location concurrently with the unknown in-
put signals. In this case, the sensor noise is colored and correlated,
thus leading to a more challenging EIV problem.
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